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Designing a collision matrix for a cellular
automaton with rest particles for

simulation of wave processes∗

Valentina Markova

Abstract. We consider the single-particle HPPrp Lattice Gas Cellular Automata
for simulation of modeling wave processes. The HPPrp Cellular Automaton is
defined on a two-dimensional square lattice. Each cell of the automaton contains
particles of the two types: the moving particles and the rest particles. Inserting the
rest particles leads to non-deterministic collision rules. In this paper, the design
of a procedure collision matrix for a cellular automaton with rest particles for
simulation wave processes is presented. The entries of the collision matrix are
transition probabilities from one state to another. As the condition that ensures
the existence of a wave process, the semi-detailed balance condition is used.

Introduction

The HPPrp Lattice Gas Cellular Automata are a powerful instrument for
the simulation of a complex event[1–4] due to a set of the key features:
absolute computational stability, simplicity of boundary conditions, locality
of operational interactions, and inherent spatial parallelism.

In the HPPrp Cellular Automata (CA) [1, 2], the dynamics of an event is
described by a set of hypothetical particles. They move in the lattice discrete
space according to certain rules. These rules present the modeling process
on a micro-level, based on the general laws of physics. In the HPPrp CA, the
space is represented as a two-dimensional square lattice, whose nodes can
contain a quantity of hypothetical particles. Each lattice node is assigned
to a HPPrp cell. Each cell is associated with the unit vectors which connect
the cell with its nearest neighbor.

The initial state of a HPPrp cell is determined by a set of some particles,
locating in the cell at this time instant. There are two types of particles: the
moving particles and the rest particles. The moving particles have the unit
mass and the unit velocity. The rest particles have velocity equal to zero and
different masses. Interactions between particles are simple. Each interaction
consists of two successive steps: collision and propagation. Collision rules
are chosen in such a way that mass and moment conservation laws are sat-
isfied. All cells update their own states simultaneously and synchronously.
An iterative change in the HPPrp global state (evolution of the HPPrp)
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describes the dynamics of a wave process. In published works regarding the
Lattice Gas Cellular Automata, a formal procedure for designing a cellular
automaton, the collision matrix with an arbitrary number of rest particles
is unknown. That is why we present the procedure of this kind.

This paper is organized as follows. In Section 1, the main concepts of
the HPPrp CA are given. Section 2 deals with the construction procedure of
the collision matrix. In Section 3, the influence of the semi-detailed balance
on wave processes is investigated.

1. The HPPrp cellular automata for simulating wave
propagation. The basic definitions

Formally, the HPPrp lattice gas automaton is defined by the set N =
〈M,A,Θ〉, where M is a discrete space, A is the state alphabet, Θ is a
set of transition functions.

The space M is represented as a regular two-dimensional four-neighbor
Euclidean lattice M = {(i, j) : i = 0, 1, . . . , I, j = 0, 1, . . . , J}. For sim-
plicity, the (i, j)-th node of the lattice is a HPPrp cell which is labeled by
its position r = (i, j). Each cell is associated with the vectors (links) ek,
k = 1, 2, 3, 4, which connect a cell with its nearest neighbor in one of the
directions k (Figure 1).

Figure 1. The HPPrp lattice and
the HPPrp cell

Each cell can contain particles
of two types: the moving parti-
cles and the rest particles. Mov-
ing particles have the unit mass and
the unit velocity and moving par-
ticles are undistinguished. To each
moving particle a momentum is as-
signed. No more than one mov-
ing particle can be found in the
same cell at the same time with the
same direction. This means that
the moving particles locally obey

the Pauli exclusion principle and are Fermi–Dirac distributed consequently.
Rest particles have zero velocity and a different mass (2, 4, 8, . . . ).

The alphabet A is a set of 24+b Boolean vectors (states) s = (a4+b, . . . ,
a4, a3, a2, a1), ap ∈ {0, 1}, where b is the number of the rest particles. The
vector s contains the whole information about particles placed in a cell.
The first four digit values of the vector s from the right show the presence
(ap = 1) or the absence (ap = 0) of a moving particle in the direction to
the k-th neighbor. The other digit values of the vector s show the presence
(ap = 1) or the absence (ap = 0), p = 5, . . . , 4 + b, of the mass 2p−4 rest
particle. The total sum of particle mass in a cell is called the model density.
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It is defined as

d(s, ~r) =
4∑

i=1

ai +
4+b∑
i=5

ai2
i−4.

