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 2003 NCC PublisherSimulation of the di�usion process bythe residue number systemV. Markova, D. JurbinIn this paper, computational potentialities of the residue number system forsolution to the di�usion equation is investigated. The �nite-di�erence di�usionscheme is modi�ed in terms of the residue number system. Computer simulationhas been performed. The computational characteristics (stability, accuracy) havebeen assessed and compared with similar ones obtained by the explicit method ofsolution to the partial di�erential equation.IntroductionIn recent years, there has been observed a signi�cant shift of numerical com-putation from general-purpose computers toward parallel computers. Toachieve the maximum performance, it is necessary to choose such numericalmethods for solution to the partial di�erential equation (PDE) that wouldcorrespond closely to the parallel computer architecture. That is why theexplicit methods for the PDE solution are preferred. In such methods thePDE is approximated by a �nite di�erence representation, where time andspace are discrete, and a certain physical value is continuous. However, theexplicit methods rank below the implicit ones in stability and accuracy. Toprovide an acceptable stability, the time step should be taken su�cientlysmall. On the one hand, this brings about an essential increase in compu-tational complexity, and on the other hand { to cumulative round-o� errorsthat make the results fairly unreliable.As an alternative to the PDE, Cellular Automata (CA) model has beenproposed by To�oli. In the CA model, PDE in 
oating-point numbers isreplaced by Boolean computation in a discrete space. The CA model hassome advantages over the �nite di�erence PDE: they are absolutely stableand accurate.In-between the PDE and the CA models, there are a number of inter-mediate models, in which both discrete and continuous functions are used.There are gas-lattice with weight connections [1], Lattice{Boltzmann [2],cellular-neural associative networks [3], cellular-neural automaton [4].In this paper we investigate the potentialities of the residue numbersystem for the di�usion equation. The Residue Number System (RNS) [5{8]belongs to an unweighted NS. The basis for any RNS is a set of relatively



26 V. Markova, D. Jurbinprime integers (moduli). The RNS uniquely presents any integer as a setof remainders with respect to each modulo (the RNS representation). Asdistinct from a weighted NS, all remainders (digits) are independent. Thelength of each remainder is smaller than that of an initial integer. These twoproperties of the RNS representation provide parallel, carry-free, high-speedarithmetic (addition, subtraction and multiplication). In addition, the RNSarithmetic is exact (without over
ow) and therefore free of round-o� error.However, the RNS is found to be inferior to the binary number system inconventional computation since the sign detection, and division are slowly.In this paper, a �nite di�erence scheme of the di�usion equation, wheretime, space, and a certain physical value are discrete, is represented in theRNS. To obtain an exact realization of division in a �nite di�erence schemeby the RNS, two strategies are used: transfer of a remainder to the nextiteration and representation of the di�usion coe�cient as a fraction. (Thisscheme is further referred to as the RNS scheme.) Moreover, a simple divi-sion algorithm is proposed. Computer simulation has shown that the timecomplexity of our algorithm is less by half as opposed to the well-knownalgorithm from [5].Numerical simulation has been performed. The computational charac-teristics (stability, accuracy) have been investigated. When investigating, aPDE solution in the 
oating-point numbers is used for comparison.Experimental results show that the RNS scheme is stable over a widerange of values for an inverse di�usion number as opposed to the conven-tional scheme used in the PDE. The RNS scheme provides an acceptableaccuracy of solution.The paper is organized as follows. Section 1 describes the main opera-tions in the RNS. The RNS scheme for simulation of the di�usion equationand the results of investigations are given in Section 2.1. The Residue Number System Arithmetic1.1. The RNS representationLet P = fp0; p1; : : : ; pk�1g be a set of pairwise relatively prime integers,such that GCD(pi; pj) = 1 for i 6= j and GCD(pi; pj) denote the greatestcommon divisor of pi and pj. The set P is called the moduli set. The interval[0;M), M = Qk�1i=0 pi, determines the dynamic range of the system. Thenany integer X 2 [0;M) has a unique RNS representation [5{8] given byX ! (x0;x1; : : : ;xk�1; ) =X;where xi = X mod pi is the i-th remainder of X modulo pi. The remainderxi is calculated in the following way



