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Instability of convective cells and genesis
-of__ different scale convective structures

V.M. Malbackov and O.F. Winkenstern

The article is devoted to the theoretical investigation of atmospheric convection on the
base of analytical, semi-analytical and numerical solving equations of deep and shallow
convection. The studies conducted have allowed the following conclusions: the heat of
convective turbulence is convective cell; convective cell is unstable to a finite-amplitude
disturbances; stability of cells is determined by external model’s parameters and decrease
with time; cornplicated nature of convective turbulence is conditioned by interaction be-
tween cells resulting in their coagulation or destruction; the model accounts for only
interaction of cells located over each other. This and a number of simplifications for
setting up a problem make possible to construct the convective cells’s distribution func-
tion depending on their sizes, existence time and large-scale parameters; there are three
jerarchy levels of convective formations in atmosphere: small-scale convective turbulence,
thermals and cuinulus clouds, convective ensembles; rotation of convective cells causes
their stability to increase by enhanced stability of rotating cells a relatively weak ther-
mals and cumulus clouds transform to whirlwind or tornado; a tropical cyclones may
be considered to be (with minor reservations) large-scale analog of whirlwind. In spite
of essentially different sizes the space structure and mechanism of these phenomena has
much in common, in particular, the type of circulation.

1. Simplified hydrodynamical-statistical model
of interacting convective cells ensemble

1.1. Introduction

Atmospheric convection is understood to be processes connected with verti-
cal density instable stratification of air. These processes include a wide size
range of atmospheric disturbance: pulsation with size of several centime-
tres, thermal and cumulus clouds with size from several dozen meters up to
the kilometre and also convective supercells and cloud populations covered
the area from several dozen to several millions cubic kilometres. Some au-
thors attribute to convection also a phenomena resulted from atmosphere’s
being thermally inhomogenious along horizontal. From this viewpoint a
‘more wide class of processes may be reffered to as convection, including
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global atmospheric circulation conditioned by a difference in solar heating
upper and lower latitude and by Earth’s rotation.

In this part of paper simplified approach is suggested to investigate con-
vective turbulence. This approach is based on imagining turbulent struc-
tures as own solutions of nonlinear nonsteady thermo-hydrodynamic equa-
tions [8]. These solutions having under certain values of parameters the
form of solitons in space and time shall be called the convective cells.

Simplified model suggested describes in analytic form both space-time
structures of convective cells and their interaction; it takes into account
the interactions being most probable in convective conditions. That is co-
agulation of convective cells and their destruction. The latter occures as
gradient catastropha and results from convective cells being instable with
respect to a finite-amplitude disturbance. The degree of cell instability de-
pends on it’s buoyancy — dimensionless parameter coinciding with precision
to constant factor with inner Relei’s number for this cell. The distribution
function of cells depending on both their sizes and external parameters of
model taking into account environment conditions was constructed. There-
fore going from hydrodynamic model to statistical simulation was carried
out.

Proposed hydrodynamic-statistical models show that convective turbu-
lence with pulsation, whose amplitude not exceed a few dozen centimetres,
arises on the base of molecular viscosity. Under certain conditions turbu-
lent pulsations together with dynamic turbulence form convective cells of
the following ierarcliy level of sizes - thermals and cumulus clouds. And the
last, in their turn, are the turbulence base for forming cloud populations of
varies types. A convective formation of higher ierarchy level are not known
in the Earth’s atmosphere because, apparently, its being small. Convective
cells of 4-th and 5-th levels can exist on the larger plancts and on the sun.

Let us investigate evolution of the convective cells having two sub-
stantially different characteristic scales: pulsations of size no greater than
several dozens of centimeters, generating thermal turbulence, and thermals
of size about three order more, originating in this turbulent atmosphere.
In this work particular attention has been given to the determination of
factors causing the growth and destruction of cells, the formation of their
characteristic scales, and the qualitative explanation of the turbulisation of
air inside the thermals.

1.2. Mathematical formulation of the problem

Let us consider the problem about interaction of several convective cells
initiating by thermal impulses setting at the initial moment. The problem
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is solved under the following simplifying assumptions:

¢ the convection develops in the polytropic atmosphere, i.e., the tem-
perature is linear function of height;

e vertical scales of convective cells are greater than horizontal scales
and therefore, initial equations are derived from thermodynamic-
equations by using simplifications of the theory of vertical boundary
layer [10];

¢ both convective cells and thermal impulses are axisymmetric and
located on the vertical axis;

o coefficient of turbulence viscosity and heat conductivity are indepen-
dent on coordinates and time.

On simplifications of the convection theory and the theory of vertical
boundary layer the thermohydrodynamic equations are in the form [19]:

3_w+ a_w-+ 8_w_,\9_§_£_a_ra_w.+ B_ZE

adt b ar w&’z - rdr Or UBZQ’
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The notation used are:

t — time;
r, z — cylindrical radial and vertical coordinates;
u, w — radial and vertical components of velocity correspondingly;

¥ — temperature deviation from it’s values § = 6y — vz in undisturbed
atmosphere;

A = g/bo;

g — gravitational acceleration;

v — the molecular or turbulent viscosity factor;

@ =7 =703

v — the lapse rate of the undisturbed atmosphere,

7o — the dry adiabatic lapse rate.
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Prandtle number is assumed to be Pr = 1. There are terms allowing
for influence of vertical turbulent viscosity in (1.1). Analysis shows, that
these terms must be less than other terms by a factor of £ = I(t)/h(t)* (I,
h — horizontal and vertical thermal’s sizes being defined by the problem).
Terms allowing for the influence of vertical turbulent viscosity are included
at first, to investigate balance between the inertial and viscous forces and
at second, because elimination of terms with the higher derivative changes
the type of equations that is inadmissible here. Nevertheless solutions
allowing for and not allowing for the vertical turbulence viscosity are not to
be substantially different from each other, because otherwise the accepted
simplifications are not valid.

Let us set initial conditions for equations (1.1). Suppose that at t = 0
there are no motions, and the appearance of thermals is simulated by
setting at this moment of time several thermal impulses located on the
vertical axis:

42

72
at t=0 0= —A'r—geﬂfp (—*2*;‘3) fD(Z), w = 0, (12)

where f(z) is a function defining the vertical distribution 9, it is non-zero
on several segments contacting with each other.

