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Some analytical solutions for tsunami wave rays
and front∗

An.G. Marchuk, E.D. Moskalensky

Abstract. Methods for computing wave kinematics are wide-spread for studying
the wave propagation in non-homogeneous media. Exact analytical solutions for
nontrivial media are needed for testing such methods. The formula describing
the wave-front shape has been found for some media with a power dependence of
conductivity on only one spatial coordinate. Also, the formulas for wave-ray traces
over the linear and parabolic bottom profile were obtained. The results of this
research are used for numerical methods testing.

1. Solution of the eikonal equation for some kinds of the
cylindrical bottom relief

Analytical solutions for the tsunami wave-front behavior above an uneven
bottom can be described by the so-called eikonal equation(∂f

∂x

)2
+
(∂f
∂y

)2
=

1
v2(x, y)

, (1)

where v(x, y) is the wave propagation velocity distribution in the environ-
ment. The position of a wave front at the time is given by the equation

f(x, y) = C. (2)

The equation f(x, y) = 0 sets a tsunami source boundary. As a matter
of fact, solutions of equation (1) are known only for rather a limited number
of functions v [1], therefore usually the wave front position is obtained by
numerical methods.

In [2] it is shown, how, in an important case of power dependence v on a
coordinate it is possible to find the front positions, without solving equation
(1). Let us present a little different from that in [2], a description of this
algorithm on the following equation as an example

f2
x + f2

y = (ky)2α, (3)

where k, α are numbers. In these designations v = (ky)−α. Let us consider
the case when the propagation velocity increases, going off the coast, i.e.,
α < 0. Additional restriction for α will be formulated later.
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A solution of equation (3) is sought for as follows

f = yα+1p(z). (4)

where
z =

x

y
. (5)

Then fx = yαp′, fy = yα((α+ 1)p− zp′), and after the substitution into
(3) we will obtain

(p′)2 +
(
(α+ 1)p− zp′

)2 = k2α. (6)

From the above equation follows that there is a function u(z) such that

p′ = kα sinu, (α+ 1)p− zp′ = kα cosu. (7)

From here follows
(α+ 1)p = kα(z sinu+ cosu). (8)

Differentiating both parts of (8), we obtain

(α+ 1)p′ = kα
(

sinu+ z cosu
du

dz
− sinu

du

dz

)
,

or, taking into account the first equation of the system (7),

α sinu = (z cosu− sinu)
du

dz
,

we will rewrite this equation in the form

dz

du
=

1
α

ctg u · z − 1
α
.

We have obtained the linear differential equation whose common solution
can be expressed as

z = | sinu|1/α
(
C1 −

1
α

∫
du

t
| sinu|1/α

)
.

So, the solution of equation (6) in the parametrical form looks like the
following: 

p =
1

α+ 1
kα(z sinu+ cosu),

z = | sinu|1/α
(
C1 −

1
α

∫
du

| sinu|1/α

)
.

(9)

If we now substitute an expression for f from (4) into the equation of
front (2) we will have yα+1p = C, and, substituting p(u) from (9), we have
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y(u) =
( C

p(u)

) 1
α+1

.

Taking into account (5), we can rewrite x(u) = y(u)z(u). Finally, we
obtain the equation of the wave front in the parametrical form:

x(u) =
( C

p(u)

) 1
α+1

z(u), y(u) =
( C

p(u)

) 1
α+1

, (10)

where p(u), z(u) can be obtained from (9) and α 6= −1. The integral, en-
tering in (9), is expressed through an elementary function if only 1/α is an
integer number. For these values, formulas (10) give the exact expression
for the wave front. At other values α numerical integration is required.
Figures 1–4 present wave front shapes set by equations (10) with different
values of parameters.

Curves were constructed with the help of MathCad software. A range of
the parameter u variations and the step ∆ of its change, along with other
parameters are given in figure captions. It is necessary to note that at
α < −1, the exponent becomes less than zero and with the growth of C, the
front line “is pulled together” to the origin of coordinates, i.e., formulas (10)
describe the wave propagation process in the “conversion” time. Therefore,
for finding the wave front corresponding to the time C it is necessary to
substitute 1/C into formulas (10).

