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Studying tsunami waves propagation above
the parabolic bottom topography within

the wave-ray approximation

An.G. Marchuk

Abstract. In this paper, the kinematics of the tsunami wave ray and the wave
front in the area, where the depth increases proportional to the squared distance
to the straight shoreline, is studied. The exact analytical solution for the wave-ray
trajectory above the parabolic bottom topography has been derived. This solution
gives the possibility to determine in the ray approximation the tsunami wave heights
in an area with the parabolic bottom topography. The distribution of the wave-
height maxima in the area with such a bathymetry is compared to that obtained
with a shallow-water model.
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1. Some features of the long wave propagation

Tsunami waves, usually generated by vertical displacements of large ocean
bottom areas, belong to a class of long waves whose length is at least ten
times greater than the depth. The propagation of such waves in a deep
ocean, where the wave height is usually two orders lower than the depth, is
described by a linear system of differential shallow-water equations [1]. The
validity of this description has many times been verified in practice. In the
one-dimensional case without external forces (except for the gravity) these
equations can be written down in the following form:

∂u

∂t
+ g

∂η

∂x
= 0,

∂η

∂t
+
∂(Du)

∂x
= 0.

Here u is the horizontal water flow velocity in the wave, η is the water surface
height above an unperturbed level, g is the acceleration of gravity, and D
is the depth. It follows from the shallow-water equations that the wave
velocity does not depend on its length and is determined by the Lagrange
formula [1]:

c =
√
gD. (1)

This formula is of fundamental importance for the kinematics of long
waves (in particular, tsunamis). For the description the tsunami wave dy-
namics in the coastal zone, where the tsunami amplitude increases and
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the depth decreases, the nonlinear shallow water model is used [2]. The
wave propagation velocity for this model is expressed by the formula c =√
g(D + η).
For the linear system of shallow water equations the horizontal flow ve-

locity in a moving wave has the form [3]:

u = η

√
g

D
, (2)

and for the nonlinear tsunami wave formula (2) will be changed to

u = η

√
g

D + η
.

Independence of the tsunami front propagation velocity on the wave
parameters (height and length) gives the possibility for a priori discovery
of peculiarities of the wave behavior in areas with uneven bottom. In the
paper [3], the formula for the surface evaluation varying in the moving wave
has been derived. In the linear case, it can be written down as

η2(x) ≈ η1(x) 4

√
D1

D2
, (3)

where η2 and D2 are the current wave elevation and depth and η1 and D1

are the initial values. It is the well-known Green formula describing a height
variation of a long wave over an uneven bottom in the one-dimensional case.
If a wave front is not straight, the wave amplitude varies not only due to
the non-constant depth, but also as a result of wave refraction, that is, the
wave-front line transformation. In the same paper [3] the relation between
the wave segment length and the amplitude of this wave segment was also
obtained

η2 = η1

√
L1

L2
. (4)

Here L2 is the current length of the wave segment and L1 is its initial length.
Thus, due to the cylindrical propagation, the tsunami wave height de-

creases inversely proportional to the square root of the circular front radius
or the wave front length. In general, the kinematics of propagation of pertur-
bations in various media is described by the eikonal equation. The governing
formulas for the wave-front kinematics are presented in [4], where the wave
ray concept one of whose properties is the orthogonality to the wave-front
line at any time is introduced. Along wave rays, a perturbation propagates
from a source to other points of the medium in the least time. This means
that wave rays are the fastest routes. Between the two closely spaced wave
rays (in a ray tube), the wave energy remains constant [4]. Therefore, for
a wave segment in a ray tube, formulas (3) and (4) can be rewritten in the
form
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η2 = η1

√
L1

L2

4

√
D1

D2
, (5)

where L1 and L2 are the widths of the ray tube (the length of the wave-front
line segment inside the ray tube) at the initial and current time moments of
wave propagation.