1.3. Solutions of the problem

Let us solve the Cauchy problem (1.1)-(1.2). The solution may be written
in the form (in detail see [19])

w = 4v2a(t)p(t) f(z,t)exp (_ﬁ) \

2
4 2 .2
u=— UT{P(l—E.’L'p (—%—)) %, (1.3)
2,0, 2
¥ = il—i"i;/]i—)f(z,t)e:v;p (—%—),
where
t at a =0,
p =< sin(v—aAt)/vV—al at a <0, (1.4)
sinh(vVadt)/Vad at a>0;
1 at a =0,
=4 cos(vV—alt)/vV—aX at a <0, : (1.5)

cosh(vVait)/v/aX at o> 0;
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a=1/2vt+13), (1.6)
f(z,t) satisfies the equation
O 4200fdd _ 1.
E + 4V asafaz - uazg‘l (17)
at t=0 f = fo(2). (1.8)

At the case of neutral stratified atmosphere (a = 0), assuming r = 0
and substituting v,a from (1.4), (1.6) into (1.7) we come to a problem for
the linear thermal impulse randomly distributed along the axis Oz:

0\ gusdd _ O,
a-}-?l/‘fa—vazj, (19)

at t=0 f= fo(2). (1.10)

Equation (1.9) is the well-known Burgers equation reproduced to a linear
one by substitution

f= F(s:,t)/(c + ]oFdz)

z

as a result we have the following problem:

oF *°F
“a—t = V—é‘g, . (111)
at t=0 F= cfge.?;p/fgdz. (1.12)

1.4. Coagulation of convective cells

In the following, let us study thermal convection caused by finite quantities
of heat ¢ instantly released at t = 0 in several fixed points on the axis with
coordinates z = z;, (i = 1,2,...,n; zi41 > 2;). The solution to the problem
for this case was obtained in [19]

mn

z b; exp(—n?)
e - , (1.13)
2v/Tut(1 + __21 b (1))
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where

= (22\—/1/1;)’ Y(m) = % / exp(—a®)da,

—n;
by = exp(Q1) — 1,
i+l

J+1_—exp(ZQ —exp(ZQ) 9 = Lywe g =15

=1

A

q - Ags i
g — ) 1= s = ) 8 = dz,
@ 8me,pr? .ZIQ Q 8reppr? g / J5%
= o5

where Q;, Q, are non-dimensional constants; ¢, is the heat capacity of air
at constant pressure; p is the mean density.

The last relationship at (1.13) results from the condition of conservation
of heat amount:

o0 OO
27r/ Idzrdr = L, (1.14)
Cpp
0 —o0
Now let us define the values of parameters such that the vertical boundary
layer simplifications used could be valid. When the last term in equation
(1.9) allowing for the influence of vertical turbulence is small, solution

(1.13) have to be close the solution to the problem

d
Y vt /fdz—Qs (1.15)
With n = 2 problem (1.15) has the following solution:

at 0<t<t; and h; <z<2

(z—21)/2vt at 2z <2< hy(t),
f=< (z=2z) /2wt at 2z < z< hol), _ (1.16)
0 at 2 < 21,2 > hy;

where t; = (29 — 21)%/4vQ, hy = =1 + 2/Q vt hy = 2y + 20/Q21;

at 1y <t<ly and 2z <2< hy

z1)/2vt at  z < z < hy(t),
f=¢ (z- «2)/2111 at 23 g:g/ 2(1 ) (1.17)
0 al 2 < z,2> hy
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where to = t1(v/@s + VQ2)/Q1, hs = (224 21)/2 + 2Q1vt/ (22 — 21);

at t > ig
—z)/2wt at z <z < hy(t),
f= (z—2)/2vt at 2z <z < hy(t) (1.18)
0 at  z< 21,2 > hy

where hy = 21 + 2/Q VL.

Comparision of solutions allowing for and not allowing for the vertical
viscosity shows its having minor influence on the process with Q; = Ag;/
(87cppr?) > 10. Only with such parameter values vertical scales of the pro-
cess prevail over the horizontal scales. For example Figure 1 gives the type
of functions f(z) accounting for and not accounting for vertical viscosity
at different moments of time with the following parameter values:

n=2 Q1=Q2=25 z=0, Z;=0600m, v=10m*/s. (1.19)

It is easily seen that at @ = Qo = 25 the influence of vertical viscosity
is not great — the curves 1 and 2 are close to each other. The analysis of the
solution of (1.16)-(1.19) shows that the whole process can be conditionally
divided into three stages begining at the moments ¢t = 0, t = ¢; and t = {5.
At the first stage relationships (1.16) are valid. Thermal convection at
0 < t < t; develops within two regions that are not adjoining, i.e., the
thermals do not contact with each other. In all convective regions u is
small and does not depend on z and w is growing with height according to
the linear law, reaching it’s maximum values

w; = 2y/Qv/t at r=0 and h; =2y/Qivl+ z, (1.20)
i.e., on the axis near the upper boundaries of the thermal, and minimum
values w = w,,;, at their lower boundaries z = z; + Wpint, where w < Wyin

are velocities neglibigly small for the thermals ascent. In so doing the ascent
velocities of the upper boundaries appear to be lower than the maximum
values of updrafts in the thermals.

Now let us consider the results of observations over the ascending ther-
mals. We know that in real conditions the thermals expand their volume
during their ascent [2], [24]. Laboratory experiments show linear variation
of thermal radius with height [28]. The vertical component of motion is
prevailing in the thermals; it is maximal in the upper part of the cells
called thermal’s core. Movements are insignificant in the lower part of the
thermal called thermal’s trail. The core ascent velocity appears to be less
than the maximal vertical motions within the core [2]. Comparision of ob-
servational results with theoretical results shows that the obtained solution
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Figure 1. The type of functions f(z) at different moments of time with the fol-
lowing parameter values: n =2, Q, =Q2=25, 2, =0, Zy=600m, v=
10m?/s. Thin line — the solution accounting for vertical viscosity, bold line — the
solution not accounting for vertical viscosity; z = h; and z = hy — maximal ver-
tical size of thermals; z = h; — maximal vertical size of the lower thermal in the
case that the upper thermal is absent.

qualitively describes the major features of distribution of meteorological
element’s fields in the thermals.

Let us consider the mechanism of interaction of the thermals. The
stage of interaction begins at ¢t = t;. At this moment the upper boundary
of the lower thermal reaches the level z = 2z, the velocity of it’s movement
increases. So the velocity of movement of an isolated thermal decays in
time: . dhy/dt = /Qyv/t, while during interaction this velocity is already
constant and equals dhy/dt = 2vQ,(z; — z;). So the ascent velocity of
the lower thermal increases due to it’s interaction with the upper thermal.
To the same conclusion one comes experimentally [28]. As the velocity
of the upper boundary of the upper thermal also decays vy, = dhy/dt =
V Q2 /1, the lower thermal completely absorbs the upper one with time.
This takes place at t = t,. The new thermal formed at this moment
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does not differ from the thermal formed under the influence of one impulse
with power ¢s = ¢1 + q2, given at t = 0, » = 0, 2 = 2;. Note that
the effect of coagulation of the thermals is conditioned by the influence of
nonlinear dynamic factors: any linearization of equations is inadmissible,
because then no coagulation of thermals will happen due to the principle
of suprposition. So, for example, in this case the lower more powerfull
thermal can go through the upper one, and then two thermals will again
exist independently.

Therefore the dynamic entrainment is the important factor bringing to
the growth of convective cells. Ludlam and Scorer [15] came to the same
conclusion; according to their investigations the total mass of the captured
thermals can substantially exceed the mass of the mother cell. As a result
the latter rises much higher. It will be shown below that the interaction
can lead not only to the growth of thermuls but also to their destruction.

