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The LGA models simulating sound wave
propagation in a pipe∗

Valentina Markova

Abstract. The Lattice Gas Cellular Automata (LGCA) models can be considered
as an alternative to the conventional approach to the spatial dynamics simulation.
The LGCA is based on a microscopic model of a physical process being simulated.
Here we consider two simple LGCA models: HPP and HPPRP. They are based
on a square lattice, whose nodes can be occupied by the moving particles in the
HPP-model, and the moving and the rest particles in the HPPRP-model. In this
paper, the possibility of a simple LGA models to simulate sound wave process in a
pipe having regard to the wall features (moving obstacle and wall absorption) are
investigated.

1. Introduction

The Lattice Gas Cellular Automata (LGCA) models or the Lattice Gas
Automata (LGA) models [1–8] are powerful instruments for the simulation
of complex events (sound waves, hydrodynamics of multi-phase and multi-
component fluids, electromagnetic fields in inhomogeneous media, high-
viscous flows, and chemical reactive flows) due to the following:

• Preservation of conservation mass and momentum laws. This means
that the LGA evolution of events very closely coincides with a real
mechanism of event under simulation.

• Inherent spatial parallelism. It allows ideally realize them on comput-
ers with massively parallel processors.

• Locality of operational interactions. This suggests that programming
will be fairly simple.

• Absolute computational stability due to the absence of a round-off er-
ror. The LGA algorithms are free of a round-off error because the
LGA cell states are Boolean vectors.

• Simplicity of boundary conditions. The boundary conditions are rep-
resented by specialized cells. The specialized cells behavior differs in
the collision step. Such a technique for the CA boundary conditions
representation gives a possibility for simulating dynamics of an event
with complicated boundary geometries.
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In the LGA, dynamics of an event is described by a set of hypothetical
particles, which have moved through space and collided with each other and
with obstacles. The space is represented as a regular lattice whose nodes can
contain a quantity of hypothetical particles. Each lattice node is assigned to
a LGA cell. As opposed to the classical cellular automaton, an initial state
of the LGA cell is determined by a set of some particles, locating in the cell
at this time moment. There are two types of particles: the moving particles
and the rest particles. The moving particles have the some mass (equal to
one unit) and equal absolute velocity (equal to one unit). This allows them
to move from one lattice node to its nearest neighbor in discrete time steps.
The neighbor coordinates are indicated by a velocity vector direction of a
moving particle. An exclusion principle is imposed on the moving particles:
no two particles may sit simultaneously on the same node if their direction
is identical. The rest particles have the same velocity (equal to zero) and a
different mass.

Interactions between particles are simple. Each interaction consists of
two successive steps: collision and propagation. The collision rules are cho-
sen in such a way that the mass and moment conservation laws are satisfied.
The collision rules determine the LGA cell transition table. All cells update
their own states simultaneously and synchronously. An iterative change of
the LGA global state (evolution of the LGA) describes the dynamics of an
event on microscopic level.

In order that a modeling process be observed in the usual fashion of a
physical event, averaged values of particles density and velocities for each
LGA cell are calculated in some averaging area. Automata noise arises for
small values of the averaging radix. This is the main disadvantage of the
LGA models. Automata noise cannot be eliminated, but its effect can be
reduced by increasing the averaging radix.

In this paper, two LGA models on a 2D lattice with four neighbors are
used. The first model, the HPP model, proposed by Hardy, de Pazzis, and
Pomeau [3], is fully deterministic “one-speed” lattice gas model. It has been
introduced to analyze mechanical properties of 2D fluids in homogeneous me-
dia, such as the divergence of 2D transport coefficients. The second model,
the HPPRP model [5], is an extension of the HPP model: certain rest parti-
cles (RP) are incorporated within cells of the lattice. As opposed to the HPP
model, the HPPRP collision rules can be deterministic or nondeterministic.
In [5] it is shown that the HPPRP model corresponds to the wave equation.
One can also specify that certain regions of the 2D lattice have different rest
particle numbers. The energy exchanges between moving and rest particles
in the regions are thus different, and media with different sound speeds can
be realized. The possibility of the “multi-speed” model have been demon-
strated by the examples of simulation of electromagnetic fields and sound
wave propagation in the inhomogeneous media in [5] and [9], respectively.