Simulation of the di�usion process by the residue number system 27X mod pi = xi = X � bX=picpi;where bY c denotes the largest integer smaller or equal to Y .As distinct from the weighted NS, the RNS representation has two prop-erties:� all remainders are independent,� the length of each remainder is smaller than that of an initial integer.These two properties of the RNS representation provide parallel, carry-free,high-speed arithmetic.The weighted-to-RNS conversion is reduced to division of an integer byeach modulus from the set P. It is obvious, that the division of large integerscan be a slow and impracticable procedure for high-speed calculations. Herewe used the algorithm from [8], which is based on the well-known \divideand conquer" technique.Let P = fp0; p1; : : : ; pk�1g be a moduli set and k = 2t. If k < 2t, then themoduli equal to 1 are added to the set P. First, the algorithm calculatesk=2 moduli as the products of two initial moduli p0p1, p2p3, : : : , pkpk�1.Then, the algorithm calculates k=4 moduli as products of the two moduliobtained p0p1p2p3, p4p5p6p7, : : : and so on. This procedure lasts until twomoduli P 1 = p0p1 : : : pk=2�1 and P 2 = pk=2pk=2+1 : : : pk�1 are obtained.Further, the remainders are calculated using \divide and conquer" tech-nique. First, the algorithm �nds the remainders y1 and y2 of the integerX modulo P 1 and modulo P 2, respectively. As a result, the initial task ofthe size of k is reduced to two tasks of the size of k=2. This technique isrecursively applied until all the remainders of the integer X are calculated.Example 1. Let P = f3; 5; 7; 11g, X = 289. Then P 1 = p0p1 = 15, P 2 =p2p3 = 77. According to the above algorithm, �rstly, we get two remainders:y1 = X mod P 1 = 4 and y2 = X mod P 2 = 58. Secondly, we calculate fourremainders: x0 = y1 mod p0 = 1, x1 = y1 mod p1 = 4, x2 = y2 mod p2 =2, and x3 = y2 mod p3 = 3. In result, X = (x0;x1;x2;x3) = (1; 4; 2; 3).The RNS-to-weighted conversion is carried out by the Chinese algo-rithm with data preprocessing [8]. The algorithm is based on the ChineseRemainder Theorem [8], which asserts the following.Let P = fp0; p1; : : : ; pk�1g be a set of pairwise relatively prime moduli.Let X = (x0;x1; : : : ;xk�1) be a remainder set. ThenX = k�1Xi=0 Midixi modM; (1)



28 V. Markova, D. JurbinwhereMi =M=pi is a product of all the moduli, except pi, di =M�1i mod piis the multiplicative inverse of Mi modulo pi.Similarly to the weighted-to-RNS conversion algorithm, for calculating(1) the Chinese algorithm is based on the same technique. In addition, aset of the multiplicative inverse of Mi modulo pi is known in advance.At �rst, the Chinese algorithm calculates the products of the formqij = i+2j�1Ym=0 pm; (2)where i = 0; 1; : : : ; k � 1, i is multiple of 2j , j = 1; 2; : : : ; t.Further, the integers sij = i+2j�1Ym=0 qijdmxmpmare determined. If j = 0, 0 � i � k, then si0 = dixi. If j = 1; 2; : : : ; t, thensij is recursively formedsij = si;j�1qi+2j ;j�1 + si+2j�1;j�1qi;j�1 (3)The integer s0t = X.Example 2. Let P = f3; 5; 7; 11g, M = 1155, � = (2; 4; 4; 3), d1 = 1,d2 = 1, d3 = 2, d4 = 2.According to (2), we get q00 = p0 = 3, q10 = p1 = 5, q20 = p2 = 7,q30 = p3 = 11, q01 = p0p1 = 15, q21 = p2p3 = 77, q02 = p0p1p2p3 = 1155.For i = 0; 2, j = 1 we have s00 = d0x0 = 2, s10 = d1x1 = 4, s20 =d2x2 = 8, s30 = d3x3 = 8.Further, sij is obtained according to (3).For i = 0; 2, j = 1 we get s01 = s00q10 + s10q00 = 22, s21 = s20q30 +s30q20 = 130.For i = 0, j = 2 we have X = s02 mod 1155 = (s01q21 + s21q01) mod1155 = (2277 + 13015) mod 1155 = 179.It is known [5{8], that one of the most important considerations, whendesigning the RNS systems, is the choice of the moduli set (the form as wellas the number of the moduli chosen). The moduli set signi�cantly a�ectsthe dynamic range length, the speed of the RNS processing, the complexityof the weighted-to-RNS and, especially, the RNS-to-weighted conversion.1.2. The RNS arithmeticLet P = fp0; p1; : : : ; pk�1g be a set of pairwise relatively prime moduli lo-cated in increasing order (this condition is necessary only for the division



