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Diffusion effect in lattice gas automata waves∗

Valentina Markova

Abstract. It is known [1] that the Lattice Gas Automata (LGA) models simulate a
sound wave process. Moreover, in [2], it is proved that the LGA model corresponds
to the hyperbolic equation. The computer simulation show that a wave profile varies
with time: the profile amplitude reduces, the profile width increases. This suggests
that the particle interaction rules simulate a diffusion process in addition to the
wave process. In this paper, the availability of the diffusion effect is demonstrated
by computational experiments with a simple LGA model.

1. Introduction

In the Lattice Gag Automata (LGA) models [1–5], the dynamics of an event
is described by a set of hypothetical particles, which move in space and
collide with each other and with obstacles. The space is represented as
a regular lattice whose nodes contain a quantity of hypothetical particles.
Each lattice node is assigned to a LGA cell. Interactions between particles
are simple. Each interaction consists of the two successive steps: collision
and propagation. The collision rules are chosen in such a way that the
mass and momentum conservation laws are satisfied. The collision rules
determine the LGA cell transition table. All the cells update their own states
simultaneously and synchronously. An iterative change of the LGA global
state (evolution of the LGA) describes the dynamics of a complex event [1–7].

An appreciable interest to the LGA modeling wave process is explained
by the following. First, the LGA models are absolutely computationally
stable due to the absence of a round-off error. Second, these models include
an inherent spatial parallelism by definition. And basically, the LGA mod-
els allow to simulate wave process in the inhomogeneous medium without
additional conditions on the boundary of density discontinuity as opposed
to partial differential equations. This follows from the discreteness property.
An appropriate experience of the LGA modeling of electromagnetic fields in
an inhomogeneous medium is depicted in [4].

Our experience of modeling sound wave process [7, 8] has demonstrated
that the LGA wave profile, first, differs in the form from a conventional wave
profile and, second, it is washed out with time, the mass and momentum
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conservation laws being satisfied. This has suggested that the HPP model
captures a diffusion effect as opposed to the hyperbolic wave equation.

In the paper, the availability of a diffusion effect is demonstrated by
computational experiments with a simple LGA model, namely, HPP model
(the model on a 2D lattice with four neighbors). This paper is organized as
follows. After Introduction, in the second section, the main concepts of the
HPP model are given. The third section is concerned with an experimental
study of 1D unit wave propagation in the HPP medium. In order that a
modeling wave process be observed in the usual (discrete) fashion, a twice
averaging technique of the HPP cellular automaton global states (Boolean
states) is considered in detail in order that a modeling wave process be ob-
served in the usual fashion. In the third section, the procedure for revealing
a diffusion effect in the HPP waves is given. The procedure consists in
transformation of each CA evolution iteration in a wave profile for a given
number of iterations using the twice averaged cell state and the comparison
of the obtained parameters of wave profiles at each step.

2. The HPP cellular automaton for simulating wave
propagation

2.1. The basic definitions. Formally, the HPP cellular automaton is
defined by the setN=〈M,A,Θ〉, where M is a set of coordinates in a discrete
space, A is a cell state alphabet, Θ is a set of transition functions.

The space M is represented as a regular two-dimension four-neighbor
Euclidean lattice M = {(i, j) : i = 0, 1, . . . , I, j = 0, 1, . . . , J}, the lattice
nodes (i, j) being the cell names. Each cell can contain several particles.
All particles have unit mass and unit speed. No more than one particle may
occupy a given lattice site or move in a given direction at a given time.

An alphabet A is a set of Boolean vectors (states) a = (a1, a2, a3, a4),
ak ∈ {0, 1}. The k-th digit value of the vector a, k = 1, 2, 3, 4, shows the
presence (ak = 1) or the absence (ak = 0) of particles in the direction to the
kth neighbor. A pair (a, (i, j)), a ∈ A, (i, j) ∈ M is called a cell. Each cell
is assigned to a finite state automaton. A set of cells, in which all cells have
different names, Ω forms a cellular array. A set of the state of a cellular
array at the time t is called a global state Ω(t) of the cellular array.

The set of transition functions Θ = {θs} is defined by functioning rules
of the HPP cellular automaton. The CA operates synchronously: all cells
update their own states simultaneously at each iteration step according to
transition functions. As a result, the cellular automaton changes a current
global state Ω(t) to a new global state Ω(t + 1). Each step consists of
the two successive phases: propagation and collision. This means that the
transition function is a composition of the propagation (θ1) and the collision
(θ2) functions: θ(a) = θ2(θ1(a)).
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Figure 1. Collision rules for the HPP cellular automaton

Both the functions are constructed in such a way that the laws of con-
servation of mass and momentum for all the cells from the array Ω =
{(a, (i, j))} should be satisfied.

In the propagation phase, in each cell each particle moves to the kth
neighboring cell if ak = 1.

In the collision phase, two particles arrived at a cell with the opposite
direction, collide with each other (collisions are elastic) and change their
direction by 90 degrees (Figure 1).

In spite of some inherent to HPP anisotropy, an iterative change of the
CA global states (evolution of the HPP) describes the wave process dynamics
on microscopic level.

2.2. Averaging cell states. In the process of the evolution of the HPP
CA, the states of cells are Boolean vectors, and having no physical signif-
icance. In order that a modeling process be observed in the usual fashion
of a physical event, the cell states from Ω(t) are averaged over some aver-
aging area Av(i, j). This means that for each cell (a, (i, j)) a new state is
calculated as follows

〈(a, (i, j))〉 =
1

|Av(i, j)|
∑

(l,m)∈Av(i,j)

ρ(l,m) = P(i, j).

