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Calculation of the reflected tsunami wave front
kinematics using the grid-based algorithm

An.G. Marchuk

Abstract. There are many methods for computing the tsunami kinematics directly
and inversely. The direct detection of waves in the deep ocean makes it possible to
establish the tsunami source characteristics and origin. The present study proposes
a modification in the methodology of determining tsunami travel times and wave
front positions of direct and reflected waves. The initial ray approximation can be
optimized with the use of an algorithm that calculates all potential variations and
applies the corrections to travel time values. Such an algorithm was tested in an
area with model bathymetry and compared with a non-optimized method. The
modified algorithm for the calculation of travel times of reflected waves was also
tested on the model bottom topography.

1. Travel time computations in non-homogeneous areas

The numerical modeling of the tsunami wave propagation can provide a
better understanding of this phenomenon. The tsunami wave propagation
and travel times can be calculated for different time intervals (isochrones),
and to this end various numerical methods have been developed [1]. For
the areas with complicated geomorphology and bathymetry (islands and
narrow straits), the travel time computations based on the methods that
use the Huygens principle are more effective than others [2]. The basic
premise in using this principle requires that all the points of the source area,
where the tsunami wave was generated, be sources of omnidirectional wave
energy radiation. The algorithm for such a computation searches through
all the adjacent grid points to the generated wave front and calculates a
minimum of the whole tsunami travel time interval through these points.
The sum total of all travel times from the source point to the destination
point is a minimum for all possible wave travel paths. Such an algorithm was
proposed more than 40 years ago [3], and was dedicated to some optimization
problems. Rectangular computational grids with known ocean depth values
are used normally for travel times calculations from the source region to all
terminal points. Figure 1 shows a grid fragment of such a computational
area. The small black squares designate the points on the grid, where the
wave from the initial tsunami source has arrived and the tsunami travel
times to these grid points are known.

We need to find the travel time from the source up to the point A.
Relative to the point A, the neighboring points, where the travel times are
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Figure 1. The scheme of travel-time
determination using the Huygens prin-
ciple

known, there will be the points B,
C, D, E, F , G, and H. Let the
travel times up to them be equal to
TB, TC , TD, TE , TF , TG, and TH , re-
spectively. We assume that between
the adjacent grid points the depth is
linearly varying. To determine the
tsunami travel time, we take the dis-
tance between two neighboring grid
points L, and a depth value vary-
ing from H1 up to H2. If the an-
gle of bottom declination is an auxil-
iary value α, then H2 = H1 +L tgα,
and the travel time T can be desig-
nated as
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Therefore, the tsunami travel time between the neighboring grid points
is equal to a distance between them divided by the arithmetically averaged
velocity of the tsunami at these grid points. Thus, in order to find the travel
time from the source up to the point A (Figure 1), it is necessary to find a
minimum of seven time values:
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where ∆x, ∆y are steps of the grid in horizontal and vertical directions and
HA, HB, HC , HD HE , HF , HG, HH are the depth values at the corre-
sponding points. A minimum of the values Ti (i = 1, . . . , 7) will give us the
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tsunami travel time from the source
up to the point A. In such a
way it is possible to find point by
point the travel times to all the
points of a computational grid. As
for the neighboring grid points, the
following can be stated. Let us
introduce the so-called sixteen-dot
(sixteen-radial) stencil (Figure 2)
which shows a set of grid points
which are regarded as neighboring
ones to the grid point A.

In this stencil, the neighbors to
the point A, that have the grid co-
ordinates (i, j), are the grid points
whose indices differ from the grid
coordinates of the point A not only

Figure 2. The sixteen-dot stencil for
tsunami travel time calculations on a
rectangular computational grid

by one, but also by some grid-points whose coordinates differ by two (see
Figure 2). In this case, if at any of these 16 points the tsunami travel time
is already known, it is possible to find the wave travel time to the point A
(at the center of the stencil).