Unfortunately the observational data concerning the interaction of at-
mospheric thermals are not known to us. The work [28] describes the
laboratory finding concerning simulation of this processes in laboratory set
up: portions of fluid lighter in weight than water (water solution of special
chemical) were introduced  into water in equal time intervals. As a result
thermals were obtained having similar buoancy and similar path of ascent.
So it arises the system consisting of three interacting thermals located over
each other. Experiments have shown that the upper boundary of the first
thermal rose at the rate v ~ 1/4/t. The second thermal moved upward
at larger rate but the upper boundary of the third lowest thermal moved
already at the rate equal to that of the second thermal.

Let us compare experimental conclusions with theoretical results. For
this purpose we take the solution to the problem describing the interaction
of three similar (Q1 = Q2 = @3 = @/3) thermals located on equal distance
(22 — 21 = 23 — z2) without vertical turbulence:

(z=2z1)/2vt at 2z, <z< hy,
f— (Z—Zz)/'ZI/t at hl SZShg,
B (2 —23)/2vt at hy <z < hs,
0 at z< 1z, z> z3,
where
2Q1vt 9 — =z 20tz z
hy = Q1 +2. L - 1 3+ 2’
2—21 2 23 — 29 2
(22 — 21)

hy = 2/Qavt + z3, t; =
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This solution is in the time interval t; < t < t3, where t; corresponds to
the moment of time when the lower thermal “catches up with” the middle
one. At the same moment the core of the middle thermal appeares to be
in the trace of the upper thermal. The value 3 corresponds to the moment
of time when the upper thermal coalesces with the middle termal.

Now let us define rise velocifies of upper boundaries of the thermals.
It is easely seen that the vertical movement velocity of the upper thermal
decays: v3 = dha/dt ~ 1/+/t, and that the middle thermal rises quicker
than the upper one: vz = dhy/dt = 2vQ,/(z3 — 22), but the velocities
of the lower thermal and middle thermal upper boundaries are the same:
vy = v2. So this model describes regularities established experimentally.

Let us investigate thermal evolution in a stably (o < 0) and instably
(a > 0) stratified atmosphere. The similarity of solutions to the problems
(1.7), (1.8) and to the problem without turbulent viscosity will show the
range of values of external parameters such that our theory could be applied

aa—': + 4y2agaf% =0, at t=0 f= fo(2). (1.21)
Solutions (1.21) at @ < 0 and at a > 0 for one thermal impulse are obtained
in the work [19]. Solution in the stable atmosphere (as well as at a = 0)
appeared to be valid only when thermal impulses are sufficiently strong,
but in contrast to neutral stratification the thermal core reaches maximal
heights long before the complete decay of convection. Once the growth in
the vertical has stoped, horizontal sizes of a thermal gradually approach
vertical sizes. For this reason the applicability of the theory for a < 0
is limited also in time. At a > 0 the power of initial thermal impulse is
not substantial because thermal convection is maintained by the energy of
instability, and the simplifications of vertical boundary layer appear to be
valid due to the substantially more rapid increase of vertical scales of the
phenomenon in comparision with the horizontal scales.

It is not difficult to obtain the solutions to (1.21) at @ > 0 and a < 0
and for the case of two thermal impulses. The analysis of these solutions
(we do not give them because of their awkwardness) shows that the charac-
ter of interaction of thermals is about the same as at « = 0. The difference
with the case @ = 0 is in the interaction’s taking place either quicker (at
a > 0) or slower (at a < 0) due to more rapid or slow increase of the
vertical sizes of the thermals.

1.5. Instability of convective cells

Let us show that relations (1.13) lose their physical meaning at certain
critical parameter values due to the violation of balance between the inertial
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and viscous forces. Let us define critical parameter values and investigate
the behaviour of the function f at the parameter values that are close
to critical values. In considering the case of atmospheric exposure to two
thermal impulses, we suggest that the first impulse is caused by a powerfull
thermal influence with Q; > 10, and the second very weak thermal influence
with Q2 = € € 1 is caused by occasional fluctuations in the temperature
field. In this case

by = exp(Q1) — L X exp(Q1), by = exp(Q1 +¢) — exp(Q1) ~ exp(Q1)-

After substitution b; and by into (1.13) we have:

s exp(Q1) exp(—nf) +eexp(=m3)
2v/mvt(1 + exp(Q1)(¥(m) + e¥(m2)))

The denominator in (1.22) vanishes and the solution makes no sense at

_eXP(Q1) + %(m)
P(n2) .

So the values ¢ depend on t, t;, 2, 21, 22, but as fluctuations in the temper-
ature field can appear at any moment of time and at any point of space,
then minimal modulus value of ¢ should be taken from (1.23). This value
corresponds to the minimal in “power” thermal fluctuation, destroying the
thermal; it is reached at ¥(m) = ¥(oc) = 0 and ¥(n2) = P(—o0) = 1.
Substituting these values into (1.23), we finally have:

(1.22)

€= (1.23)

€ = Eer = —exp(—Qa)- (1.24)

Weaker fluctuations do not destroy the thermal. It is easily seen that
f —0atm — o0, g = —oo. But at ¢ — & depending on 2z and 2
the numerator in (1.22) vanishes quicker than the denominator in certain
space points. Calculation showed that at &€ — €¢r accidental perturbations
over the upper boundary are most “dangerous” for the convective cell.
Abrupt increase of temperature, velocity and lapse rate takes place in the
thermal core, and a region with downdraughts and negative temperature
deviations, resembling a turned over convective cell, appears over the core.
The solution behaviour at this case resembles the stage preceding the wave
turnover . But the turnover itself cannot take place in the theory considered
here because it is prohibited by the form of the solution (1.3) itself (f -
values cannot have different signs at fixed heights). That is why the so-
called gradient catasrophe took place in the calculations at the ¢ — values
that are very close to the critical value: the solution had a discontinuity at
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a transition from f — oo to f — —o0 in it’s passage through the point of
dicontinuity. This means absolute disagreement between the inertial and
viscous forces and the beginning of the formation of turbulent pulsations,
the process that cannot be discribed by the given simplified model.

The established regularities take place in nature during convective pro-
cess on different scales. So a turned over cell, located over a powerfull
cumulus cloud is a common atmospheric phenomenon [2], [17].

Let us briefly describe another natural phenomenon that can be partly
explained with the help of our theory. Convective boundary layer forming
during the day in summer over vast territories is always limited from above
by a thin inversion layer that is called entrainment region. It is known that
the entrainment region is the product of interaction of convective cells with
the air above them. Mixing of two air masses taking place in this region
can be explained by the inertial instability of movements in the thermals,
that constitute a convective ensemble. The process of mixing, as shown
by this model, can be related to the effects of the “wave turnover” [6],
[27] and associated entrainment into the movement of air masses above the
thermals.

The effects of wave turnover are also well-known at microscale convec-
tion. For example, the length of laminar thermal flow over a smouldering
cigarette is 10-20 cm. Above that the flow decomposes into separate eddy
formations of a lesser size.

Let us define maximal sizes of convective cells. Consider for this pur-
pose the relation (1.24): it shows that the stronger the initial influence on
the atmosphere, the weaker the hydrodynamic stability of the convective
formation it caused. In the case when the convective cell is formed by
coalescence of several thermals it’s stability is the weaker, the more heat
in the region covered by convection.

