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Simulation of the diffusion process by
the residue number system

V. Markova, D. Jurbin

In this paper, computational potentialities of the residue number system for
solution to the diffusion equation is investigated. The finite-difference diffusion
scheme is modified in terms of the residue number system. Computer simulation
has been performed. The computational characteristics (stability, accuracy) have
been assessed and compared with similar ones obtained by the explicit method of
solution to the partial differential equation.

Introduction

In recent years, there has been observed a significant shift of numerical com-
putation from general-purpose computers toward parallel computers. To
achieve the maximum performance, it is necessary to choose such numerical
methods for solution to the partial differential equation (PDE) that would
correspond closely to the parallel computer architecture. That is why the
explicit methods for the PDE solution are preferred. In such methods the
PDE is approximated by a finite difference representation, where time and
space are discrete, and a certain physical value is continuous. However, the
explicit methods rank below the implicit ones in stability and accuracy. To
provide an acceptable stability, the time step should be taken sufficiently
small. On the one hand, this brings about an essential increase in compu-
tational complexity, and on the other hand — to cumulative round-off errors
that make the results fairly unreliable.

As an alternative to the PDE, Cellular Automata (CA) model has been
proposed by Toffoli. In the CA model, PDE in floating-point numbers is
replaced by Boolean computation in a discrete space. The CA model has
some advantages over the finite difference PDE: they are absolutely stable
and accurate.

In-between the PDE and the CA models, there are a number of inter-
mediate models, in which both discrete and continuous functions are used.
There are gas-lattice with weight connections [1], Lattice-Boltzmann [2],
cellular-neural associative networks [3], cellular-neural automaton [4].

In this paper we investigate the potentialities of the residue number
system for the diffusion equation. The Residue Number System (RNS) [5-8]
belongs to an unweighted NS. The basis for any RNS is a set of relatively
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prime integers (moduli). The RNS uniquely presents any integer as a set
of remainders with respect to each modulo (the RNS representation). As
distinct from a weighted NS, all remainders (digits) are independent. The
length of each remainder is smaller than that of an initial integer. These two
properties of the RNS representation provide parallel, carry-free, high-speed
arithmetic (addition, subtraction and multiplication). In addition, the RNS
arithmetic is exact (without overflow) and therefore free of round-off error.
However, the RNS is found to be inferior to the binary number system in
conventional computation since the sign detection, and division are slowly.

In this paper, a finite difference scheme of the diffusion equation, where
time, space, and a certain physical value are discrete, is represented in the
RNS. To obtain an exact realization of division in a finite difference scheme
by the RNS, two strategies are used: transfer of a remainder to the next
iteration and representation of the diffusion coefficient as a fraction. (This
scheme is further referred to as the RNS scheme.) Moreover, a simple divi-
sion algorithm is proposed. Computer simulation has shown that the time
complexity of our algorithm is less by half as opposed to the well-known
algorithm from [5].

Numerical simulation has been performed. The computational charac-
teristics (stability, accuracy) have been investigated. When investigating, a
PDE solution in the floating-point numbers is used for comparison.

Experimental results show that the RNS scheme is stable over a wide
range of values for an inverse diffusion number as opposed to the conven-
tional scheme used in the PDE. The RNS scheme provides an acceptable
accuracy of solution.

The paper is organized as follows. Section 1 describes the main opera-
tions in the RNS. The RNS scheme for simulation of the diffusion equation
and the results of investigations are given in Section 2.

1. The Residue Number System Arithmetic

1.1. The RNS representation

Let P = {po,p1,---,Pk_1} be a set of pairwise relatively prime integers,
such that GCD(p;,p;) = 1 for ¢ # j and GCD(p;,p;) denote the greatest
common divisor of p; and p;. The set P is called the moduli set. The interval

0,M), M = ;:01 pi, determines the dynamic range of the system. Then
any integer X € [0, M) has a unique RNS representation [5-8] given by

X — (wg,ml,...,wk,l,) :X,

where ®; = X mod p; is the i-th remainder of X modulo p;. The remainder
x; is calculated in the following way
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X mod p; = x; = X — | X/p; |pi,

where |Y | denotes the largest integer smaller or equal to Y.
As distinct from the weighted NS, the RNS representation has two prop-
erties:

e all remainders are independent,

e the length of each remainder is smaller than that of an initial integer.