For example, if a cell has the state s = (11011), this implies that it con-
tains one the mass-2 rest particle and three moving particles with velocities
in the directions e1, e2 and e4, the model density of this cell being 5.

A pair (s, r), s ∈ A, r ∈ M , is called a cell. A set of cells, in which all
cells have different names, forms a cellular array Ω. A set of the state of a
cellular array at the time t is called a global state Ω(t) of the cellular array.

A set of transition functions Θ = {θs} is defined by functioning rules of
the HPPrp cellular automaton. The HPPrp CA operates synchronously: all
the cells update their own states simultaneously at each iteration step. The
iteration step consists of the two successive phases: collision and propaga-
tion. We introduce ap(r, t) as the number of particles (which can be either
0 or 1) entering a cell with the name r at the time t with the unit velocity
along the vector ep, where p = 1, 2, 3, 4.

At the collision phase, particles at each cell collide with each other in
such a way that the total particle mass (

∑4+b
p=1 ap) and the total momen-

tum (
∑4

p=1 apep) are conserved in each cell. At the propagation phase, the
moving particles from each cell shift to the nearest neighbors with the unit
velocity along the vectors ep. As a result, the microdynamics of the HPPrp
cellular automaton is written down as

ap(r + ep, t+ 1) = ap(r, t) + Λp(a(r, t)),

where Λp(a(r, t)) represents the collision operator. The collision is carried
out locally and transforms a current state s = (a4+b, . . . , a4, a3, a2, a1) of the
cell to the next state ŝ = (â4+b, . . . , â4, â3, â2, â1) with a certain transition
probability ps→ŝ ≥ 0. The set of transition probabilities forms the collision
matrix.

In the HPPrp cellular automata, the collision rules are both deterministic
and non-deterministic. They can be divided into three groups. (Here the
empty circle stands for the absence of rest particle.)

Group 1 (head-on collision). If two particles enter a cell in one of
the two opposite directions (either (i, i+ 2) or (i+ 1, i+ 3)), these particles
collide and change the vector direction by 90 degrees (Figure 2).

Figure 2. Head-on collision rules
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Figure 3. The rest particle creation rules

a b

Figure 4. The rest particle annihilation rule

Group 2 (Creation of the rest particle). If two moving particles
enter a cell in opposite directions and the mass-2 rest particle is absent,
then moving particles will be annihilated and the mass-2 rest particle will be
created. (Figure 3a). If either two moving particles enter a cell in opposite
directions and the mass-2 rest particle exists (Figure 3b) or four moving
particles enter a cell, then the mass-4 rest particle will be created and all
particles in the current state of a cell will be annihilated.

Group 3 (rest particle annihilation). If the mass-2 rest particle
exists in a cell and any of the two moving particles entering a cell in op-
posite directions are absent, then two moving particles will be created and
the mass-2 rest particle will be annihilated (Figure 4a). If the mass-4 rest
particle exists in a cell and all moving particles are absent, then four moving
particles will be created, and all particles in the current state of a cell will
be annihilated (Figure 4b).

As a result of the iteration step execution, the cellular automaton changes
a current global state Ω(t) to a new global state Ω(t+1). An iterative change
in the HPPrp global state (evolution) in the HPPrp CA describes the wave
process dynamics.

Figure 5 shows the iteration step for one HPPrp cell with the two rest par-
ticles: the mass-2 and the mass-4. The current cell state is s = (010101)(21),
(21) is the decimal representation of a current cell state s. The collision
operator transforms this current state into one of the four states: ŝ1 =
(011010)(26), ŝ2 = (001111)(15), ŝ3 = (100000)(32), ŝ4 = (011010)(21)
with a certain transition probability ps→ŝk ≥ 0, k = 1, 2, 3, 4. The transi-
tion probabilities satisfy the normalization

∀s ∈ A
4∑

k=1

ps→ŝk = 1.
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Figure 5. One iteration step for cell in the current state s = (010101)

A set of states where all states have the same value for the invariant
quantities for a HPPrp CA (mass and momentum) will be called equivalence
class and denoted as QB, where B is a set of states for a given equivalence
class. In the equivalence class for any state, which is a current state, all
other states are the next states. For a given HPPrp CA, the equivalence
classes are disjoint. The number of states in the class QB will be called the
equivalence class cardinality.