If we accept air viscocity as molecular: v = 2-10"%m2s~! and \ =
0,33m s72 °K, p = 103g m~3, Q, = 25, then, as can be easily calculated
by (1.13), (1.24), thermal perturbation equal to ¢ = —41-10"%¢al, is
sufficient for the microscale convective cell to lose it's stability. Random
perturbations on such scale can be realized even at the expense of the
thermal movement of molecules.

If the medium is considered to be turbulent, then at ¥ = 10m?2 s and
@1 = 25 turbulent pulsations in the temperature field of power ¢, = —1cal
lead to the “destruction” of a convective cell. Naturally such a cell is very
close to instability. When Q; becomes greater instability catstrophically
increases. lor example, at Q) = 100 effects, 30 orders of magnitude smaller
than at Q) = 25 cause the “destruction” of a cell.

Using the obtained solutions, it can be easily shown that the vertical
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sizes h are related to the horizontal [ sizes of thermals as

n=h/l=Q. (1.25)

The relationships (1.25) shows that the more difference of the vertical and
the horizontal scales of a convective cell, the weaker the inertial stability
of this formation. Indeed, observations show that convective cells with
approximately the same vertical and horizontal sizes are encountered more
often [2].

Thus the proposed theory is applicable in.the following range of @ ~
values:

10 < Qs < Q. = 25. (1.26)

At Q¢ < 10 h and [ differ insignificantly and hence vertical boundary layer
simplifications we used during the derivation of initial equations are not
applicable; at @5 > Q. the cell is unstable.

Let us define maximal scales of convective turbulent pulsations and
maximal scales of the thermals using (1.26). Assuming ¢ = 1, 1 = @,
z1 = 0in (1.20) we have:

te = 4Q.w/w?, he=2y/Q.vt., (1.27)

where {. is the time of development of a convective cell; w,, is the minimal
vertical velocity component in a cell for the convective formations of this
type; h. is the characteristic vertical scale of a cell.

Assuming molecular air viscosity v = 2-107°m?/s, at Q = 25, w =
10=2m/s, we have t = 20s, h = 20sm - the continuous region of thermal
flow over the smoudering cigarette has just the same length. The turbulent
medium, where the thermals originate, is formed by thermally induced pul-
sations along with turbulent perturbations caused by the shear instability
of the external flow.

Assuming the medium to be a turbulent one, at ¥ = 10 m?/s and
w = 1 m/s, we have the following maximal values of spatial-time scales for
the thermals: he = 10%m, ¢t = 10%s. The observations confirm the obtained
value.

We note, however, that in real conditions the cell reaches the maxi-
mal sizes. apparently, at the stage of maximal evolution, while according
to (1.27) it occures at the stage of process dissipation. It can be sim-
ply explained: real thermals develop, as a rule, spontancously, owing to
instability energy. But the relations (1.27) do not take into account the
influence of stratification on the process. Let us assess this influence on
the evolution of convective cells. Characteristic time scales of gravitational
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waves (at a < 0) and time of their existence (at a > 0) are known to be
determined by the Brunt-Vaisala frequency:

to =2/ a |\ (1.28)

Substituting into (1.28) @ = 3-1073 °K/m and a = -3 -1072 °K/m,
corresponding to the unstable and stable stratifications of air, at A =
0,033 m/(s? °K)~! we have t, = 600 s. In the case of molecular air
viscosity t. < t5. So the stratification of air must not influence on the
scales of convective pulsations generating atmospheric turbulence. Thin
surface layer where the value a can be 2-3 orders of magnitude larger than
its characteristic values, makes an exception. This property is taken into
account in the parameterization models of the constant flows’ atmospheric
layer [6].

In the case of turbulent atmosphere t. > t, and hence the stratification
of air must already play a substantial role in the formation of thermals.

1.6. Convection under the unstable stratification of
atmosphere

Assuming that a > 0, 7o = 0 in (1.4)~(1.6) and substituting their values
into (1.7) we have

: 2
of 4 2usinh(vaA t) f of _ Va_z. (1.29)
ot vValt 0z 022
Function f must satisfy the following integral condition:
i Age
/ fdz=Q, Qc= e (1.30)

where ¢, is the amount of heat released at the moment ¢t = 0. The total
amount of heat in the region covered by convection increases with time

oo
A 27r/
CppP ;

Problem (1.29), (1.30) was solved numerically. Several numerical schemes
were used and all of them were no longer stable at ¢t > t.. The time of
beginning instability and “the form” of it’s realization depended on the
scheme chosen. However this dependence was weak with time-space steps

cosh(vVa t)
Cpp .

9 dzrdr =

~—oc

(1.31)

8
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being sufficiently small; in this case instability took place at value @, ranged
from 25 to 100:

Qs = Qc = Q. cosh(Va t) ~ 25 + 100, (1.32)

Comparision of (1.26) and (1.32) allows to conclude that whatever the
- stratification of atmosphere the convective cell remains stable only when
the heat amount contained by one does not exceed some critical value
defined by the relations (1.26), (1.32).

The numerical solution of problem (1.29), (1.30) corresponds sufficiently
well to the analitical solution of problem (1.21) obtained in [19], corre-
sponding to a > 0 for the case when vertical viscosity is neglected. The
approximate form of this solution carried out at ¢t > 1/ Val:

Q.vexp(vVal t)

at 0<z<h, h=2

VaX
w = VaX zexp(-n?)
U= —21}‘{5(1 — exp(—7?)) (1.33)

¥ = azexp(-n%)
at z<0and z2>0 w=u=19=0.

The expressions for the critical velocity value w.. The convective cell max-
imal height h, and the time of cell existence ., obtained with the help of
(1.32). (1.33) have the following form:

1 Q. 5 | Qv Lo
t. = —\/ﬁln (Q:) irL.:Z\/\/E\., tLC-Q\/QCV\/a_A. (1.34)

Assuming o = 3-1072 K m. A = 0.033m/(s? °K). v = 10m?/s, Q. =
25 and substituting these values into (1.34) we obtain h. = 640m, w. =
3,2m/s. that is close to value observed in the real thermals.

It should be noted that air movements within the atmospheric bound-
ary layer are very diverse and spontaneous. The theory developed here
does not describe all the diversity of forms of atmospheric convective cells,
but it qualitively explains the reason of this diversity. It is in that all
sufficiently developed cells are unstable relative to finite amplitude pertur-
bations. The theory does not give a definite answer to the question of
how does the realization of instability occure, but, obviously, the form of
resolution instability is different for the cells of different intensity. The
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reason of beginning of cells destruction is also different. “Powerful” cells
are unstable to very weak perturbations caused by random fluctuations in
the temperature field. Weaker thermals can be destructed as a result of
their interaction with the cells in the downdraughts and the air that is
colder than the environment. There can be many other reasons of instabil-
ity of movements in the thermals that are not considered by this simplified
model; for example, the processes of interactions of cells with each other
and with the environment, taking place on the sides of the thermals (due
to the simplifications of the vertical boundary layer theory, made in deriva-
tion of initial equations, the conclusions of the theory lose their phisical
meaning at a long distance from the axis of thermals). None the less the
mentioned processes: dissipation, spontaneous growth, interaction of ther-
mals cause the diversity of the forms of movements that take place in the
convective boundary layer; nonlinear interaction causes both the growth
and the destruction of thermals.