These two properties of the RNS representation provide parallel, carry-free,
high-speed arithmetic.

The weighted-to-RNS conversion is reduced to division of an integer by
each modulus from the set P. It is obvious, that the division of large integers
can be a slow and impracticable procedure for high-speed calculations. Here
we used the algorithm from [8], which is based on the well-known “divide
and conquer” technique.

Let P = {po,p1,---,Pk_1} be amoduli set and k = 2¢. If k < 2¢, then the
moduli equal to 1 are added to the set P. First, the algorithm calculates
k/2 moduli as the products of two initial moduli pop1, p2ps, ..., PEPk—1-
Then, the algorithm calculates k/4 moduli as products of the two moduli
obtained pop1p2p3, P4PsPeP7, - .. and so on. This procedure lasts until two
moduli P! = pgp; .. -Py/2-1 and p? = Pk/2Pk/2+41 - - - Pk—1 are obtained.

Further, the remainders are calculated using “divide and conquer” tech-
nique. First, the algorithm finds the remainders y,; and y, of the integer
X modulo P! and modulo P?, respectively. As a result, the initial task of
the size of k is reduced to two tasks of the size of k/2. This technique is
recursively applied until all the remainders of the integer X are calculated.

Example 1. Let P = {3,5,7,11}, X = 289. Then P! = pyp; = 15, P? =
paps = 77. According to the above algorithm, firstly, we get two remainders:
y; = X mod P! = 4 and y, = X mod P? = 58. Secondly, we calculate four
remainders: €9 = y; modpg =1, £; = y; mod p; = 4, 3 = y, mod py =
2, and ®3 = y, mod p3 = 3. In result, X = (&g, ®1,®2, x3) = (1,4,2,3).

The RNS-to-weighted conversion is carried out by the Chinese algo-
rithm with data preprocessing [8]. The algorithm is based on the Chinese
Remainder Theorem [8], which asserts the following.

Let P = {po,p1,.-.,Pk—1} be a set of pairwise relatively prime moduli.
Let X = (g, ®1,...,®; 1) be a remainder set. Then
k—1

=0
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where M; = M //p; is a product of all the moduli, except p;, d; = M[l mod p;
is the multiplicative inverse of M; modulo p;.

Similarly to the weighted-to-RNS conversion algorithm, for calculating
(1) the Chinese algorithm is based on the same technique. In addition, a
set of the multiplicative inverse of M; modulo p; is known in advance.

At first, the Chinese algorithm calculates the products of the form

i+29 -1
gij= [[ pm (2)
m=0

where i = 0,1,...,k — 1, i is multiple of 2/, j =1,2,...,t.
Further, the integers
i+27 -1
d
sij= ][ 9ij ImTm
Pm

m=0

are determined. If j =0, 0 < i < k, then s;0 = d;x;. If 7 = 1,2,...,¢, then
si; is recursively formed

S8ij = Sij—1Q;y2i j—1 T Sip2i-15-1Gij-1 (3)
The integer so; = X.

Example 2. Let P = {3,5,7,11}, M = 1155, X = (2,4,4,3), d; = 1,
de=1,ds =2, dy = 2.

According to (2), we get goo = po = 3, g0 = p1 = 5, ga0 = p2 = T,
gs0 = p3 = 11, qo1 = pop1 = 15, g21 = pap3 = 77, qo2 = pop1p2p3 = 1155.

For i = 0,2, _7 = 1 we have 800 — dg:l:g == 2, 810 — dl:cl = 4, 8920 —
d2:132 = 8, 830 — d3£l33 = 8.

Further, s;; is obtained according to (3).

For i = 0,2, j = 1 we get so1 = S00q10 + 810900 = 22, 821 = S20430 +
830920 = 130.