2. Exact analytical formulas for wave-ray traces above the
parabolic bottom topography

An exact mathematical formula for a wave ray trajectory over a parabolic
bottom can be found from the laws of geometrical optics. Let us consider
a two-dimensional water area where
the depth and the wave propagation
velocity vary only in one direction. In
this case we can use the Snell law
for the wave ray refraction angle in a
medium with varying optical conduc-
tivity [5]. According to this law, if in a
two-dimensional conducting medium a
ray comes at the angle of incidence α1

to the horizontal line (Figure 1), where
the conductivity (the propagation ve-
locity of a signal) changes from b1 to
b2, then after passing the interface its
direction α2 changes according to the
formula

Figure 1. Refraction of a wave ray
at the interface between two media

sinα1

b1
=

sinα2

b2
.

Thus, in a medium where the conductivity b (the wave propagation ve-
locity) varies only along one spatial variable (for instance, b(y)), the wave
ray inclination from the direction of a change in the conductivity α changes
according to the formula

sinα(y)

b(y)
= const =

sinα0

b(y0)
. (6)

Here α0 is the initial incidence angle of the wave ray with respect to the
vertical at the level y = y0. In the case of a parabolic bottom, where the
depth is proportional to the squared medium conductivity (the tsunami wave
propagation velocity) can be determined by the Lagrange formula (1), which
for a parabolic bottom has the following form:

a(y) =
√
gb1y2 = b2y. (7)
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Here g is the gravity acceleration, y is the distance to the straight coastline,
where y = 0, b1 and b2 are constant in the whole area. In this case, the
Snell law (6) gives the following relation between the offshore distance and
wave-ray direction α according to the coastline normal

y(α) = b3 sinα, (8)

where b3 is also a constant.

Figure 2. The wave ray refraction
over the parabolic bottom topography

In order to determine the wave
ray trajectory above such a bot-
tom topography let us consider the
following problem. Let the point
(0, y0) be a starting point for the
wave ray that exits this point in par-
allel to the shoreline direction (Fig-
ure 2). At the starting point, the
angle α = π/2. The inclination an-
gle of a wave ray y(x) to the X-axis
will be expressed as β = π/2−α (see
Figure 2). Hence, we have

dy

dx
= tg β, 0 < β < π/2, or

dx = dy
cosβ

sinβ
. (9)

From (8) and (9) follows
dx = b3 cosβ dβ.

Assuming that along the wave ray the angle β varies from zero to the
positive value β1, then after conducting the integration we obtain

x = b3 sinβ
∣∣β1
0

= b3 sinβ1 = b3 cosα1, (10)

where α1 = π/2− β1. In addition to this, as follows from (8) for any value
of α1 from the interval (0, π/2)

y = b3 sinα1. (11)

Formulas (10), (11) present the parametric equation of the circle of radius
b3 with a center located at the coordinate origin. This radius can be easily
determined from (8). From this formula it also follows that the circle center
is always situated on the X-axis. In the case when the initial wave-ray
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outgoing direction was in parallel to the shoreline, the circle radius is equal
to the offshore distance at this moment. If at some time instance the angle
between the ray and the Y -axis is equal to α0 and the offshore distance at
this moment is equal to y0, then the radius of the circle which presents the
wave ray can be found from (8):

r = b3 =
y0

sinα0
.

If α0 = 0, but at the same time y0 > 0, then the radius will be infinitely
big and the ray trajectory will be presented by the straight line which is
orthogonal to the coastline.

Unlike the case with a sloping
bottom [3] here the boundary value
problem for a wave ray can be solved
without difficulty. Let us have two
points (a source and a receiver) in
the area with the parabolic bottom
topography. Let the receiver be sit-
uated at the coastline in the coor-
dinate origin (0, 0), and the source
coordinates be the following: x =
x0, y = y0. Let, for definiteness,
0 < x0 < y0, which means that a
wave ray monotonically approaches
the shore (Figure 3).

Taking into account the fact that
the wave ray is presented by the
circle arc having the center at the

Figure 3. The scheme of solving the
boundary-value problem for a wave ray
above the parabolic bottom topography

shoreline (y = 0), the unknown radius r can easily be found from the equa-
tion of the circle passing the point (x0, y0) and the coordinate origin

(r − x0)2 + y20 = r2.