1.7. Statistical characteristics of an ensemble of thermals

Let us consider the unstable atmosphere again. At o > 0 the buoyancy of
thermals increases with time due to instability energy. As the buoyancy
increases from @ to € + d@ the probability of cell’s destruction is defined
according to (1.24) as

§(Q) d@ = exp(-Q) dQ, (1.35)
the following being fulfilled

/ exp(—Q) dQ = 1. (1.36)
0
If the theory is correct at @ > @Q., then we have in place of (1.35), (1.36)
5(@) dQ = exp(Q: - Q) dQ. [ exp(@.-Q)aQ=1. {137
Q-

The relationships (1.35) is convenient for calculations to be written at the
term of vertical thermals’s sizes S(h) or of their existence times of S5(1)
or of oscillation frequency S(n), where n = 1/t. Tor this purpose we use

(1.31), (1.33)

Qs
Vax

Qs = Q. cosh(Va) = Q. exp(VaX), h =2 (1.3%)
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Using the dependence between @, and h, Qs and t, Qs and n we have in
place of (1.35)

. h h? 2u
S(h) dh = h_% exp (—2—'&3) dh, hy= m; (1.33)
S(t) dt = Q.VaX exp(Val — Q. exp(Val 1)) dt; (1.40)

Va

S(n)dn = — - Q. exp (T)) dn. (1.41)

QeVaX Vald
(5

Obviously, expression (1.39) is most convenient, because in this case the
spectral size distribution density of thermals

2 h2
hS(h) = (%) exp (—%) , - (1.42)

is the second moment of normal distribution. Let us show that other
values characterizing an ensemble can be expressed through the moments
of normal distribution. Let AS be an area of a cell of large scale model
grid. Let this cell contain N thermals, whose interaction being neglected.
At first we are to determine Sg(h), where 9 is excess of temperature in the
cell due to collective action of thermals. The area of thermal’s horizontal
section is assumed to be much smaller than AS : 7rf € AS, where
ro = \/3/‘(1 All of the thermals are assumed to arise simultaneously at
t = 0. At t > 0 they grow spontaneously and are destructed, until at
t = At. where At being time step of large-scale model, the convection
reaches “satiation”, i.e., AS = 7riN. Therefore the model is ready for
the parameterization purpose. Then all cycle is repeated already with the
large-scale parameters changed for the time At. Using @ from (1.33), S(h)
from (1.39) and averaging in AS we have:

2rNa ay/Th? h?
Sg(h) = NG hb(h)/e\p —ar?) rdr = 1072 exp (—;j-};g). (1.43)
It also can be shown that
2 h?
Se(h) ~ h”exp <_2f—z%) . (1.44)

f2
Se(h) ~ n? 0\p( —ZITEJ) (1.45)
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1.8. Comparision of calculated results with observation
data

Comparision of calculated results with observation data is illustrated in
Figures 2-5. In Figure 2 two curves are given: bold — convective cells
size distribution calculated with the-use (1.39) at a = 3-10-3 OK/m, A =
0.033m/(s% °K’), v = 5m?/s; thin - distribution constructed with the use of
measuring by Wolfson [15]. Figure 3 demonstrates the values :—3% (05, 0w
— standard deviations ¥ and w) measured in [3] and one calculated at o =
1072 °K/m, A = 0.033m/(s? °K), Q. = 0,1, ho = 265m. Figure 4 shows
the average (over the lower 300-meter layer) values nSg(n)og, nSz(n)oy
measured at (3] and one calculated at & = 5-10~* °K/m, X = 0.033m/
(8 °K), Q. = 0,1 (note that S3 and Sy coincide at the model). Figure 5
corresponds to Figure 4 only with measuring being carried out at other
day and calculations being carried out at a = 103 °K /m.

It is seen in Figures 2-5 that the model gives more “compact” distri-
bution as compared with measuring. This fact can be partially explained
by defects of the theory. But main reason, apparently, is low-frequency
part of the spectrum corresponding to a formations greater than thermals
being not filtered. So the second weaker maxima located at low-frequency
part of the spectrum in Figures 4, 5 are pointed out at [3] to correspond
to the clouds Cu hum. The cloudness of 3-4 ball takes place in both cases.
Although lower boundary of the clouds is located at a height near 1 kilo-
metre, it’s influence was observed near the surface.

——  lheorelical result

- — - measuring

40

Figure 2. Comparision of calculated results with observation data: convective
cells size distribution
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1,2 —— - Lheorelical resull
% - measuring
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Figure 3. Comparision of calculated results with observation data: averaged nor-
malized spectral density of vertical convective flux of heat at z = 265m

-'%Sg-‘l — — lheorelical resull
) . __. - measuring
/ =~ ‘l/ R ~

100

Figure 4. Comparision of calculated results with observation data: averaged spec-
trum of temperature (1) and velocity (2) in 300 m thick layer (7 July 1970)

—'%35'9- —— -lheorelical resull
2 7. - measuring

Figure 5. Comparision of calculated results with observation-data: averaged spec-
trum of temperature (1) and velocity (2) in 300 m thick layer (7 August 1971)



52 V.M. Malbackov, O.F. Winkenstern

1.9. Comparision results obtained by analytic model,
numerical vortex-permiting model and observation
data

Comparative analysis of maximal vertical velocities and maximal horizontal
thermals’s sizes obtained by measuring data [27] and numerical results by
model of dry thermals’s ensemble is given in [4]. Using (1.39), (1.40) the
following correlation can be obtained

S(Wmaz) = w;mr e:rp(——l%f»), Wmazr = Vad h, we= 1\ 2Val,

2 2

0 0
= 3 —_— — — [ =2Vt
S(1) P\ 22 Q-exp wz)) v

Figures 6, 7 illustrate numerical and analytical results and measuring data
obtained by Konovalov [12], who distinguishes two types of thermals: a)
with main and a few second maxima; b) with the only maximum. In
Figures 6, 7 solid cycle-points correspond to thermals of type a), cross-point
~ to thermals of type b), hollow cycle-point — to numerical results, solid
lines — analytical results at wg = 1,5m/s, hg = 150m, . = 0,001. The
coincidence of the results of both models and one measuring is satisfactory.
Analytic model gives more compact horizontal size distribution of thermals.
It may be explained by the real thermals’s consisting of a few close located
cells, but in the analytic model the thermals have to be widely spaced
because the lateral interaction’s being neglected.

S(Wnax )%
e ]
2
03
-4
30
x '0
20 .
10t |
0 L} . N . a b
0.00- 1,01- 2.01- 301- 401-  Wpay M/s
050 1.50 250 350 4.50

Figure 6. Comparision of calculated results with observation data: repeatability
of maximal vertical velocity in thermals; (1) - thermals of type a), (2) - thermals
of type b), (3) - numerical model, (1) - analytical model '
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Figure 7. Comparision of calculated results with observation data: repeatability
of maximal horizontal size of thermals; symbols are used as in Figure 6

1.10. Comparision of the theory with observation data
concerned the distribution of convective clouds and
convective ensemble

In the work [15] the theory analogous to one suggested in this paper was
extended to the case of moist convection. In the same place it was shown
that the expressions (1.39) may be used for the size distribution of clouds
and that formula (1.39) describes satisfactorily the real distributions of
convective clouds.