For : = 0, 7 = 2 we have X = 592 mod 1155 = (s91921 + $21901) mod
1155 = (2277 + 13015) mod 1155 = 179.

It is known [5-8], that one of the most important considerations, when
designing the RNS systems, is the choice of the moduli set (the form as well
as the number of the moduli chosen). The moduli set significantly affects
the dynamic range length, the speed of the RNS processing, the complexity
of the weighted-to-RNS and, especially, the RNS-to-weighted conversion.

1.2. The RNS arithmetic

Let P = {po,p1,.--,Pk_1} be a set of pairwise relatively prime moduli lo-
cated in increasing order (this condition is necessary only for the division
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given below). Let X = (x,®1,...,25-1) and Y = (yq,Y1,--.,Y_1) be
two RNS representations of the integers X and Y, X,Y € [0, M). Then the
RNS representation of the integer Z =X @Y, Z € [0, M), is given by

X@Y:Z:(z(hzla"'azk*l)? (4)

where @ denotes addition, subtraction or multiplication, z; = (2; ®y;) mod
p; forall: =0,1,...,k — 1.

Example 3. Let P = {3,5,7,11}, X = (2,3,5,9), Y = (1,1
according to (4), we have X +Y = (3,4,0,9), X - Y = (1,1,4,
(2,3,3,0). These results can be easily checked up.

Equation (4) demonstrates the parallel, carry-free nature of the Residue
Number System. In addition, the RNS arithmetic is exact and therefore free
of round-off error. However, such operations as sign detection, division are
difficult in the RNS. Here we consider a special case of division: division by
module.

Division. Let P = (pg,p1,---,P%-1), X = (®o,®1,...,& 1) be the RNS
dividend, p, = (mo,m1,...,m;—1,0,p;,...,p;) be the RNS devisor. If the
———

k-1
number X is divided by the module p;, then @; = 0, otherwise, the number
X' = X — @; is used as dividend. Then the division

X Ly T1 L; 1 0 Lit1 LT
— (_a_:"'a - [} - a"'a_)_(z(]:zla'--:zkI)ZZ
D m™) ™ w1 0 pi Di
is carried out in two steps.

At the first step, the algorithm generates the first approximation of
the quotient

Z = (Zg,zl,. .. ,zi,1,0,2i+1,. .. ,Zkfl),

where the digits z;, j # 4, are calculated by division of the digit «; by an
appropriate digit of the divider (7 or p;). To avoid uncertainty, the digit z;
is equated to zero. If the digit ; is not divisible by m; or p;, then division
is replaced by multiplication
:Bj 1
— mod p; — | ; - — mod p; | mod pj,
™ )

where ﬂ% is the multiplicative inverse of 7r; modulo p;. For the given moduli,

the multiplicative inverse values are formed in advance. For example, % mod
11 = % mod1l = (z-9) mod 11. (The multiplicative inverse values are
shown in Table 1.)
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Table 1
Multiplicative inverse values for 7

p

1(2|3|4|5(6|7]|8]9 10
2 1
3 |12
5 11324
7 1114|5236
11 (1|16 43928 |7|5]10

At the second step, the algorithm determines the digit value z;. Here
we present a very simple method for calculating the digit value z;. Computer
simulation has shown that the time complexity of our method is half as large
as the method from [5].

0 VA Gin zZ Gp-1 M-1
o o
l?\li lMi lg\’/ili_l

Figure 1. Graphical representation of the interval [0, M)

So, the first approximation of the quotient Z can belong to one of the
intervals I%}., M; = M/p;, m = 0,...,p; — 1, in the range [0, M) (Figure 1).
These intervals are derived from splitting the range to p; parts. Each interval
r, contains M; numbers. The first number of the m-th interval takes the
form

Gm = (0,0,...,0,m,0,...,0).
(3

Here g,,,; = 0 for all j # 7 because the number Gy, is a multiple of each
module p;. As far as Z < M/p;, the quotient Z always belongs to the
interval [0, M;).

It is obvious that both numbers Z and Z are at the same distance from
the beginnings of the appropriate intervals, i.e.,

Z-0=2-Gn. (5)
For the i-th remainder equation (5) can be written down as
z; — 0= (0 — m) mod p;.