In order to test some numerical methods, we will consider only the
cases when 1/α is integer and −1 < α < 0. Here the integral included
into (9) is expressed through elementary functions, and the parameter u
is varying from −π up to π. The parameter C1 is equal to zero. In this

Figure 1. α = −1

3
, C = 150, k = 1,

C1 = 0, −π ≤ u ≤ π, ∆ = π

100

Figure 2. α = −1

8
, C = 500, k = 1,

C1 = 0, −π ≤ u ≤ π, ∆ = π

100
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Figure 3. α = −1

4
, C = 220, k = 1,

C1 = 0, −π ≤ u ≤ π, ∆ = π

100

Figure 4. α = −2

5
, C = 120, k = 1,

C1 = 0, −π ≤ u ≤ π, ∆ = π

100

case, the front of the wave propagating from the source at the origin of
coordinates can be found. In addition, with the help of these formulas,
it is possible to gain inside into the new facts that are useful to apply.
Let us give an example. Let the
points P (x1, y1) and Q(x2, y2) locate
on isochrones of the function f being
a solution to equation (3). Isochrones
correspond to the times C1 and C2,
respectively, the point P locating on
the straight line OQ (Figure 5). From
formula (10), we have

C1 = yα+1
1 p(z1), C2 = yα+1

2 p(z2). Figure 5

As the points P and Q locate on one straight line passing the origin of
coordinates, then z1 = z2, and hence

C1

C2
=
yα+1
1

yα+1
2

.

Taking into account the point that

y1

y2
=
OP

OQ

we finally have

C2 =
(OQ
OP

) 1
α+1 · C1. (11)



Some analytical solutions for tsunami wave rays and front 117

This formula allows building isochrones of the function f for any instant
of time if at least one of such isochrones is known. Moreover, one isochrone
allows us to find the tsunami arrival time at any point of an area. This fact
can also be used for testing on numerical algorithms.

Formulas (10) are inapplicable when α = 0 or α = −1. In the first case,
a medium is homogeneous and the front line represents circles having the
center in the origin of coordinates. We will find the position of a front line
from the source located at the point (0, 0) for the second case. We search
for a solution in the form f = p(z) + a ln y, where z = x/y will be used as
before. Then

fx =
1
y
p′, fy =

1
y

(a− zp′).

After substitution of these formulas into (3), we will have

(p′)2 + (a− zp′)2 =
1
k2
. (12)

As well as earlier, let us assume

p′ =
1
k

sinu, a− zp′ = 1
k

cosu.

Hence a = 1

k
(z sinu+ cosu) and z = ak − cosu

sinu
. Further we have

dz

du
=

1− ak cosu
sin2 u

,
dp

du
= p′

dz

du
=

1
k
· 1− ak cosu

sinu
.

Then
p =

1
k

∫
du

sinu
− a

∫
cosu
sinu

du =
1
k

ln
∣∣∣tg u

2

∣∣∣− a ln | sinu|.

Thus, the solution of equation (12) in the parametrical form will be expressed
as

p(u) =
1
k

ln | tg u
2
| − a ln | sinu|, z(u) =

ka− cosu
sinu

.

These formulas give the solution of equation (12) for all the values of the
parameter u when the right-hand sides of formulas are finite.

If f = C is an equation of an isochrone, then p + a ln y = C, and after
certain transformations we arrive at

y(u) = eC/a| sinu| ·
∣∣∣tg u

2

∣∣∣−1/ka
.

The corresponding abscise is defined from (5): x(u) = y(u)z(u). Finally,

x(u) = eC/a sgn(sinu) · (ka− cosu) ·
∣∣∣tg u

2

∣∣∣−1/ka
,

y(u) = eC/a| sinu| ·
∣∣∣tg u

2

∣∣∣−1/ka
.
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At a = 1/k this system is reduced to the form

x(u) = ekC sinu, y(u) = ekC(1 + cosu).

In this case, the wave front represents a circle of radius ekC with the center
at the point (0, ekC). For example, when C = 0, the front line will be the
unit circle with the center at the point (0,1). If r0 is the circle radius, then

r0 = ekC0 and C0 =
1
k

ln r0.