Simulation of the di�usion process by the residue number system 29given below). Let X = (x0;x1; : : : ;xk�1) and Y = (y0;y1; : : : ;yk�1) betwo RNS representations of the integers X and Y , X;Y 2 [0;M). Then theRNS representation of the integer Z = X � Y , Z 2 [0;M), is given byX � Y = Z = (z0;z1; : : : ;zk�1); (4)where � denotes addition, subtraction or multiplication, zi = (xi�yi) modpi for all i = 0; 1; : : : ; k � 1.Example 3. Let P = f3; 5; 7; 11g, X = (2; 3; 5; 9), Y = (1; 1; 2; 0). Thenaccording to (4), we have X+Y = (3; 4; 0; 9), X�Y = (1; 1; 4; 9), X �Y =(2; 3; 3; 0). These results can be easily checked up.Equation (4) demonstrates the parallel, carry-free nature of the ResidueNumber System. In addition, the RNS arithmetic is exact and therefore freeof round-o� error. However, such operations as sign detection, division aredi�cult in the RNS. Here we consider a special case of division: division bymodule.Division. Let P = (p0; p1; : : : ; pk�1), X = (x0;x1; : : : ;xk�1) be the RNSdividend, pi = (�0;�1; : : : ;�i�1; 0; pi; : : : ; pi| {z }k�1�i ) be the RNS devisor. If thenumber X is divided by the module pi, then xi = 0, otherwise, the numberX 0 = X � xi is used as dividend. Then the divisionXp i = �x0�0 ; x1�1 ; : : : ; xi�1�i�1 ; 00 ; xi+1pi ; : : : ; xkpi � = (z0;z1; : : : ;zk�1) = Zis carried out in two steps.At the �rst step, the algorithm generates the �rst approximation ofthe quotient Ẑ = (z0; z1; : : : ;zi�1; 0;zi+1; : : : ; zk�1);where the digits zj, j 6= i, are calculated by division of the digit xj by anappropriate digit of the divider (�j or pi). To avoid uncertainty, the digit ziis equated to zero. If the digit xj is not divisible by �j or pi, then divisionis replaced by multiplicationxj�j mod pj ! �xj � 1�j mod pj� mod pj;where 1�j is the multiplicative inverse of �j modulo pj . For the given moduli,the multiplicative inverse values are formed in advance. For example, x5 mod11 = x � 15 mod 11 = (x � 9) mod 11. (The multiplicative inverse values areshown in Table 1.)