Resolving this equation for the variable r, the following expression will
be written

r =
x20 + y20

2x0
. (12)

Then from the equation of a circle in parametric form (r − x)2 + y2 = r2,
the equation of the wave ray passing the point (x0, y0) and the coordinate
origin can be written down as

y =
√
x(2r − x),

where the circle radius r is determined by formula (12).
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Figure 4. The scheme of the travel-time
calculation along the wave ray between

the points A and B

Now with the help of the pre-
viously derived formulas let us de-
fine the tsunami travel time along
the wave ray. Let us consider the
wave ray presenting an arc of the
circle of radius r with the center
located at the point (x0, 0) (Fig-
ure 4). Let initially (when t = 0)
the wave front cross this wave ray
at a point A with the coordinates
(x1, y1). In addition, the segment
which connects the point A with
the center of the circle is inclined
at the angle α1 to the X-axis (see
Figure 4).

Let us find a travel time T which is required for the tsunami wave to
arrive at the point B with the coordinates (x2, y2) and where the radius-
vector inclination is equal to α2 radians. If 0 < α1 < α2 ≤ π, then with
allowance for (1) we can express the travel time as the Fermat integral

T =

∫ α2

α1

r dα√
gD(x, y)

. (13)

The depth D all around the area varies according to the formula

D(x, y) = k2y2. (14)

When we come to the variable α, then (13) can be rewritten as

T =
1
√
g

∫ α2

α1

r dα

kr sinα
=

1

k1
ln
∣∣∣tg α

2

∣∣∣∣∣∣∣α2

α1

=
1

k1

(
ln
∣∣∣tg α2

2

∣∣∣− ln
∣∣∣tg α1

2

∣∣∣), (15)

where k1 = k
√
g. The angle α is counted clockwise from the X-axis. From

(15) it is possible to express the angle α2 through α1 and T

α2 = 2 arctg
(

exp(k1T ) · tg α1

2

)
. (16)

Finally, the coordinates of the destination point which the wave front
will reach at the time T going along the wave ray, can be presented as

x2(T, α1) = x0 − r cosα2, y2(T, α1) = r sinα2. (17)

Here α2 is associated with T and α1 according to (16). If 0 ≤ α2 < α1 <
π/2, the expression for α2 (16) will be as follows
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α2 = 2 arctg

(
tg

α1

2

exp(k1T )

)
. (18)

The radius of this circle and its center position are uniquely determined
from the source coordinates (x1, y1) and the exit angle of the wave ray α1

(see Figure 4)

r =
y1

sinα1
, x0 = x1 + r cosα1 = x1 + y1 ctgα1. (19)

If α1 = π/2, the radius r is certainly equal to y1, and the abscises of
the circle center is the same as the one for the ray exit point (i.e. x1).
Now, using formulas (16) and (18) it is easy to determine coordinates of the
destination point (x2, y2) located on the ray, where the wave front arrives
at the time instance T . The problem of determining the wave-rays in a
medium with a linear propagation velocity distribution was studied earlier
when studying seismic waves and the formulas for the wave ray trajectory in
such a medium and for the wave travel-times were obtained [6, 7]. However,
the parameterization of these formulas differs from the ones presented in
this paper.

3. Determination of a wave-front line and estimation of the
wave height above the parabolic bottom

For some model shapes of the bottom, distributions of wave amplitudes
(heights) can be found analytically. Consider, for example, the coastal area
where the depth increases with a squared distance to the coast with a model
tsunami source in the form of a circle of radius R0 with the center at a
distance of y00 from a straight coastline. In Figure 5, this line coincides
with the axis OX (y = 0). In Section 2, the wave ray trajectory over a
parabolic bottom (as in the case in question) has already been found.

In order to determine a tsunami wave height all around the domain with
the parabolic bottom topography, let us split it to many ray tubes varying
the ray starting points and determining exiting angles there. Then using
formulas (16) and (18) we can find coordinates of the points along each
wave ray varying the time parameter T . The ray radius and the coordinate
x of the circle center are given by (19).

If, for example, a tsunami source is presented by a circle of radius R0

with its center located at the point (x00, y00), then N wave rays start from
the source boundary points in the radius-vector directions. Then we will
obtain a set of N wave rays coming from the source boundary up to the
edges of the computational domain. The scheme of constructing such a ray
is shown in Figure 5. We will split the whole domain to N ray tubes by
constructing wave rays exiting N different points which are equidistantly
located around the source. Here it is necessary to take into account the
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fact that coordinates of the ray starting points (xi, yi) vary according to the
formulas

xi = x00 +R0 sinαi, yi = y00 +R0 cosαi.