If r0 < 1, then C0 is negative. When C0 decreases, these formulas
describe the process of wave propagation into the above-specified unit circle.
If the time scale begins from the negative value 1

k
ln r0, i.e., the time is

Figure 6

set by the expression

C = T +
1
k

ln r0, T ≥ 0,

where T is new value of time, then
we obtain the formulas, describing
the wave propagation from r0 ra-
dius circle with the center at the
point (0, r0). From the formulas ob-
tained it follows that the front line
at the moment T presents the circle
of radius r0e

kT with the center at
the point (0, r0ekT ). Isolines of this
function are presented in Figure 6.

2. Exact analytical formulas for wave-ray traces above
the sloping and parabolic bottom

The wave ray constructing problem is very important in the tsunami re-
search, and all considerations in this section will be connected to the kine-
matics of tsunami waves. Now we will derive some exact mathematical
formulas for the wave-ray traces above some types of a model bottom to-
pography. The exact trajectory of a wave beam over an inclined bottom
can be defined as well from the laws of geometrical optics. In particular, it
is possible to use the Snell law for searching the refraction angle of a wave
ray in a medium with a variable optical conductivity. According to this law
if in the 2D wave-conducting medium the ray arrives at an angle α1 (the
direction between a wave ray and a normal to the border) to the rectilinear
border where the conductivity rate (velocity of a signal propagation) varies
from α1 to α2, then passing the border its direction α2 will change according
to the formula
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sinα1

a1
=

sinα2

a2
. (13)

Thus, in the media, where the conductivity value a varies only along one
spatial axis (for example, a = a(y)), the inclination of a wave ray associated
with the direction of conductivity changing α varies by the formula

sin(α(y))
a(y)

= const . (14)

Assuming a sloping bottom, the optical conductivity (propagation veloc-
ity of tsunami waves) is defined by the Lagrangian formula a =

√
gH (g is

acceleration of gravity, H is water depth), which in the case of a bottom
slope looks like

a(y) =
√
gy tg β, (15)

where β is an angle of the bottom slope. Hence, the relation between the
direction of a ray (an optimum trajectory) and a distance to the coast will
look like

sin2 α = const · y, (16)

where the value of a constant is defined from a ray inclination at some
distance to the coast (the axis OX). If we consider α as parameter on
which y depends, then from (16) follows

dy =
2 sinα cosα

const
dα. (17)

As the value (π/2−α) is an angle of a wave ray inclination (the function
y(x)) graphics to the horizon, then, by definition of a derivative function of
one variable, the following equality is valid:

dy

dx
=

sin
(
π

2
− α

)
cos
(
π

2
− α

) =
cosα
sinα

,

or
dx = dy

sinα
cosα

, 0 ≤ α ≤ π

2
. (18)

From (17) and (18) follows

dx =
2 sinα cosα

const
sinα
cosα

dα =
2 sin2 α

const
dα. (19)

Thus, assuming x and y depend on the parameter t = 2α and using trigono-
metric formulas for sine and cosine of a double angle, we arrive from (17)
and (19) to the following formulas:
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dy =
sin t

2 · const
dt, dx =

1− cos t
2 · const

dt. (20)

After integration of equalities (20), the equations of a wave ray trajectory
in the parametric form are obtained

x(t) = C1(t− sin t) + C2, y(t) = C1(C3 − cos t), t ∈ [0, 2π].

This is a parametric form of the cycloid equation. Here, the constants C2,
C3 are defined from the condition a cycloid movement through the point
of the origin of coordinates. According to the Snell law (16), at the point
(0, 0), the parameter t is equal to zero. At y = 0, the angle α along with the
parameter t = 2α become equal to zero. Therefore C2 = 0, C3 = 1. Finally,
the equations of a wave ray in the parametric form will be written down as
follows:

x(t) = C1(t− sin t), y(t) = C1(1− cos t), t ∈ [0, 2π]. (21)

When presenting the equations in such a form, the parameter t is a
doubled angle of a slope of a ray with respect to the normal to the coastal
line, and the value of C1 is defined for each concrete case. If the boundary
value problem for a wave ray is solvable, the value of the parameter C1 is
defined from the condition of the ray through the point (x1, y1), thus the
second point is the origin of coordinates. If the wave ray, which at a distance
y1 from the coast has been directed at an angle α1 with respect to the normal
movement of coastal line (the axis OX), equations (16) and (20) yield the
required value

C1 =
y1

2 sinα1
. (22)

Thus, we have determined the equations describing a wave ray over a
sloping bottom, proceeding the laws of movement of a ray in medium with a
variable conductivity. Earlier in 1980 [3], the same equations were obtained
owing to the fact that a wave ray is an optimal trajectory of wave signal
propagation.