Let us try to use the statistical model to determine the spectrum of
cloudy ensemble. The relations (1.39)-(1.41) should be changed, because
the hypotheses used before about equality of horizontal and vertical vis-
cosity is unsuitable: the main elements of horizontal turbulent transfer
being in cloud populations are thermals and clouds. Let pu be horizontal
turbulence coefficient, 1 describe as early the vertical turbulence, p can
be greater by some order of magnitude v in dependence on the type of
cloud populations. Hence we have the following expression for [ : [p =1/,
¢ = /p/v. Substituting the new value Qi = ch?/l; instead of Qu = h?/I?

we obtain the horizontal size distribution of cloud population

2ch? ch?

Sy dly = 2}]’ exp (—L;—;) dly. (1.46)
k

Let us compare the theory with observation data. Sufficiently reliable data

are included in the reference book [5]. Figure 8 shows distribution density

of distance between cloud bank [ in the Cb-type field observed (cycle)

and calculated by (1.46) S(/) (solid line). Calculations was carried out

at h = 5km, ¢ = 1/24. Figure 9 shows distribution density of Ci-and
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('s-type cloudness measured (hollow cycle-point) and calculated by (1.39)
h = 1km, ¢ = 1/187500 (bold line). So statistical model can be seen to
give the realistic results.

%
100p

80.
60| ° N,
40. o°

20t s’

°

0 10 20 30 40 50 60 70 80 90 100

Figure 8. Distribution density of distance between cloud bank {; in the Cb —
type field observed ( cycle) and calculated by (1.46) S(Ii) (solid line)

hS(h)
% at 250 m

30

° o'
20
o
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o
A ° o o . h. km
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Figure 9. Distribution density of (i - and C's - type cloudness measured (hollow
cycle-points) and calculated by (1.39) h = Lk, € = 1/187500 (bold line)

2. Stabilizing influence of convective cells
rotation on convection

2.1. Introduction

Enhanced stability of rotating systems is generally known. The example is
hyroscope and geostrophic large-scale atmospheric and oceanic motions on
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rotating Earth. Another example is stabilizing influence of rotation on the
water outflow from the bath through the little opening in the bottom.

The analytic solutions received in this paper show that in the pres-
ence of rotative moment in the atmosphere relatively weak thermal and
convective clouds can be transformed in whirlwind or tornado.

Moreover, in this paper an attempt was made to ground the hypotheses
about tropic cyclone’s being large-scale analog of whirlwind. The proposed
numerical model demonstrates the / weak cyclonic disturbance’s resulting
in taiphun of middle intensity by cloudy convection, the source of angular
moment being Coriolis’s forces.

2.2. Time-space structure of whirlwind

In the atmosphere mesoscale vortices with vertical axis form sufficiently
often. These vortices are reffered to as whirlwind, tornado. Their diameter
range is from a few meteres to something like one kilometre. However this
phenomena have general features, they are as follows

e vertical size is greater than horizontal;

e stratification of the atmosphere layer giving rise to vortices is dry or
moist unstable;

e the sense of rotation may be different.

Last two properties point out, firstly, the energy’s of instability play-
ing essentially role and, secondly, Coriolis’s force’s slight influencing on the
processes. That allows to assume that the mechanism of this vorticies is
the same and the difference is in general quantitative. Thus the theory
described this phenomena can be received on the base of general theory of
mesoscale vorticies with vertical axis. The review concerned the develop-
ment of this theory is given in [10]. The numerical model proposed in [12]
shows the whirlwind’s being the convective cell with essentially changed
time-space structure. The changes are influenced by the rotation of the air
particles about the cell axis.

Let us dwell on the discription of time-space vortex structure received
in [12]. The calculations carried out allow to ascertain several stages in
the vortex life cycle. On the first stage the convective cell is formed. The
second stage begins after instaneous rotative impulse’s setting on the side
boundaries of calculation region. At this stage rotative impuls is moved to-
wards axis by radial transfer. Thus the rotative component increases within
vortex core and decreases at vortex periphery. At the stage of development
meteorological fields within the convective cell vary insignificantly although
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rotative velocity component v reaches the value 25m/s. The third stage
begins when maximal value v reaches value typical for mature tornado.
During the third stage the part of kinetic energy of vortex motion come
back to the system of vertical circulation and rebuilding of convective cell
meteorological fields occure. At the beginning of stage short narrow current
looking like funnel forms in the upper part of vortex. Descending current
intensifies gradually and spreads downward. In some case the funnel nearly
reaches the surface. The mature vortex stage is followed by the stage of
dissipation. It should be noted, however, that the accuracy of calculation
was small at the last stage. Moreover the numerical model is complicated
enough to interpret the results obtained with it’s help. The simplified an-
alytic models will be proposed below:

linear - to explaine the time variations of convective cell structure ;
nonlinear - to explaine the variations of the space structure of convective
cell at mature vortex stage.

2.3. Simplified linear analytical model of the vortex life
cycle

In the vortex evolution area the convective cell is assumed to create the
layer in which air is moving towards cell axis and rising according to con-

tinuity equation:
br

U=y wis bz. (2.1)
Inverse influence of vortex rotation on motion in the vertical section is
ignored. In this case (2.1) is given as: .

v brdv dv bru 9 19vr 9%

o 20r T8 T T T Ve ar THem @)
It is convinient to introduce rotative moment I' in place of v
or  broml or d 10T 0l
= _———— bz— = —_—— _— 9
L=gr, ot 2 0r %9z Warr or +“az2 (2:3)

Assume that T is independent on z and introduce new radial coordinate y:
I'=T(y,t), y=r?/2. (2.4)
Then it is in place of (2.3)

ar or a°r ’
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The solution of equation (2.5) is to satisfy the boundary conditions:
=0 at y=0 andat y=oo. (2.6)
The solution of problem (2.5), (2.6) is found in the form:
I' = A(t)yexp(—ay). (2.7)
Functions A(¢) and a satisfy the equation
A' = (b—4na)A, d =ba-2va’. (2.8)

and may be written as:

_ bexp(bt) _ Agexp(bt) _Ar ar
“= 2u(exp(bt)+¢)’ = 2v(exp(bt) + ¢)?’ v=g &P ( 2 ) - (29)
To find the constant ¢ and Ay we demand
at t=0, v,=vy, Tm=r71, (2.10)

where r = r,, is value of 7, at which v reaches a maximum » = v,,. Let at
(2.9) & =0, then

1 Aexp(-0,5)
m=—=, Up= — 2.11
" va Y 2\/a (2.11)
and at ¢ = 0 it is received from (2.11)
2 3p2
_rib _ rib’voexp(0,5)
€= o= 1, Ap= B (2.12)

Let at initial time moment the vortex be horizontally spread so as r; >
2v/b. In this case r decreases with time until reaching the value r, =
V2vib at t > %C—). In it’s turn v, increases at the beginning and then
decreases to zero. Substituting tm = In(§) into (2.11) the value of abso-
lute maximum of rotative component v = v,,,,, is given as:

6 2b
at t=1t, andat r, =r= 3 U= Umaz = W1/ 5 (2.13)

It is not difficult to calculate in what times increase vy,,, as vg at maximum
development stage (at t = t,,, and 7 = rp,):

" Umar 2b 27
= —== ‘{—z——. 2.14
" Ug " 27 3 rq ( )
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Therefore rotative component increases at maximum development stage
with increasing of 7. It is not difficult to show that T' = v, 7y, reaches it’s
absolute maximum at initial moment and T, — 0 at t — oo. Therefore
simplified model describes the dissipation of rotative moment. Increasing
of vortex in analitic and numerical model is a result of redistribution of
angular moment due to a convergence. However constriction of vortex
to axis is stoped at a ~ b/(2v) (that is at ¢t > In(c)/b). At this time
horizontal advection is compensated by turbulent diffusion. Therefore in
both numerical and analytic models the stage of vortex dissipation follows
the stage of increasing.