2. The accuracy improvement of the tsunami travel time
computations

A limited number of ray segment directions cause errors in the determination
of the travel time values at grid points. These travel time mismatches can be
easily seen in Figure 3, where isolines for travel time computations in an area
with a flat bottom are displayed. The dimension of the computational area
is 1,000× 1,000 points with grid steps equal to 1 km in both directions, the
ocean depth being 1,000 m. When the tsunami travel times are determined
correctly, the shapes of isochrones must be close to circles. However, in
actuality, instead of circles after carrying out the computations we have
16-angle polygons (Figure 3).

One of the ways to improve the accuracy of travel times obtained is
to include into the calculation a bigger number of points. For example,
it is possible to use a 32-dot stencil, but in this case the total number
of arithmetical operations increases at a two fold rate. In addition, long
distances between some points of the stencil and its center (up to 3 grid-
steps) will cause errors in the resulting travel times.

It is possible to significantly improve the approximation quality by using
the technique of variations. Briefly, this means the search for new locations
of points along the wave ray. These new points do not have to be grid
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Figure 3. The test isochrones
computation in the constant
depth area using a 16-dot sten-
cil (the area size 1,000 × 1,000,
isochrones from 0 to 5,000 sec-
onds with step of 250 s)

Figure 4. The scheme of the ray-trace optimization procedure

points. Within every grid-point included into the calculation the wave ray
trace advances with very small incremental steps (1/10 of the grid) in dif-
ferent directions along the grid lines until a new location provides a shorter
propagation time along the wave ray path. To describe the optimization al-
gorithm, a special attention is given to a small segment of the computational
area (Figure 4).
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Let us look at the resulting approximation of the wave ray (the broken
line SABCD in Figure 4), which consists of a number of straight segments.
In the process of the travel time calculation if the line SABCD is designated
to be the wave-ray trace between the source S and the target point D, the
path of the ray between the source point and any other grid point can be
restored. The procedure for obtaining more precise travel time values by
relocation of the points B, C, and D is as follows. In the course of the
computation the algorithm will estimate the travel time at the point B,
and then the correctional procedure is applied. The grid point A, which is
situated on the ray trace between the points S and B, must be relocated
along the horizontal and vertical axes within a small step (about 1/10 of a
grid step). At every new position of this intermediate point A1 a travel time
along the trace SA1B will be calculated, based on the assumption that the
depth between two neighboring grid points linearly varies.

A minimum travel time value will be accepted as the corrected travel
time at the point B. It is of great importance that for further computations
a corrected travel time value at the point B be used. When the general
algorithm (based on the 16-dot stencil) gives a preliminary travel time value
at the point C, the correction procedure must be repeated again for the
other three grid points (A, B, and C). As a result, a new corrected value of
travel time at the point C will be defined. Such a correctional procedure will

Figure 5. The wave ray above the parabolic bottom slope built using the proposed
method. The initial approximation (left) and optimized approximation by the
technique of variations (right)
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be applied to all grid points along the ray path. Figure 5 shows the result of
the wave ray optimization with the ray trace indicated above the parabolic
bottom slope. In this computational area the depth increases as a squared
distance from the left boundary. In the left part of the figure the ray before
optimization is displayed, and in the right part –– after optimization. The
optimized ray trace is much smoother than the initial one.

The shape of the optimized ray (the right drawing in Figure 5) shows
a good correlation with the analytical solution, being a segment of the cir-
cle [4]. As far as travel times are concerned, such a type of optimization can
be applied to the process of travel times computations. This procedure for
the travel time correction is schematically presented in Figure 6.

Figure 6. The scheme of determination of the optimized travel time at
the center of the 16-dot stencil (point A)