In addition, we will find an exact trajectory of a wave ray for one more
type of a model bottom relief–– parabolic. This means that a depth increases
proportional to the square of a distance to the coast. In this case, the
Lagrangian formula (a =

√
gH) for the wave propagation velocity will look

like
a(y) =

√
gb1y2 = b2y, (23)

where b1 and b2 are constants in all the considered coastal area. The Snell
law (14) in this case gives the following formula for the direction of a ray
with respect to the normal to the coastline
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y(α) = b3 sinα, (24)

where b3 is a certain constant.
Let us consider the following

problem. From the point (0, y0), be-
ing at a distance y0 from the coast,
a wave ray is emitted in parallel to
the coastal line (Figure 7). At the
source point, a wave ray has the di-
rection α = π/2. An angle between
the wave ray y(x) and the coast-
line y = 0 (see Figure 7) will be
β = π/2− α. Hence, we have

dy

dx
= − tg β = − sinβ

cosβ
, 0 < β <

π

2
,

Figure 7
or

dx = −dy cosβ
sinβ

. (25)

From (24) and (25) follows

dx = b3 sinβ · dβ cosβ
sinβ

= b3 cosβ · dβ.

Assuming that the angle β in the course of movement of a wave ray
changes from zero to some value β1, after integration we come to

x = b3 sinβ
∣∣β1

0
= b3 sinβ1 = b3 cosα1, (26)

where α1 = π/2− β1. At the same time, from (24) we have

y = b3 sinα1, (27)

for any value α1 in the range from π/2 to zero. Formulas (26), (27) represent
a parametric notation of the equation of a circle with radius b3. This radius
is easily defined from formula (24). If a ray has initially been directed in
parallel to the coastal line, a radius will be equal to the off-coast distance
at this moment. If a ray inclination angle with respect to the normal to the
coast α0 and the off-coast distance y0 at this moment are known, then the
circle radius r containing the trajectory of this wave ray can be determined
from formula (24)
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r = b3 =
y0

sinα0
. (28)

If α0 = 0, a radius will infinitely big, and the ray trajectory representing a
straight line orthogonally directed to the coast.

Unlike the case with a sloping bottom, the boundary value problem for
the wave ray can be easily solved. Let two points be known (a source and

Figure 8

a receiver) in the area with a
parabolic bottom relief (23), thus
the receiver is situated on the
coastal line (the point of the ori-
gin of coordinates (0, 0)), the source
being located at the point (x0, y0).
Let for definiteness y0 > x0 > 0.
This means that the wave ray
monotonously approaches the coast
(Figure 8).

After transition to the param-
eters r and α (see Figure 8), the
source coordinates will be expressed
as

x0 = r − r cosα, y0 = r sinα, 0 < α <
π

2
. (29)

Further, the value of the angle α can be found from the coordinates ratio at
the source-point:

x0

y0
= b =

1− cosα
sinα

=
1−

√
1− sin2 α

sinα
.

Hence, after transformations we have:

b sinα = 1−
√

1− sin2 α =⇒ (1 + b2) sinα− 2b = 0.

Therefore, the solution of the problem in question will be

α = arcsin
2b

1 + b2
, (30)

where b is the ratio between the absciss and the ordinate at the tsunami
source point. The circle radius, whose arch is the wave ray trajectory, is
now defined from equalities (29):

r = y0
1 + b2

2b
. (31)

Finally, it is possible to write down the equation of the ray that passes
the point (x0, y0) and the coordinate origin point

(x− r)2 + y2 = r2, 0 < x < x0. (32)
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3. Determination of a wave-front line above the bottom
slope

We now turn our attention to the wave front determination. In the first
paragraph, the solution to the eikonal equation for some model bottom
profiles was obtained when a source was situated at the coastal line (the
point (0, 0)). Let us consider the situation when a point source is located
not in the origin of coordinates, but at the point (0, y0). As an example,
let us consider tsunami wave propagation above a uniform bottom slope
[3]. Let Ox axis be directed along the rectilinear coastline and Oy axis
along seaward. A depth value at any point of the area is determined by the
formula h(x, y) = ky. It is known that the tsunami wave velocity depends
on depth by the Lagrange formula a =

√
gH (g is acceleration of the gravity,

H is water depth) [3]. Due to this, the wave front is described by equation
(3) with α = −1/2. In Section 2, it was proved that above the bottom
slope, wave rays look like segments of a cycloid. This fact makes it possible
to derive the equation of a wave front generated by a point source located
at a distance y0 off the shore.