2.4. Simplified analytic model for explanation of exchange
of convective cell structure at maximum development
stage

Assume that exchange of cell structure is due to interaction of nonlinear
items and items allowing for pressure gradient. Let us write the thermo-
dynamic equations received by theory of convection and of vertical bound-
ary layer, neglecting nonstationary, turbulent viscosity and influence of
Archimed’s forses

ow ow ap
“or TV = e
v ov  uv
. —_— — =10 .
u8r+w62+'r , (2.15)
a9y
2 _ £
v —RB-OBT P’
dur + dwr 0
or 0z
with boundary conditions
ow Oy
at 1=0 u=v=0=--=_-=0, (2.16)
at r=o00 u=v=w=0, (2.17)
at z=o00 u=v=w=0, (2.18)

Let us note that the number of conditions is greater than the order of the
system (2.16)—(2.18). But the solution of the problem shall be showed to
be possible. . ,

Introduce the current function 3 according to these relationships

_1op 10w

w=-3E w= oo (2.19)
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Substituting (2.19) into (2.15) it is obtained

o %y ik 821/) _R8 a9y

"9z 922 oy dy dydz %9z P’ (2.20)
31/) or 31[1 or
T 8z8y | 0y oz =0 (2°?1)
ayp I? oY 53
ROy— 3P = 1y <a_y =w, ——=—/2y u) (2.22)

The equation (2.21) is the Jacobian and reflects functional connection be-
tween I' and 9. Assuming this connection to be linear, we have

[ =coyp, ¢o= const. (2.23)

Differentiating (2.20) with respect to 7, a (2.22) with respect to 2, adding
equations and allowing for (2.23) we receive

Wy Y 9
5z 0y T Gy oyroz w0z e

If the variables can be separated, we have instead of (2.24) the following:
_ 2. dr " . _ af l
v=Ff@s P (==Y =0 (r=9). e

Therefore if F' is bounded function with bounded derivative, then f sa.tlsﬁes
the following equation -

fflll_ flfll 2 —c£2)—

. f2 - 2y2' (226)
Integrating (2.26), after simple transformations one receives
i ‘ ,
7+ if —¢af=0; ¢ =const. (2.27)

The solution (2.27) has the following form

2
= yexp(very)m(ao, €y); 4::/0&; £ = 2\/cr; (2.28)
ao(ey) | aolao+ 1)(ey)® | ao(ap + 1)(ao + 2)(ey)?
m(aoey) =1+ 5 + 213! + 314! T

Analysis of (2.28) shows that at ap > 0 the conditions (2.17) are not
satisfied ; at o < 0 one is satisfied but f can change the sign. That means
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that different parts of vortex can have an opposite sense of rotation what
is not possible. The solution at & = 0 is deprived of pointed out weakness.

It is in the form
3 < A
f=yexp| - 1Y) 1= 76 (2.29)

Let ¢o = 2v/2/ro, where 7o — radius of the central part of vortex (it’s
core). Substituting (2.29) into the expression for meteofield and returning
to coordinate r we receive

w=(1- (£)) exo (2))r v=vigen (-(£))F
() e ()

Then assume F(z) > 0. In this case the air ascends within the vortex core
w> 0 at r < ro and one descends at it’s periphery w < 0 at r > To.
It must be noted, it is vortex core that is the visible part of whirlwind
due to the presence of opaque particles lifted from the surface by powerfull
stream. It is not difficult to calculate that maximum upward speed is more
greater downward one at the same heights. Rotative component of motion
reaches the maximum value at the vortex core: v = Ymaz = exp(-0,5)F
at r = ro/V/2. v rapidly decreases with increasing r. Vertical structure of
the meteofields is defined by the function F. Due to surface is impervious
to the air particles, we have F' =0 at z = 0. Then F rapidly increase up
to heights of several meteres (dF/dz > 0). Outside of this region u < 0
air is moving to the vortex axis. Then, according to the observation, for
the space of 1 kilometere and more visible vortex part slightly depends on
height. We shall believe F' = const, u = 0 in this region. It becomes weak
(dF/dz < 0) for the big height near the cloud giving rise to whirlwind. In
this part of vortex u > 0 and air particle, moving from the centre, find itself
at the whirlwind periphery being region of downward motion. Reaching
the surface’s part of the vortex, particles find itself again at whirlwind
core. Therefore in this model air particles stay in reserved local region,
which is little more than some cubic kilometeres. It is realy observed
air can be at relative rest near the whirlwind. According to the theory
the rotative and vertical speed component are not too different from each
other: Wmaz/Vmaez = €xp(0,5). Approximate estimations obtained in [7] by
measuring of particles speed show that rotative and vertical components
are approximatly equal. Analysis of the solution and comparision with
experimental data carried out show that analytic model elaborated gives
the results closed to really situation at the stable stage of whirlwind. Under

(2.30)
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real conditions duration of that stage is rarely longer than a few minutes.
In consequence we note that it is convenient for calculations to use value
Umae instead of F:

Vmaz = F exp(-0,5). (2.31)

Therefore in the proposed model all variables can be exspressed through v
and r determined from observation data.

2.5. United analytic model of vortex

Comparing (2.7), (2.9) with (2.30) one sees the closeness of relationships
for v in the both cases. Let us determine the conditions, under which
these solutions coincide. Let the field of u and w set within the vortex in
accordance with (2.1). Introduce the independent on z deviations resulted
from the vortex

w=bz+w'(r,t), T=0z+9(rt), =0 (2.32)

Equations for deviations are the following

ow'  brduv' , v o aw
ot 2 or =AV o ror or’ (2.33)
o0 brdy’ va o
2o e o (2:34)

Let ¥ = \/a/Aw' and y = r?/2. Then it is received instead of (2.33)-(2.34)

ow’ ow' 0 dw
W s by ()y =V /\lU + 21/5; a (235)

Substituting w’ = ‘;—':/ into (2.35) and integrating it with respect to y we

obtain _ o
— — by ——(\/ bu+2uy0i (2.36)

Introducing new function ¢ = exp((VaX — b)t)¥; and substituting it into
(2.36) we have
diy oy (721;""1
; by— =
ot Ay

Comparing (2.37) with (2.5) one sees their coincidence. Therefore

(2.37)