Hence, z; = (0 — m) mod p;.

So, to assess the number of the interval, in which the first approximation
of the quotient Zis located, it is necessary to determine G, according to
Z. Such a determination is reduced to a successive increase of the num-
ber of zero remainders in the RNS representation of the integer (initial or
intermediate). This process is further called nullivization.
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Figure 2. Graphical representation of nullivization

The nullivization is produced in (k — 1) steps. It begins from the least
nonzero remainder except the i-th remainder (the modulo p; is the devisor).
The process can be represented as follows:

A~

Z — (Oagia"':gllcfl) = GO - (070:93:"':9271) = Gl — = Gm

Here the moduli pg, p; are not dividers. The number G is the first one of
the least interval, in which the number Z is located (Figure 2). The least
interval l,, consists of pg numbers: p; intervals l,; form the interval I,,,,
in which the number G' is the first one, etc. Thus, nullivization can be
interpreted as a sequential move from the number Z in the beginnings of
intervals, starting with the least one, until the number G, is attained.

Now we will explain the technique of nullivization. It can be represented
as iterative procedure. Let GI ! = (0,...,0,g§.71, . ,giill), j < i, be the
result of the (j — 1)th step of nullivization. Then

, Gt if g/~ =0 for all j # i,
Gt - M;’j,l otherwise,
i
where the number M;jj,l = (0,... ,O,g;:*l, e 797;—1)’ is called a nulliviza-

tion constant. For monulo pj, the number of the nullivization constants
equal to p; — 1. A nullivization constant should be multiple of the interval
length in the beginning of which we have moved at the (j — 1)th step. Oth-
erwise the residues, being set into zero at the previous steps, cease to be in
zero. As a rule, the nullivization constants are calculated in advance.

Example 4. Let P = {3,5,7,11}, X = 305, p2 be the devisor. The quotient
(270’478)
(2507555)

Z = (zg,21,22,23) = is calculated as follows.
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First, we obtain the remainders of the quotient VA , except 2zi:

2 1
2025m0d3: (2-§m0d3> mod3 = (2-2) mod3 =1,

N>

4 1
9 gmod7:(4-gmod7>m0d7:(4-3)m0d7:5,

8 1
23:gm0d11: (8-gm0d11> mod 11 = (8 - 9) mod 11 = 6.

So, Z = (1,0,5,6) (Z19 = 985). For the set P = {3,5,7,11} the nullivization
constants are tabulated in Table 2. The nullivization process is shown in
Figure 3. In order that g] = 0, we choose the constant M3 since 29 = 1. Asa
result we have the integer G°=Z — M3 = (0,4, 4, 5). Similarly, the constant

C el 1
l%~7 : 18 1
Lal ]
[ 1

By | - 607
61 . Z = (1a1,576)

Fpr 209

3 1

I3 0 a8 |

L L 13 I: 230 T
Tl 924 @ | G®=G"' - M;' =(0,4,0,0)

3 1

1 .
a0 ea g

L “3
o " 966 @ | G'=G°- M’ =(0,1,0,9)

5 k
l3-7'11 l3~7

l7

3

‘984; G =Z— M3 =(0,4,4,5)
[ 985 Z =(1,0,5,6)

K1

11
l3~7

1152 1
7 1
L s 1

Figure 3. Example of division
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Table 2

p1=3 p3=1 pa =11
M3 = (1,1,1,1) =(0,0,1,4) | M;"=(0,0,0,1)
M3 = (2,2,2,2) M7 =(0,4,2,9) | M;' =(0,4,2,0)
M§7(0333) M;1 (0,3,0,3)
=(0,3,4,7) | Mj'=(0,2,0,4)
=(0,2,5,1) | M3 =(0,1,0,5)
=(0,1,6,6) Mél (0,0,0,6)
M;' = (0,4,0,7)
M11 (0,3,0,8)
M11 (0,2,0,9)
Mié = (0,1,0,10)

M47 sets up the second remainder into “zero”. Further, the number G, is
calculated by subtracting Mg from the obtained number G? = (0,1,0,9).