Let us regard a set of cycloids passing through the origin of coordinates
depending on radius of the producing circle r. In the parametric form, their
equations can be written down as [4]

x = ru− r sinu, y = r − r cosu, (33)

where u is a parameter. Figure 9 shows one cycloid segment from this set.

Figure 9

Let A(x0, y0) be a point of this segment and u0 is an appropriate param-
eter value. We have

y0 = r − r cosu0,

hence, cosu0 = 1− y0
r

(provided y0 ≤ 2r),

u0 = arccos
(

1− y0

r

)
, sinu0 =

√
1−

(
1− y0

r

)2
=

1
r

√
y0(2r − y0)
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(we take a positive value, because the point A is on the left half of the
cycloid arc, where u0 ≤ π).

Using (33) we have

x0 = r arccos
(

1− y0

r

)
−
√
y0(2r − y0).

Let t(M,N) be a travel time between two arbitrary points M and N of
a cycloid. Taking into account

ds =
√

(r − r cosu)2 + (−r sinu)2 = r
√

2(1− cosu),

v =
√
y =

√
r(1− cosu),

we have

t(M,N) =
∫ b

a

ds

v
=
√

2rb−
√

2ra,

where a, b are values of a parameter as related to the points M , N .
Let us now turn to Figure 9. Let the travel times from the point A to

the points B(x1, y1), F (x2, y2) be equal to C

t(B,A) = t(A,F ) = C.

This means that
√

2ru0 −
√

2ru1 = C,
√

2ru2 −
√

2ru0 = C. (34)

From these equalities, with allowance for the expression for u0, we can find

u1 = arccos
(

1− y0

r

)
− C√

2r
, u2 =

C√
2r

+ arccos
(

1− y0

r

)
. (35)

Substituting these values of the parameter into (33), we can find coor-
dinates of the points B and F . If we take another segment of this cycloid
(when π < u < 2π), these formulas give us points symmetric to B and F
with respect to y = y0 vertical line. Then we regard the cycloid having
another radius that also passes the point A. Using similar formulas to (34),
(35), we can obtain another pair of points which are located at the same
front-line as the first two points B and F . Varying a radius r from y0/2 up
to ∞ points obtained by this way, will yield a curve that will be a front line
at the time C. Coordinates of points composing a wave isochrone (the front
line) are determined by the following formulas:

x = ±

(√
y0(2r − y0)− C

√
r√

2
− sin

(
arccos

(
1− y0

r

)
− C√

2r

))
,

y = r

(
1− cos

(
arccos

(
1− y0

r

)
− C√

2r

))
.

and
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x = ±r

(√
y0(2r − y0) +

C
√
r√

2
− sin

(
arccos

(
1− y0

r

)
+

C√
2r

))
,

y = r

(
1− cos

(
arccos

(
1− y0

r

)
+

C√
2r

))
.

Figures 10–12 present results of calculations. Values of parameters are
given in figure captions. The position of the point source being marked
with an isolated dot. A break in the upper part of the curve is a result of
limitation of parameter r. When increasing the upper limit for r, this line
break almost disappears.

Figure 10. y0 = 400, C = 30,
200 ≤ r ≤ 50000, ∆r = 3

Figure 11. y0 = 400, C = 45,
200 ≤ r ≤ 50000, ∆r = 3

Figure 12. y0 = 50, C = 55,
25 ≤ r ≤ 50000, ∆r = 3
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An unusual behavior of the curve in the last figure (when the source is
situated near the shore) can be explained by the following: for small values
of r and large values of C, the point F (or B) passes from one arc of the
cycloid to another. This case describes a wave reflected from the coast.
Thus, in this case, we have a front line of the direct and the reflected waves
(a segment between points on the coastline (y = 0)).

Conclusion

The solutions obtained can be used for testing numerical methods that are
applied to the tsunami wave computations.
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