Here |Av(i, j)| is the number of the cells situated in Av(i, j) (the area
Av(i, j) can have different forms: a square, a column, a row), ρ(l,m) =∑4

k=1 ak(l,m), ρ(l,m) is called a model density of the cell with the name
(l,m), P(i, j) is an averaged density value (a new state) of a cell with the
name (i, j).

3. The sound wave propagation simulation

In the experiments carried out, the propagation of 1D unit sound wave
propagation process is presented by evolution of a cellular array of size
50000 × 4000 cells. The initial states of the array cells are given by a ran-
dom number generator. Further a cellular array with a given density will
be referred to as the model medium. In the experiments, a medium model
density is ρ = 2 (the random number generator with probability 0.5 pro-
duces four particles in all the cells of the array). A source for generation
of initial momentum is located in the center of the array and represents a
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Figure 2. The HPP cellular automaton evolution

subarray of size 50×4000 cells. Each source cell generates with probability 1
four particles within one iteration. The boundary conditions are periodical.
Figure 2 presents the wave profiles at different iterations. The initial state
of the cellular array to be investigated is shown in Figure 2a.

Two compact subareas are formed by the evolution of this cellular au-
tomaton. Those subareas move from the source in the opposite directions
with a certain velocity, thus simulating a unit lengthwise wave propagation
in medium.

In our experiments, the global states of the cellular array are twice av-
eraged. First, a value of particles density for each cell from a global state
Ω(t) is averaged over a square 21 × 21 cells. Second, the obtained values
from 〈Ω(t)〉 (P(i, j; t)) are averaged over the array column of size 4000 cells

Ω(t)
square−−−−→ 〈Ω(t)〉 column−−−−→ 〈〈Ω(t)〉〉.

The result of a twice averaged global state Ω(t) represents the following
set R(t) = {R0(t), R1(t), . . . , RJ(t)}, where Rj(t) is the averaged density
value over the jth column of the cellular array:

Rj(t) =
1

|Av(j)|
∑

(i,j)∈Av(j)

P(i, j; t), |Av(j)| = I.
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Figure 3. Wave profiles at different iterations of unit wave propagation
in HPP medium with ρ = 2

Further, a twice averaged global state of the cellular array at the tth
iteration of the cellular automaton evolution will be called a wave profile at
the tth iteration of the unit wave propagation.

From Figure 3 follows that the HPP wave profile differs, first, in the
form from the conventional wave profile, and, second, it is washed out with
time, the mass and momentum conservation laws being satisfied. This con-
firms that the HPP model captures the diffusion effect as opposed to the
hyperbolic wave equation.

4. Revealing the diffusion effect in the HPP waves

In this paper, the revealing the diffusion effect in the HPP wave is shown
on the basis of computational experiments. The experiments consist in
simulation of the HPP cellular automaton evolution for a given time interval,
and in the comparison of unit wave profiles.

The procedure is very simple, it is as follows.

1. Let Ω̂ = {Ω(k),Ω(k + 1), . . . ,Ω(n)} be a set of cellular array global
states on a given interval T = {k, k + 1, . . . , n}. It is not necessary
the Ω(k) be 0th global state. According to the averaging procedure, a
unit wave profiles set R̂ = {R(k), R(k + 1), . . . , R(n)} is calculated.

2. For each wave profile R(t), t ∈ T , two values are calculated (Fig-
ure 4)–– wave amplitude h(t) and wave median m(t). A value of wave
amplitude is h(t) = hmax(t)− ρ, where hmax(t) is a maximum value of
the wave profile R(t) and ρ is an initial model density of the medium.
The value of a wave median is equal to the distance between the points
on the height (hmax + ρ)/2 at the iteration t.

3. Two functions characterizing the diffusion effect are calculated on R̂––
the wave amplitude H = h(t) and the wave median M = m(t), t ∈ T .
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Figure 4. Amplitude and median of wave profile

Figure 5. The function H Figure 6. The function M

Figure 7. The function L

Figure 8. The function D
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In Figures 5 and 6 the functions H and M are shown. Both curves point
to the fact that the diffusion effect in this wave process diminishes with time.
These results coincide well with the physics of a wave process.

For comparison of the diffusion effect in media with different model den-
sities, functions of a relative change in the wave profile parameters are cal-
culated:

• the function of a relative change of the wave amplitude value on the
time L = l(t), where l(t) = h(t)

h(0)
, h(0) is the wave amplitude value for

t = 0.

• the function of a relative change of the wave median value on the time
D = d(t), where d(t) = m(t)

m(0)
, m(0) is the wave median value for t = 0.

It can be seen in Figure 7 and 8 that a diffusion effect in the wave is enhance
as HPP density increases.

5. Conclusion

In the paper, the existence of a diffusion effect is demonstrated on compu-
tational experiments with a simple LGA model (HPP LGA model). For
revealing a diffusion effect the following procedure is considered:

• Simulating the HPP CA evolution for the given time interval.

• Transformation each CA evolution iteration into wave profile using
twice averaging cell state from global state of cellular array.

• Comparison of the obtained parameters of wave profiles at each itera-
tion.

Moreover, wave process is investigated in media with different density.
Experiments point to the fact than that CA diffusion process is more com-
plex that the classic diffusion process.
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