30 V. Markova, D. JurbinTable 1p Multiplicative inverse values for �1 2 3 4 5 6 7 8 9 102 13 1 25 1 3 2 47 1 4 5 2 3 611 1 6 4 3 9 2 8 7 5 10At the second step, the algorithm determines the digit value zi. Herewe present a very simple method for calculating the digit value zi. Computersimulation has shown that the time complexity of our method is half as largeas the method from [5].
Figure 1. Graphical representation of the interval [0;M)So, the �rst approximation of the quotient Ẑ can belong to one of theintervals lmMi , Mi =M=pi, m = 0; : : : ; pi � 1, in the range [0;M) (Figure 1).These intervals are derived from splitting the range to pi parts. Each intervallmMi contains Mi numbers. The �rst number of the m-th interval takes theform Gm = (0; 0; : : : ; 0;mi ; 0; : : : ; 0):Here gmj = 0 for all j 6= i because the number Gm is a multiple of eachmodule pj . As far as Z � M=pi, the quotient Z always belongs to theinterval [0;Mi).It is obvious that both numbers Z and Ẑ are at the same distance fromthe beginnings of the appropriate intervals, i.e.,Z � 0 = Ẑ �Gm: (5)For the i-th remainder equation (5) can be written down aszi � 0 = (0�m) mod pi:Hence, zi = (0�m) mod pi.So, to assess the number of the interval, in which the �rst approximationof the quotient Ẑ is located, it is necessary to determine Gm according toẐ. Such a determination is reduced to a successive increase of the num-ber of zero remainders in the RNS representation of the integer (initial orintermediate). This process is further called nullivization.
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Figure 2. Graphical representation of nullivizationThe nullivization is produced in (k � 1) steps. It begins from the leastnonzero remainder except the i-th remainder (the modulo pi is the devisor).The process can be represented as follows:Ẑ ! (0;g11; : : : ;g1k�1) = G0 ! (0; 0;g22; : : : ;g2k�1) = G1 ! � � � ! Gm:Here the moduli p0, p1 are not dividers. The number G0 is the �rst one ofthe least interval, in which the number Ẑ is located (Figure 2). The leastinterval lp0 consists of p0 numbers: p1 intervals lp0 form the interval lp0p1 ,in which the number G1 is the �rst one, etc. Thus, nullivization can beinterpreted as a sequential move from the number Ẑ in the beginnings ofintervals, starting with the least one, until the number Gm is attained.Now we will explain the technique of nullivization. It can be representedas iterative procedure. Let Gj�1 = (0; : : : ; 0;gj�1j ; : : : ; gj�1k�1), j < i, be theresult of the (j � 1)th step of nullivization. ThenGj = 8<: Gj�1; if gj�1j = 0 for all j 6= i;Gj�1 �Mpjgj�1j otherwise;where the numberMpjgj�1j = (0; : : : ; 0;gj�1j ; : : : ;gjk�1), is called a nulliviza-tion constant. For modulo pj, the number of the nullivization constantsequal to pj � 1. A nullivization constant should be multiple of the intervallength in the beginning of which we have moved at the (j � 1)th step. Oth-erwise the residues, being set into zero at the previous steps, cease to be inzero. As a rule, the nullivization constants are calculated in advance.Example 4. Let P = f3; 5; 7; 11g, X = 305, p2 be the devisor. The quotientZ = (z0;z1;z2;z3) = (2;0;4;8)(2;0;5;5) is calculated as follows.



32 V. Markova, D. JurbinFirst, we obtain the remainders of the quotient Ẑ, except ẑ1:ẑ0 = 22 mod 3 = �2 � 12 mod 3� mod 3 = (2 � 2) mod 3 = 1;ẑ2 = 45 mod 7 = �4 � 15 mod 7� mod 7 = (4 � 3) mod 7 = 5;ẑ3 = 85 mod 11 = �8 � 15 mod 11� mod 11 = (8 � 9) mod 11 = 6:So, Ẑ = (1; 0; 5; 6) (Ẑ10 = 985). For the set P = f3; 5; 7; 11g the nullivizationconstants are tabulated in Table 2. The nullivization process is shown inFigure 3. In order that g00 = 0, we choose the constantM31 since ẑ0 = 1. As aresult we have the integer G0=Ẑ�M31 = (0; 4; 4; 5). Similarly, the constant

Figure 3. Example of division



Simulation of the di�usion process by the residue number system 33Table 2p1 = 3 p3 = 7 p4 = 11M31 = (1; 1; 1; 1) M 71 = (0; 0; 1; 4) M111 = (0; 0; 0; 1)M32 = (2; 2; 2; 2) M 72 = (0; 4; 2; 9) M112 = (0; 4; 2; 0)M 73 = (0; 3; 3; 3) M113 = (0; 3; 0; 3)M 74 = (0; 3; 4; 7) M114 = (0; 2; 0; 4)M 75 = (0; 2; 5; 1) M115 = (0; 1; 0; 5)M 76 = (0; 1; 6; 6) M116 = (0; 0; 0; 6)M117 = (0; 4; 0; 7)M118 = (0; 3; 0; 8)M119 = (0; 2; 0; 9)M1110 = (0; 1; 0; 10)M74 sets up the second remainder into \zero". Further, the number Gm iscalculated by subtracting M119 from the obtained number G2 = (0; 1; 0; 9).So, the quotient Z belongs to the 4-th interval, that is, 4 � 231 �(1; 0; 5; 6) < 5 � 231. Hence, z2 = (0 � 4) mod 5 = 1 and Z = (1; 1; 5; 6)(Z = 65).2. Simulation of di�usion by Residue NumberSystem2.1. Finite di�erence di�usion schemeIt is customary the di�usion equation is represented as follows:@u@t0 = �@2u@x2 ; (6)where u is temperature, � is the di�usion coe�cient, x is a coordinate of 1Dcontinuous space. When solving this equation by a �nite di�erence scheme,space and time are discretized, so that x = ih, t0 = t� , where i, t beingintegers, h and � { the space and the time steps. After such a discretization,equation (6) takes the following formut+1i � uti� = �uti�1 + uti+1 � 2utih2 ; (7)where t = 0; 1; : : : , uti, i = 0; 1; : : : ; N , is a value of the integer function u atnodes in the lattice. Initial conditions are given as integers.