2. The construction of the collision matrix

The collision matrix is defined as a matrix P of 24+b × 24+b size, where b is
the number of rest particles. A matrix entry pij is the transition probability
of a cell from the current state ps to the next state pŝ. Indices i, j are the
decimal representation of the current cell state s and the next cell state ŝ.
Since a set of the states for the HPPrp cells can be partitioned into mutually
exclusive classes, then constructing the collision matrix can be reduced to
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the construction of the collision matrix for each equivalence class. The
transformed collision matrix P for the HPPrp with a mass-2 rest particle
takes the following diagonal form:

P = diag(PQ5,10,16 , PQ7,18 , PQ11,17 , PQ13,24 , PQ14,20 , PQ15,21,26).

Each diagonal entry in the matrix P presents a collision matrix for a given
equivalence class. There are six equivalence classes–– two classes of cardinal-
ity 3: Q5,10,16 and Q15,21,26 and four classes of cardinality 2: Q7,18, Q11,17,
Q13,24, and Q1,18. For example, the collision matrix for the equivalence class
Q5,10,16 has the following form:

PQ5,10,16 =

 p5→5 p5→10 p5→16

p10→5 p10→10 p10→16

p16→5 p16→10 p16→16

 .

In such a manner, the construction of the collision matrix for the HPPrp
CA is reduced to:

• derivation of equivalence classes for a given HPPrp CA and

• construction of the collision matrix for each equivalence class.

Entries of each collision matrix for a given class of equivalence satisfy:

• laws of conservation of mass and momentum,

• normalization condition ∀s
∑

ŝ ps→ŝ = 1, and

• semi-detailed balance propriety ∀ŝ
∑

s ps→ŝ = 1.

The procedure of constructing the collision matrix procedure for the
equivalence class cardinality B is based on the formulation and solution to
a system of 2B linear equations. Below a system of equations to the class
Q5,10,16 is shown:

p5→5 + p5→10 + p5→16 = 1,

p10→5 + p10→10 + p10→16 = 1,

p16→5 + p16→10 + p16→16 = 1,

p5→5 + p10→5 + p16→5 = 1,

p5→10 + p10→10 + p16→10 = 1,

p5→16 + p10→16 + p16→16 = 1.

The first three equations are formed according to the normalization prop-
erty. The second three equations are formed according to the semi-detailed
balance. If the number of variables in a system of equations exceeds the
number of equations in this system, then one has to set fixed values for
probability of a transition cell from one state ps to another state pŝ. For
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example, one can set a fixed value for probability of a cell remaining in the
same state or a probability of a transition cell into the state when a cell
contains a rest particle with a given mass. Then any method for solving a
system of linear equations may be used. A simple version of the collision
matrix is that with equally probable transitions:

PQ5,10,16 =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

.
3. Investigation of the influence of the semi-detailed balance

on wave processes

In the experiments carried out, the wave process propagation is presented
by evolution of the HPPrp CA with the mass-2 rest particle. The cellular
array size is 800× 800 cells. The perturbation generation source is located
at the array center and forms a sub-array of 20× 300 cells size.

The initial states of the array cells (model densities) are given by particles
distribution with a certain probability in each cell. Further, a cellular array
for the wave process simulation will be called a medium. The medium model
density is 3.3: four moving particles are generated in cells with probability
1, one the mass-2 rest particle is generated with probability 0.75 within
one iteration. The model density of perturbation source cells are 5.5: four
moving particles are generated in the cells with probability 0.7, one the
mass-2 rest particle is generated with probability 0.25 within one iteration.
The boundary conditions are periodical.

In order to observe the wave process in the usual representation of a
physical phenomenon, the medium global states are twice averaged [3]. First,
a value of particles density for each cell from a global state is averaged
over a 5 × 5 cells square. Second, the values obtained are averaged over
the array column. Further, a twice averaged global state of a medium at
the t-th iteration of the cellular automaton evolution will be called a wave
profile at the t-th iteration of the single wave propagation. The following
parameters (model velocity, profile amplitude and profile median) are used
for investigation of the wave processes obtained.