The LGA models simulating sound wave propagation in a pipe 27

In this paper, the possibility of a simple LGA models to simulate sound
wave process in a pipe having regard to the wall features (moving obstacle
and wall absorption) are investigated.

2. The HPP simulating sound wave propagation in a pipe
with a moving obstacle

2.1. The HPP model. In the HPP model, each cell (HPP cell) con-
tains only the moving particles. The HPP cell state is determined by the
velocity vector v = (v1, v2, v3, v4) at this time moment. The
l-th digit value of the vector, l = 1, 2, 3, 4, shows the presence
(vl = 1) or the absence (vl = 0) of particle in the direction
to the l-th neighbor. The HPP cell with the velocity vector
v = (0, 1, 1, 0) is shown in Figure 1. (Arrows in the cell show
the directions of the velocity vector particles.)

The evolution of the HPP cell consists of two steps: Figure 1

• Head on collision. Two moving particles, arrive at a cell with the
opposite direction of their velocity vector (head on collision), escape
from the cell, changing the direction of their velocity vector by 90
degrees (Figure 2).

• Propagation. The moving particles move from their node to the nearest
neighbor in the direction of their velocity vector.

Figure 3 illustrates one iteration of evolution of a cellular array with size of
4× 4 cells.

The HPP model has superfluous laws of conservation: the total mass
and moment are conserved along each space axis individually. In addition,
the HPP model does not satisfy all the conditions of isotropy. That is the

Figure 2. Collision rules for the HPP model

Figure 3. One iteration of the HPP evolution
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reason that the HPP model has limited usefulness in the physical modeling.
In [4], as an example, a capability of simulating two dimensional electro-
magnetic fields has been demonstrated. The HPP simulation of sound wave
propagation was taken in [9].

2.2. Simulating sound wave propagation in a pipe with a moving
obstacle. In Figure 4, a pipe (the simulation space) is represented as a 2D
cellular array W with the size of M × N cells. We will distinguish three
kinds of cells:

• Source cells are HPP cells. They generate moving particles with some
probability at each iteration for a time. The density of an initial flow
is given by the cell generation probability. It is evident that the mass
conservation is violated. In our case, the sound wave propagation
inside the cellular array from left to right. Because of this, source cells
are accommodated in the 0-th row of the array W .

• Ordinary (work) cells are HPP cells.

• Wall cells. Wall cell collision rules are realized by the bounce-back
scheme: a moving particle colliding with a wall cell simply reverses
its momentum. The bounce-back rule is shown in Figure 5 (rules ob-
tained from the presented rule by symmetrical transformations, are not
shown). In the wall cell, moment conservation laws are not satisfied.
Sound speed is close to zero near the wall.

In experiment, sound wave process is represented by a cellular array with
the size of 1500× 400 HPP cells. In the initial state, the array cells except
the source and wall cells, contain two moving particles. The source cells

Figure 4. Cellular array for simulating 2D sound wave process

Figure 5. Bounce-back rule
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t = 200

t = 350

t = 500

Figure 6. Velocity vector fields of the HPP evolution simulating wave process in
a pipe with a moving obstacle



30 V. Markova

generate moving particles with some probability 0.7 at each iteration in the
interval from 0 up to 100.

Moving obstacle is generated as follows. From some one cell of the wall,
the moving obstacle begins to grow perpendicular to the wall: the next work
cell on the way of obstacle lowering is declared to be a wall cell after several
iterations. It is evident that the mass conservation law is not satisfied in
this cell. In the worse case, two moving particles can be lost in this cell.