So, the quotient Z belongs to the 4-th interval, that is, 4 - 231 <
(1,0,5,6) < 5-231. Hence, z2 = (0 —4) mod5 =1 and Z = (1,1,5,6)
(Z = 65).

2. Simulation of diffusion by Residue Number
System

2.1. Finite difference diffusion scheme

It is customary the diffusion equation is represented as follows:

Ou 0%u
o~ “oar’ (6)

where u is temperature, « is the diffusion coefficient, z is a coordinate of 1D
continuous space. When solving this equation by a finite difference scheme,
space and time are discretized, so that z = ih, t' = t7, where i, t being
integers, h and 7 — the space and the time steps. After such a discretization,
equation (6) takes the following form

t+1 ¢ ¢ t
up " —uf Qlizt T Uit 2u; (7)
T N h2 ’
where t = 0,1,..., ul,i=0,1,..., N, is a value of the integer function u at

nodes in the lattice. Initial conditions are given as integers.
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In the iterative form equation (7) is written down as

1 1
upth =i+ (g g~ 2u) = Ui+ 5 L), (8)
D D
where L(uf) = ul_; +uf ; —2ul, ; = 9. The value § is called the inverse

diffusion coefficient.

2.2. Implementation of finite difference scheme by the RNS

Scheme (8) is very simple, but some difficulties arise when carrying out the
division by the RNS. To obtain an exact realization of division in a finite
difference scheme, we use the following two strategies.

Transfer of a remainder to the next iteration. Let us consider the
division in equation (8). Let t = 0, and L(u)) mod D # 0. Then we repre-
sent L(u)) as L(u) + R}, where L(u?) = | L(u?)/D|D, R} is the remainder,
and transfer the resulting remainder to the 1lst iteration. Such a strategy
eliminates the loss of accuracy.

Then the finite difference scheme (8) takes the following form

L(ut) + R*
u§+1:ug+{ (uz)D 7 J, (9)

where Rf“ is recursively calculated

R = (L(ul) + RY) mod D, R =0. (10)
Representation of the diffusion coefficient as fraction. Since the
number 1/D is a fraction, by definition, then we represent the number D as

ratio between the integers D = D5/D;. Such a replacement transforms the
recurrences (9), (10) into

D1 L(uf) + R}
R~ (11)
RI*! = [DyL(uf) + R} mod D;, R =0. (12)

Bellow, scheme (11), (12) for diffusion solution is referred to as the RNS
scheme as opposed to scheme (8) in the floating-point numbers (FP scheme).

In this paper (Section 1.1), we have defined the RNS for non-negative
numbers ¢ € [0, M). While calculating the numerator in (11) it may be
P! = D1L(u}) + Rt < 0. If it is so, then (11) is to be modified as follows

5t

FUNREA
i =Yy - |
t D,

where P! = M — P!. Here the sign of the value P} = DiL(ul) + R! is

K3 K3

determined by the algorithm [9].
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2.3. Computer simulation results

Here we investigate the following computational characteristics of the dif-
fusion RNS scheme: stability, accuracy. Numerical modeling has been per-
formed on Pentuim III. The experiment has been done for the RNS with
P = (5,7,11,13). Moreover, two functions (smooth and discontinuous),
were used as initial distribution. Both functions are determined on [0, 90)
and have the following form

2000, 0 < z < 10,

{1000 cos(z) + 1000, 0 < z < 40, 500, 10 <=z < 30,
1\T) =

xr) =
0, 40 < z < 90; f2(@) 1500, 30 < z < 40,

0, 40<z < 90.

The RNS scheme stability is understood as the ability of a scheme to
quench oscillations in a solution and to provide their non-occurrence. It is
well-known [10], that the FP scheme is stable if D > 2.

Here the stability investigation is reduced to an experimental estimation
of the value of the inverse diffusion coefficient D such that the RNS scheme
is stable for the two initial distributions. For this purpose, the dependencies
the dispersion on time were obtained for different values of D.