A segment of the whole 16-dot stencil is shown in Figure 6. The travel
time value is to be determined at the grid-point A. A minimum travel time
value at this point is obtained within the travel time at the neighboring
grid point C. In the previous computations, the tsunami travel time value
at the point C was determined using the time value at the grid point B.
This can be taken from analysis of the source grid-points used for previous
travel time calculations. So, the value at the point A is calculated as the
sum of the travel time value at the point B plus the wave travel times along
the segments BC and CA. In this case the possibility of obtaining a more
optimal trajectory of the wave ray must be examined. By relocating the
point C it is possible to find a new location of the intermediate point C1

which can give a minimum travel time between the point B and the grid
point A. Finally, this travel time (along the trace BC1A) is to be accepted
as the corrected travel time at the grid point A. Using such an optimization
procedure, the test travel time computations were carried out for a constant
water depth area. A small round tsunami source is situated at the center
of the area defined by 1,000 × 1,000 grid-points. After determination of
the travel times at all the grid points, tsunami isochrones for every 250 s
of the propagation were drawn. The shapes of isochrones by this method
are much smoother than for the test without optimization (see Figure 3).
At some points of the computational domain, the travel-time values differ
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Figure 7. Isolines of the travel
times array calculated by the op-
timized algorithm within the uni-
form depth

by up to one minute for every one hour of the tsunami wave propagation
time. So, for distant tsunamis this error can be significant, which means
that the tsunami impact can occur at least a few minutes earlier than that
predicted by conventional methods. The precision of the method proposed
can be improved by relocation not only of the point C, but, also, of the
intersection point of the segment AC1 and the segment connecting the 7th
and the 9th points of the 16-dot stencil (see Figure 6).

3. Calculation of the reflected tsunami wave travel times

In the case of a real tsunami due to the interference of direct and reflected
waves, the amplitude of the secondary tsunami wave can be high enough
to cause some damage to people and infrastructure. So, it is of great im-
portance to calculate the reflected wave kinematics. Figure 8 demonstrates
the reflecting ability of the ocean coasts. Here one can see the direct and
reflected tsunamis of 11.03.2011 at the eastern coast of Japan.

The height of the reflected off the shore tsunami is amounting to the
impacting wave. So, it is very important to determine the kinematics of
the wave after its reflection off the coastline. For this purpose the method
described in the first part of the paper can be easily modified. All the
grid points are separated into three categories: points, where no wave has
arrived, points, where the leading tsunami wave has already arrived and
points, where the secondary (reflected) wave has arrived. All the grid points
along the reflecting boundaries (coastlines), where the direct tsunami has
arrived, are regarded as the secondary wave source. In this case the method,
described in the first part of this paper, starts working again in the area,
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Figure 8. The tsunami reflection of the shoreline during the Great
Tohoku tsunami of 11.03.2011

where the first wave travel times have been determined. Figure 9 shows
isochrones of the tsunami generated by a small rounded source having the
center located at the point S. Here the depth linearly increases in the right
direction starting from the value D0 at the straight reflective shoreline A–B.

For testing the algorithm proposed, let us consider the kinematics of a
tsunami generated by the rounded source (colored blue in Figures 10–12)
located not far from the reflective boundary in the area of the uniform depth.
The tsunami wave front after reflection moves back to the right from this
boundary (Figure 10). In order to show that the reflection was simulated
correctly, the isochrones from Figure 10 were divided into the direct wave
isochrones and the reflected ones (Figure 11).

Then we draw all the isochrones again in one figure, but the reflected
wave isochrones are mirrored relatively the reflective boundary A–B (Fig-
ure 12).
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Figure 9. Tsunami isochrones of direct and reflected waves above the
sloping bottom

Figure 10. Tsunami isochrones of direct and reflected waves
above the uniform depth
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Figure 11. The separate visualization of the direct and reflected wave isochrones

Figure 12. The mirrored visualization of the reflected wave isochrones
for testing the algorithm

As is seen from Figure 12, all the isochrones are approximately round-
shaped that corresponds to the exact analytical solution for such a bottom
topography. It means that the kinematics of the reflected tsunami wave
was correctly simulated, and this algorithm can be used for modeling real
tsunamis.

Conclusion

The efficient method for calculating the tsunami wave kinematics on com-
putational grids has been proposed and tested. This method based on the
Huygens principle determines the wave travel-times from a tsunami source to
all other grid points. It was optimized and tested with the known exact an-
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alytical solutions. Above the flat ocean bottom the time difference between
the conventional 16-dot stencil method and the modified one is estimated to
be up to one minute for every one hour of tsunami wave propagation. The
method proposed is able to determine the reflected wave kinematics.
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