Figure 6 shows the velocity vector fields for different steps of the HPP
evolution that simulates the sound wave process in a pipe with the moving
obstacle. Here the averaging radix equals 20 cells, the gray color intensity
determines the concentration of particles in cells: the white color of a cell
denotes the absence of particles, and the black color of a cell corresponds
to the presence of four moving particles. From the figure it will be noticed
that the top part of a wave after colliding with obstacle bounces back. The
lower part of the wave gets around an obstacle and propagates into the pipe.
After a time, the pipe is filled with the sound wave.

3. The HPPRP simulation of sound wave propagation in
a pipe with wall absorption

3.1. The HPPRP model. As opposed to the HPP cell, each cell of the
HPPRP model (HPPRP cell) can contain the moving particles and the
rest particles. The HPPRP cell state is defined by the two vectors: ve-
locity vector v and mass vector m (Figure 7). The rest particles have the
zero velocity and a different mass. Here we will consider the rest particles

v = (0, 1, 1, 0),
m = (0, 1, 0)

Figure 7

with the masses equal to 2, 4, and 8. It is evident that
two mass 2 rest particles are equal to one mass 4 rest
particle, four mass 2 rest particles are equal to one
mass 8 rest particle. The length of the mass vector
m = (m1,m2, . . . ,mr) does not depend of the space
structure and is equal to the number of the rest parti-
cles. The k-th digit value of the vector, k = 1, 2, . . . , r,
determines the presence (mk = 1) or the absence
(mk = 0) of a rest particle with mass 2k in a cell.

The rest particles are created (annihilated) with a certain probability pk,
k = 1, 2, . . . , r, in so doing, the limitations pk+1 ≥ pk and

∑r
k=1 pk ≤ 1 are

satisfied. So, the state of a HPPRP cell is represented by an (r + 4) long
Boolean vector, where r is the number of the rest particles.

In the HPPRP model, the propagation step is similar to the HPP propa-
gation step, the collision rules differ from the HPP collision rules. In addition
to head on collision of moving particles, the energy exchange between the
moving and the rest particles occurs. In response to this exchange, either a
rest particle is created and moving particles are annihilated or a rest parti-
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cle is annihilated and moving particles are created. In the general case, the
collision rules are deterministic or non-deterministic. They can be divided
into 3 groups:

1. Head on collision. The moving particles collide with each other ac-
cording to head on collision rule (see Figure 2) independent of the
presence or the absence of the rest particles.

2. Rest particle creation. If two moving particles collide with each other
and there is initially no mass 2 rest particle, then moving particles will
be annihilated and a mass 2 rest particle will be created.

3. Rest particle annihilation. If a mass 2 rest particle already exists in the
cell, and there are no two moving particles, then two moving particles
will be created after the collision step, and the rest particle will be
annihilated.

The result of the application of the rest particle creation rule to the
HPPRP cell with the state defined by the vectors v = (1, 1, 1, 1) and m =
(0, 0, 0), is shown in Figure 8. Three variants of this rule application are
possible. In the first and the second variants, one pair of moving particles
collides with each other. The collided particles are annihilated, and a mass
2 rest particle is created after the collision step. In the third variant, four
moving particles collide with each other. As a result, a mass 4 rest particle
is created and four moving particles are annihilated.

The result of the application of the rest particle annihilation rule to
the HPPRP cell with the state defined by the vectors v = (0, 0, 0, 0) and
m = (0, 0, 1), is shown in Figure 9.

As opposed to the HPP cell, in the HPPRP cell, the size of automaton
transition table is 2r+4. Moreover, several rules with a similar or a dissimilar

Figure 8. Rest particle creation rules Figure 9. Rest particle
annihilation rules
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Figure 10. The collision step in the HPPRP cell

probability can be inserted into each row. Figure 10 shows the collision step
in the HPPRP cell. For simplicity, collision rules are equiprobable.