U = g e,\:p((\/a —b)t)A(t)yexp(—ay), T = Ayexp(—ay), (2.38)

where @ and A is gived by (2.9). ¢°o — const.
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Comparing (2.38) with the analytic solution of nonlinear model (2.15)-
(2.18) we obtain:

c?y c?
I' = cFyexp -7 ) P = Fyexp =T - (2.39)
It is obvious that (2.38) and (239) coincide in the case
F=A4, c=2Va, c=poexp((Vai->b)t). (2.40)

Note that F and ¢ can depend on time. The unsteady-state of process is
allowed for (2.33), (2.34). The last two relationships at (2.40) mean that

bexp(bt) r?b r2b
g ¥ gl S L P T
2\/2u(exp(bt) ey Yoexp((Var = b)t), 25 By (2.41)

Approximate equality (2.41) takes place only at the beginning of process
by carrying out the following conditions

1 3b 2b 2
—_— vV ,\ =i == = —— 2.4
‘% In(ey)’ “ 2° Yo Ve, n \B2)

and at the stage of it’s dissipation also by carrying the conditions

[2b 2 .
> _1_, Vad=b, YPg=4{\/—=—. (243)
In(ey) v

™

There is the third condition: the process have to be independent or slightly
dependent on z. Therefore the situations are possible when nonlinear items
are compensated by pressure gradient, the process becomes quasy-linear,
quasy-laminar. In these situations gradient catastrophe becomes unlikely
and the convective cell stability is essentially enhansed in spite of formations
have vertical scale being considerable more than horisontal one. In that
vorteces time changes are conditioned on the whole by advective transfer,
resulting in concentration of rotative moment near axis, and turbulence,
resulting in the dissipation of rotative moment.

The picture adduced is confirmed by observation data: constriction of
rotative vortex occures apparently in mother’s cloud giving rise to vor-
tex. Under sufficiently rapid rotation nonlinear items are compensated by
pressure gradient, vertical scale rapidly increases until vortex reaches the
surface. Increasing of vertical scale is accompanied by increasing of rotation
speed of vortex and essentially vertical motion component. And, after all,
proposed analytic model explains relative rarity of atmospheric vortexes.
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The presence of angular moment in atmosphere is an ordinary situation es-
sentially under cyclonic conditions. However, it is not difficult to calculate
that the time of constriction of angular moment towards process’s axis is
greater than the average time convective cell existing, i.e., vorticies have
no time to arise.

2.6. Numerical model of axisymmetric tropical cyclone

Mature tropical cyclone is understood to be a self-supporting thermohydro-
dynamic mesoscale system. Energy for it’s maintainance is drawing in great
part from the convective latent heat release. For reason given a reserchers
face problem of parameterization or, whenever possible, description with
detail the processes connected with phase transition and precipitation in
the construction of tropical cyclone model [7]. It is not the purpose of this
paper to trace the complete history of research in this area or to summa-
rize all of the current parameterization schemes. We address to cumulus
parameterization only as to the possible mean of account of the smallscale
convective pulsation giving rise to the gigantic convective cell — tropical
cyclone. Let us note that the results obtained in the previous parts of the
paper can be used for construction of parameterization relationships too.

Let us write a mathematical model of this phenomenon. Simplifications
of the vertical boundary layer theory are inapplicable in this case as opposed
to the models of thunderstorm and tornado. We shall use system of the
deep convection equations. Consider the axisymmetric hurricane models.
The equations are given as follows:

du du du  v? Jp ad v dur %u

T T Mt L = R A my s Y

ga_)_}_ a!|+t'2‘-+£——f é)uav tu d*v

ot "oy T T T u+ arr or Faz2

dw dw  duw ay v d dw %
5;+tra + w 6., 1?90 P+J 0/9+061q)—|———~5— £ +,u§:~?,
av v av 08 v d dv‘ 3219
0—f+rr—_(97+u,a._—wa+ B 0 0 2+F1, (2.44)
dq¢  9q , dq _ 0Q v I Iq i

o P e T T e T e ar T 5o + P

The notations used are:
i — time;

r, = — cylindrical radial and vertical coordinates;



64 V.M. Malbackov, O.F. Winkenstern

u, w, v — radial, vertical and tangential components of velocity
correspondingly;

9, q, p' — temperature, moisture and pressure deviation from it’s values
0(z), Q(z), P(z) in undisturbed atmosphere;

p(z) — density in undisturbed atmosphere;
R — gas constant of the dry air;

f — the Coriolis parameter;

g — gravitational acceleration;

F;, i = 1,2 — convective fluxes;

v, p — kinematic turbulent coefficients.

It should be remarked that v and p vary in a physical sense; the former
describes the average vertical distribution of turbulence within the individ-
ual convective clouds, and the latter — large-scale horizontal distribution of
turbulence, for which convective clouds are the individual pulsations.

Let us address to numerical results. The time integration of hurricane
model was carried out. They show that a weak cyclonic disturbance setting
in initial moment transforms by cloudy convection to hurricane of middle
intensivity. Moist convection was parameterized by several methods — Kuo
[14], massflux (bulk-model) [29] and method with detailed mycrophysic [11].

By the early second day the circulation of identical type is formed in all
numerical calculations. Air motion in vertical section of atmosphere con-
sists of two cells with various sizes, intensivities and the senses of circula-
tion. Inner small cell provides with relatively powerfull downward currents
on the hurricane axis and weaker upward motion at a range 200 — 1000km
from the axis. The external greater cell has inverse sense of circulation and
it is it that provides typical cyclonical distribution of the flow with con-
vergence in the lower part of hurricane and divergence in one’s upper part.
Region of upward motion of both cells coalesce. Therefore the air particles
transfer vaporous and liquid water in wide ring with area of ~ 10km, sig-
nificantly intensifying the procceses of precipitation (if they are accounted
for). In it’s turn condensation and precipitation magnify intensivity of cir-
culation in the both cells. A region of downward motion concerning to
second cell is at the periphery of TC, that is conditioned by Coriolis’s
forces action. Intensivity of tangential and radial velocity components are
closely related, and the sense of rotation is cyclonic in the lower and middle
parts of TC. In the upper troposphere the vortex has an inverse sense of
rotation.
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3. Conclusion
The studies conducted allow the following conclusions:

e the heat of convective turbulence is convective cell;
e convective cell is unstable to a finite-amplitude disturbances;

o stability of cells is determined by external model’s parameters and
decrease with time;

e complicated nature of convective turbulence is conditioned by inter-
action between cells resulting in their coagulation or destruction;

e the model accounts for only interaction of cells located over each
other. This and a number of simplifications for setting up a problem
make possible to construct the convective cells’s distribution function
depending on their sizes, existence time and large-scale parameters;

e there are three ierarchy levels of convective formations in atmosphere,
that are small-scale convective turbulence, thermals and cumulus
clouds, convective ensembles;

o rotation of convective cells causes their stability to increase;

e by enhanced stability of rotating cells the relatively weak thermals
and cumulus clouds transform to whirlwind or tornado;

e tropical cyclones may be considered to be (with minor reservations)
large-scale analog of whirlwind. In spite of essentially various sizes
the space structure and mechanism of these phenomena has much in
common, in particular, the type of circulation.
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