Let ul;—9 = f1. Experiments show that the RNS scheme is stable if
D > 1.64. Figure 4 shows the time dependence of dispersion both in the
RNS and the FP schemes for D = 1.64. Here both schemes are instable.
As distinct from the RNS scheme, an instability of the FP scheme grows
faster. As is seen from Figure 4, the dispersion curve of the FP solution lies
below the dispersion curve of the RNS solution. Two solutions of diffusion
equation for D = 1.65 are presented in Figure 5. In this case the RNS
scheme is stable while the FP scheme is unstable. Moreover, the oscillation
amplitude is in exceed of the function values at the 28-th step.

Let u|t—gp = f2. The experiments show that the RNS scheme is stable if
D > 1.98. So, the condition of the RNS scheme stability with the discon-

Dispersion
0.004
0.003
0.002 /
0.001 T T T
0 5 10 15 t

Figure 4. The time dependence of of the dispersion in the RNS (thick line)
and the FP (thin line) solutions with u|;—¢ = fi and D = 1.64
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3000
2000 =i

1000 ~

0 10 20 30 40 50 60 70 80 T

Figure 5. The RNS (thin line) and the FP (dashed line) solutions of the diffu-
sion equation with ¢ = 28, D = 1.65, u|t—o = f1 in comparison with the initial
distribution f;(z) (thick line)

0.104 Dispersion
0.08 -
0.06 -
0.04 : T : T T T
0 20 40 60 80 100 120 ¢

Figure 6. The time dependence of the oscillation intensity in the RNS (thick
line) and the FP (thin line) solutions with with u|;—o = f2 and D = 1.97
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Figure 7. The RNS (thin line) and the FP (dashed line) solutions of the diffu-
sion equation with ¢ = 135, D = 1.98, u|t—g = f» in comparison with the initial
distribution f(z) (thick line)

tinuous initial distribution differs little from the condition of the FP scheme
stability. Figure 6 shows the time dependence of the dispersion both in the
RNS and the FP schemes for two values of D. For D = 1.97 both schemes
are unstable. Similarly, experimental results with the smooth initial dis-
tribution, the oscillations in the PF solution grow significantly faster. For
D = 1.98 (Figure 7) the RNS scheme is stable, the FP scheme is unstable.
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The simulation has shown that the RNS scheme is stable over a wide
range of values for the inverse diffusion coefficient D as opposed to the FP
scheme. Moreover, the value of D depends on the initial distribution.

Accuracy of the RNS solution. Obviously, for a given set of moduli
RNS, an acceptable accuracy of this solution is provided by the absence of
round-off errors and the RNS scheme.

Here when studying the accuracy, the FP solution is considered to be
standard for comparison. Experiments have shown that the RNS solution
and the FP solution coincide very closely for smooth and discontinuous
initial distributions. To estimate the degree of their agreement, a function
Au = ugns — upp (difference of two solutions) is introduced. From Figures 8
and 9 follows that a relative error is about 0.05-0.1%.

0.8

0.4+

0.0+

—0.4

_0~8 T T T T T T T T
0 10 20 30 40 50 60 70 80 T

Figure 8. Difference of solutions with ¢ = 1000, D = 2.00, u|t—0 = f1

0.5
0.0+ r
—0.5+
-1.0 T T . T ' T T .
0 10 20 30 40 50 60 70 80 T

Figure 9. Difference of solutions with ¢ = 1000 steps, D = 3.00, u|;—¢ = f2
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3. Conclusion

In this paper, the RNS potentialities for differential equations solution have
been studied. Simulation results enable us to make the following conclusions:

e The RNS scheme is stable over a wide range of values for an inverse
diffusion number as opposed to the well-established scheme used in
the PDE.

e The RNS scheme provides an acceptable accuracy of the solution.

As expected, the RNS solution with implementing in general purpose
computers has lower performance than the PDE solution. Even realization
of the RNS solution using OpenMP enables to increase the performance less
than 15%. Improvement of the time complexity can be achieved due to the
designing specialized computing devices, which would support parallelism
both on the remainder and the bit levels.
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