Figure 5. The wave-ray trace above
the parabolic bottom which exits the
circled source boundary point within
the angle α relating to the ordinate axis

Here αi is the ray exiting angle ac-
cording to the ordinate axis. It is
not allowed to say that rays reach
the shoreline, because from (15) it
follows that the required travel time
for this is infinitely long.

Figure 6 shows the wave-ray set
which was built using 200 ray exit-
ing points along the circled source
boundary. Their exiting angles
αi were equal to i · π/200 (i =
1, . . . , 200). Thus, we have obtained
the coordinates of the destination
point versus the time T and the an-
gle α. Now, with formulas (16) and
(18) we can find the wave front lo-
cation by fixing the time T .

Figure 6. Wave-ray traces above the parabolic bottom topography coming
from 200 points locating at the circled source boundary
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Figure 7. Positions of the tsunami wave front (isochrones) within the
5-minutes interval from a circled source of radius 50 km above the parabolic

bottom topography

If we draw the lines connecting the points along wave rays corresponding
to the same time instance, we will obtain tsunami isochrones. For example,
Figure 7 shows locations of the wave front within 5-minutes interval. In this
case, the center of the circled source of radius R0 = 50 km was situated 300
km off the straight shoreline. Here the coefficient k of the parabolic depth
growth (14) is equal to 10−4. This means that at a distance of 1,000 km off
the shore the depth is equal to 10,000 m.

If we want to estimate the wave height at the point (x1, y1), it is necessary
to determine the distance between the two following points: the first one
is the point (x1, y1), where the wave going along the ray exiting the point
(x00 + R0 sinα, y00 + R0 cosα) at the angle α (see Figure 5) arrives at
the time T . The second one is the point (x2, y2), where a tsunami wave
arrives at the same time moment going along the wave ray exiting the point
(x00 + R0 sin(α + ∆α), y00 + R0 cos(α + ∆α)) at the angle α + ∆α. With
formula (5), the coefficient of wave attenuation due to changing the ray tube
width and depth is calculated. Doing this for various values of the time T
and the directions of wave rays, we obtain the wave attenuation distribution
over the entire area of points which can be reached by the wave rays from
the initial wave front points.

To verify the solution obtained, the numerical simulation of the tsunami
wave propagation was carried out using the differential shallow-water model
with a software package called MOST [8]. In this numerical experiment the
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Figure 8. The comparative location of the wave-height maxima isolines
obtained by numerical calculation of the shallow-water equations (black

color) and within the wave-ray approximation (grey color)

center of a circular source, 40 km in radius, was located at a distance of
300 km from the coast. This source formed a 95-cm high circular wave at
a distance of 50 km from the center. This initial front was taken as initial
conditions to calculate the amplitudes with the ray model. In Figure 8,
isolines of the tsunami wave height maxima in the 1000 × 1000 km coastal
area with a parabolic bottom obtained from formulas (16)–(18) and (5) are
shown by grey color. For comparison, isolines of the wave height maxima
obtained by numerical solution of the same problem with the nonlinear shal-
low water model [8] having the same initial values are shown by black color.
In both cases, the levels of isolines (whose height is shown in meters), were
taken with a spacing of 5 cm. Figure 8 shows that the distributions of am-
plitudes obtained by the two different methods mostly coincide except the
shelf area, where a depth is less than 150–200 m where, in contrast to the
ray approximation, in the numerical implementation of the differential shal-
low water model the influence of the nonlinearity is much stronger than in
a deep sea.
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4. Conclusion

The height of a propagating tsunami wave versus depth and refraction above
an uneven bottom has been estimated using the differential shallow-water
equations. The exact wave ray trajectory and the tsunami isochrones above
the parabolic bottom have been found. A comparison of the results obtained
by the ray method and with the shallow water model has been made. This
comparison shows that with a numerical method based on the ray approxi-
mation not only the arrival times of tsunami waves at different points, but
also the wave heights in a deep water can be estimated. These solutions
for travel times and wave-ray traces can be used for testing the numerical
methods carrying out the tsunami simulation.
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