34 V. Markova, D. JurbinIn the iterative form equation (7) is written down asut+1i = uti + 1D (uti�1 + uti+1 � 2uti) = uti + 1DL(uti); (8)where L(uti) = uti�1+uti+1� 2uti, 1D = ��h2 . The value 1D is called the inversedi�usion coe�cient.2.2. Implementation of �nite di�erence scheme by the RNSScheme (8) is very simple, but some di�culties arise when carrying out thedivision by the RNS. To obtain an exact realization of division in a �nitedi�erence scheme, we use the following two strategies.Transfer of a remainder to the next iteration. Let us consider thedivision in equation (8). Let t = 0, and L(u0i ) mod D 6= 0. Then we repre-sent L(u0i ) as ~L(u0i )+R1i , where ~L(u0i ) = bL(u0i )=DcD, R1i is the remainder,and transfer the resulting remainder to the 1st iteration. Such a strategyeliminates the loss of accuracy.Then the �nite di�erence scheme (8) takes the following formut+1i = uti + �L(uti) +Rt+1iD �; (9)where Rt+1i is recursively calculatedRt+1i = (L(uti) +Rti) mod D; R0i = 0: (10)Representation of the di�usion coe�cient as fraction. Since thenumber 1=D is a fraction, by de�nition, then we represent the number D asratio between the integers D = D2=D1. Such a replacement transforms therecurrences (9), (10) intout+1i = uti + �D1L(uti) +RtiD2 �; (11)Rt+1i = [D1L(uti) +Rti] mod D2; R0i = 0: (12)Bellow, scheme (11), (12) for di�usion solution is referred to as the RNSscheme as opposed to scheme (8) in the 
oating-point numbers (FP scheme).In this paper (Section 1.1), we have de�ned the RNS for non-negativenumbers x 2 [0;M). While calculating the numerator in (11) it may beP ti = D1L(uti) +Rti < 0. If it is so, then (11) is to be modi�ed as followsut+1i = uti � � P̂ tiD2 �;where P̂ ti = M � P ti . Here the sign of the value P ti = D1L(uti) + Rti isdetermined by the algorithm [9].



Simulation of the di�usion process by the residue number system 352.3. Computer simulation resultsHere we investigate the following computational characteristics of the dif-fusion RNS scheme: stability, accuracy. Numerical modeling has been per-formed on Pentuim III. The experiment has been done for the RNS withP = (5; 7; 11; 13). Moreover, two functions (smooth and discontinuous),were used as initial distribution. Both functions are determined on [0; 90)and have the following formf1(x) = (1000 cos(x) + 1000; 0 � x < 40;0; 40 � x < 90; f2(x) = 8>>>>><>>>>>:2000; 0 � x < 10;500; 10 � x < 30;1500; 30 � x < 40;0; 40 � x < 90:The RNS scheme stability is understood as the ability of a scheme toquench oscillations in a solution and to provide their non-occurrence. It iswell-known [10], that the FP scheme is stable if D � 2.Here the stability investigation is reduced to an experimental estimationof the value of the inverse di�usion coe�cient D such that the RNS schemeis stable for the two initial distributions. For this purpose, the dependenciesthe dispersion on time were obtained for di�erent values of D.Let ujt=0 = f1. Experiments show that the RNS scheme is stable ifD > 1:64. Figure 4 shows the time dependence of dispersion both in theRNS and the FP schemes for D = 1:64. Here both schemes are instable.As distinct from the RNS scheme, an instability of the FP scheme growsfaster. As is seen from Figure 4, the dispersion curve of the FP solution liesbelow the dispersion curve of the RNS solution. Two solutions of di�usionequation for D = 1:65 are presented in Figure 5. In this case the RNSscheme is stable while the FP scheme is unstable. Moreover, the oscillationamplitude is in exceed of the function values at the 28-th step.Let ujt=0 = f2. The experiments show that the RNS scheme is stable ifD � 1:98. So, the condition of the RNS scheme stability with the discon-
Figure 4. The time dependence of of the dispersion in the RNS (thick line)and the FP (thin line) solutions with ujt=0 = f1 and D = 1:64
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Figure 5. The RNS (thin line) and the FP (dashed line) solutions of the di�u-sion equation with t = 28, D = 1:65, ujt=0 = f1 in comparison with the initialdistribution f1(x) (thick line)
Figure 6. The time dependence of the oscillation intensity in the RNS (thickline) and the FP (thin line) solutions with with ujt=0 = f2 and D = 1:97