The collision rules show the possibilities of the HPPRP model to simulate
media with different sound velocity. The relationship between the sound
velocity and the rest particles numbers has been experimentally investigated
in [9]:

LGA model Relative speed

HPP 1.0
HPPRP (m1 = 2) 0.8
HPPRP (m1 = 2, m2 = 4) 0.7
HPPRP (m1 = 2, m2 = 4, m3 = 8) 0.5

3.2. The HPPRP simulation of sound wave propagation in a pipe
with wall absorption. Absorption of sound by a wall means the decrease
of the sound wave propagation velocity along the cellular array wall (see
Figure 4) as compared to the sound wave propagation speed in the middle
part of the array. The effect of wall absorption is realized due to forma-
tion of the so-called boundary domain allocated along the whole length of
the wall. A boundary domain contains several boundary layers (Figure 11).

Figure 11. The boundary domain structure
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For simplicity, two boundary layers are used here. A boundary layer com-
bines several rows including the HPPRP cells. The number of rows can be
arbitrary. In both layers, the HPPRP cells incorporate n and k rest par-
ticles with masses equal to 21, 22, . . . , 2n and 21, 22, . . . , 2k respectively. In
the middle part of the array, the HPPRP cells include l rest particles with
masses equal to 21, 22, . . . , 2l.

Based on the multi-speed HPPRP model property, the following rela-
tionship

n > k > l ≥ 0,

is the condition of the wall absorption effect modeling. It is evident that
increasing the rest particles number in the first layer or both in the first and
in the second layers results in a rise of the absorption factor.

In the experiment, the sound wave process is represented by a cellular
array with 240 × 600 HPPRP cells. Here, both boundary layers consist of
20 rows. In the first layer, the HPPRP cells have three rest particles with
the masses equal to 2, 4, and 8. In the second layer, the HPPRP cells have
two rest particles with the masses equal to 2, and 4. In the middle part
of the array, the HPPRP cells have one rest particle with the mass equal
to 2. In the initial state, the array cells except the source and wall cells
contain two moving particles. The source cells generate moving particles at
each iteration in the interval from 0 up to 100. Figure 12 shows the velocity
vector fields (the averaging radix equals to 20 cells) of the HPPRP evolution,
simulated wave propagation in the pipe with the mentioned rest particles
distribution. Here in the middle part of the array the sound wave runs with
a greater velocity than along the array wall.

Figure 13 shows the HPPRP evolution, simulating the sound wave prop-
agation in the pipe with such rest particles distribution for which the con-
dition n > k > l is not met. There are: one rest particle with the masses
equal 2 in the first-layer cells, two rest particles with the mass equal 2 and
4 in the second-layer cells and three rest particles with the mass equal 2, 4,
and 8 in the middle part of the array. In this case, in the middle part of the
array the sound wave velocity less than the sound wave velocity along the
array wall.

4. Conclusion

In this paper, the possibility of a simple LGA models to simulate sound
wave process in a pipe taking into consideration the wall features (moving
obstacle and wall absorption) are investigated. Two LGA models on a 2D
lattice with four neighbors (the HPP, and the HPPRP) are used here. The
moving obstacle is generated as follows. From some cell of the wall, the
moving obstacle begins to grow perpendicular to the wall: the work cells on
the way of movement of an obstacle are replaced by the wall cells after several
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t = 100

t = 200

t = 450

Figure 12. Velocity vector fields of the HPPRP evolution simulating wave
process in a pipe with wall absorbtion
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t = 100

t = 200

t = 450

Figure 13. Velocity vector fields of the HPPRP evolution simulating wave
process in a pipe without wall absorbtion
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iterations. The idea of simulating a wall absorbtion is based on using the
HPPRP cells with different rest particle numbers. The condition of the wall
absorption effect modeling is given. The experiments have been shown that
an appropriate combination of boundary layers and rest particles numbers
makes possible to simulate sound wave process in a pipe having regard to
the wall features.
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