Figure 6 presents the profiles at different iterations of single wave prop-
agation. The used collision matrix P (1) has equal-probability blocks:

P
(1)
Q5,10,16

=

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

, P (1)
Q7,18

=

(
0.5 0.5
0.5 0.5

)
, P

(1)
Q11,17

=

(
0.5 0.5
0.5 0.5

)
,

P
(1)
Q13,24

=

(
0.5 0.5
0.5 0.5

)
, P

(1)
Q14,20

=

(
0.5 0.5
0.5 0.5

)
, P

(1)
Q15,21,26

=

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

.
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Figure 6. Wave profiles at different iterations of single wave propagation
in the HPPrp medium for collision matrix P (1)

The simulation shows the following:

• A single wave propagates from a perturbation source with equal model
velocity.

• Wave profiles vary with time: the amplitude profile is reduced, the
width profile is increased, while the total mass and momentum of all
the particles of the cell array are conserved.

• Wave profiles have the same parameters (amplitude and median) from
a perturbation source.

Below we present the results of several computational experiments in
which different collision matrices are used for modeling the wave process.

Experiment 1 (Collision matrices obey the semi-detailed balance).
Computational experiments show that the profiles of different wave processes
coincide regardless the transition probabilities values in collision matrices.
Figure 7 shows the wave profiles for different iterations (200 and 500) for
the two wave processes.

In the first wave processes, the collision matrix P (1) was used and, in the
second wave process, the matrix P (2) with the following blocks was used:

P
(2)
Q5,10,16

=

0.1 0.9 0
0.8 0.1 0.1
0.1 0 0.9

, P (2)
Q7,18

=

(
0.3 0.7
0.7 0.3

)
, P

(2)
Q11,17

=

(
0.95 0.05
0.05 0.95

)
,

P
(2)
Q13,24

=

(
0.05 0.95
0.95 0.05

)
, P

(2)
Q14,20

=

(
0.5 0.5
0.5 0.5

)
, P

(2)
Q15,21,26

=

0.2 0.8 0
0 0 1

0.8 0.2 0

.
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Figure 7. Wave profiles at different iterations of single wave propagation
in the HPPrp medium for collision matrices P (1) and P (2)

Figure 8. Wave profiles at different iterations of single wave propagation
in the HPPrp medium for collision matrices P (3) and P (4)

Experiment 2 (Collision matrices do not obey the semi-detailed bal-
ance). Computational experiments show that despite the fact that the used
collision matrices do not obey the semi-detailed balance, the HPPrp evolu-
tion simulates a wave process. Figure 8 shows the wave profiles for different
iterations (200 and 500) for the two wave processes.

The collision matrix P (3) used in the first wave process differs from P (2)

in the blocks

P
(3)
Q5,10,16

=

0.1 0.9 0
0.8 0.2 0
0.8 0.2 0

, P
(3)
Q15,21,26

=

0.2 0.8 0
0 0 1

0.1 0.1 0.8


and the matrix P (4) used in the second wave process differs from P (1) in
the blocks
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P
(4)
Q5,10,16

=

0.7 0.2 0.1
0.2 0.7 0.1
0.5 0.5 0

, P
(4)
Q15,21,26

=

0.2 0.7 0.1
0.7 0.3 0
1/3 1/3 1/3


Moreover, the collision matrices P (4) describes the particle dynamics

which simulates wave processes with different velocities in the different di-
rections from the perturbation source. The reason for this phenomenon is
subject to further study.

Conclusion

In this paper, the procedure of designing the collision matrix for a cellular
automaton with the rest particles for simulating wave processes is proposed.
Entries in the collision matrix are transition probabilities from one state
to anther. As the condition that guarantees the existence of a wave pro-
cess the semi-detailed balance condition is used. The influence of the semi-
detailed balance on characteristics of the wave process (velocity, amplitude
and median of wave profile) is investigated. A large body of computational
experiments has shown the following:

• If the semi-detailed balance condition holds in the HPPrp CA, the
characteristics of the wave process coincide regardless of the transition
probabilities values in the collision matrices.

• The HPPrp evolution simulates wave processes despite the fact that
the semi-detailed balance condition is violated.

• In certain cases, the collision matrix simulates wave processes with
different velocities in different directions from the perturbation source.
The reason for this phenomenon is subject to further study.
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