Figure 7. The RNS (thin line) and the FP (dashed line) solutions of the di�u-sion equation with t = 135, D = 1:98, ujt=0 = f2 in comparison with the initialdistribution f2(x) (thick line)tinuous initial distribution di�ers little from the condition of the FP schemestability. Figure 6 shows the time dependence of the dispersion both in theRNS and the FP schemes for two values of D. For D = 1:97 both schemesare unstable. Similarly, experimental results with the smooth initial dis-tribution, the oscillations in the PF solution grow signi�cantly faster. ForD = 1:98 (Figure 7) the RNS scheme is stable, the FP scheme is unstable.



Simulation of the di�usion process by the residue number system 37The simulation has shown that the RNS scheme is stable over a widerange of values for the inverse di�usion coe�cient D as opposed to the FPscheme. Moreover, the value of D depends on the initial distribution.Accuracy of the RNS solution. Obviously, for a given set of moduliRNS, an acceptable accuracy of this solution is provided by the absence ofround-o� errors and the RNS scheme.Here when studying the accuracy, the FP solution is considered to bestandard for comparison. Experiments have shown that the RNS solutionand the FP solution coincide very closely for smooth and discontinuousinitial distributions. To estimate the degree of their agreement, a function�u = uRNS�uFP (di�erence of two solutions) is introduced. From Figures 8and 9 follows that a relative error is about 0.05{0.1%.

Figure 8. Di�erence of solutions with t = 1000, D = 2:00, ujt=0 = f1

Figure 9. Di�erence of solutions with t = 1000 steps, D = 3:00, ujt=0 = f2



38 V. Markova, D. Jurbin3. ConclusionIn this paper, the RNS potentialities for di�erential equations solution havebeen studied. Simulation results enable us to make the following conclusions:� The RNS scheme is stable over a wide range of values for an inversedi�usion number as opposed to the well-established scheme used inthe PDE.� The RNS scheme provides an acceptable accuracy of the solution.As expected, the RNS solution with implementing in general purposecomputers has lower performance than the PDE solution. Even realizationof the RNS solution using OpenMP enables to increase the performance lessthan 15%. Improvement of the time complexity can be achieved due to thedesigning specialized computing devices, which would support parallelismboth on the remainder and the bit levels.References[1] Rothman D.H., Zaleski S. Lattice-Gas Cellular Automata. Simple Models ofComplex Hydrodynamics. { Cambridge: University Press, 1997.[2] Chen S., Wang Z., Shan X., Doolen G.D. Lattice-Boltzmann computational
uid dynamics in three dimensions // J. Statistical Physics. { 1992. { Vol. 68,ü 3/4. { P. 379{407.[3] Bandman O. Discrete-continuous models for spatial dynamic simulations //NCC Bulletin, Series Computer Science. { Novosibirsk: NCC Publisher,2002. { Issue 17. { P. 17{29.[4] Bandman O. Cellular-neural automaton: a Hybrid model for reaction-di�u-sion simulation // Future Generation Computer Systems. { 2002. { ü 18. {P. 737{745.[5] Akyshskii I.J., Udizkii D.I. Computer Arithmetic in Residue Number System. {Moscow: Sov. Radio, 1968.[6] Torgashov V.A. Residue Number System and Computer. { Moscow: Sov. Ra-dio, 1973.[7] Aho A., Hopcroft J., Ullman J. The Design and Analysis of Computer Algo-rithms. { Moscow: Mir, 1979.[8] Taylor F.J. Residue arithmetic: a tutorial with examples // IEEE Comput.Mag. { 1984. { Vol. 17, ü. 5. { P. 50{62.[9] Vu T.V. E�cient implementation of the Chinese remainder theorem for signdetection and residue decoding // IEEE Trans. Comput. { 1985. { Vol. 34,ü 7. { P. 646{651.[10] Roache Patrick J. Computational Fluid Dynamics. { Moscow: Mir, 1980.


