
Bull. Nov. Comp. Center, Comp. Science, 17 (2002), 51{61c 2002 NCC PublisherMultilayer cellular pipelined algorithmarchitecture for complex scalar productcomputationV. MarkovaA newmultilayer cellular pipelined algorithmarchitecture for the complex scalarproduct computation is presented. The time complexity is evaluated. The initialdata and results are quaterimaginary numbers. The design is performed in termsof a model of distributed computation { Parallel Substitution Algorithm.1. IntroductionComplex multiplication is the main operation in digital signal processing.One possible method for increasing speed of complex multiplication isthrough the use of non-conventional number systems, speci�cally, the Knuth(or the quaterimaginary) number system [1].The Knuth number system (NS) is de�ned as a positional NS with the im-age radix r = 2i and the baseD = f0; 1; 2; 3g. The most interesting propertyof this number system is the possibility of representing a complex numberas single vector (a quaterimaginary number). This property is the key toa high-speed performance of complex multiplication. In fact, in this case acomplex multiplication requires only one multiplication distinctly from threemultiplications and three additions for conventional positional NS.However, in spite of its attractiveness the Knuth number system has notfound much application. There are three reasons for that:� The singularities of the conversion of the binary numbers in the equiv-alent quaterimaginary ones.� The necessity of a sequential modi�cation of intermediate results (thepartial products and their sums).� The absence of a multi-valued hardware.The second disadvantage is associated with the fact that the result of anyarithmetic operation over the quaterimaginary numbers may occur not tobe a quaterimaginary one. This means that an intermediate result containsnot only the digits belonging to the base (they are further referred to as thesta� digits) but also, at least, one not belonging to the base (the unsta�digits). For the intermediate result be involved in the computation process,



52 V. Markovaa modi�cation of all unsta� digits (the number-modi�cation) should be donebeginning with the least signi�cant digit. This modi�cation is similar to thesequential carry propagation along a number. The time required for thenumber-modi�cation is half the length of a modi�ed number.In [2], the �rst attempt has been undertaken to get rid of the abovedisadvantage. The 2D algorithm for complex multiplication is a cellularversion of the classical algorithm. At the �rst stage of the 2D complex mul-tiplication algorithm, the partial products (PP) and the modi�cation of theresults obtained are carried out in parallel. We employ the parallel number-modi�cation as opposed to the classical algorithm. At the second stage, apairwise summation of the quaterimaginary numbers is performed concur-rently with the parallel modi�cation of the intermediate results. These pro-cesses are repeated until the last sum is calculated. This algorithm multipliestwo n-digit quaterimaginary numbers in time T � 3:5n. This estimation isobtained with the help of an experimental simulating system.In [3], the above estimate has been improved. The algorithm has coveredthe classical form. As distinct from the 2D algorithm [2], here the 2-layersummation is used. The idea of the 2-layer summation consists in the follow-ing. The sta� and the unsta� digits in each pair of the intermediate resultsare processed concurrently in two layers of a 3D array. This is considered tomean that the pairwise summation starts without waiting the intermediateresults to be modi�ed.A new pipelined multilayer cellular algorithm for the complex scalarproduct computation is proposed in this paper. High-speed calculation isattained due to abandonment of the classical form for multiplication anddeep pipelining at both the data and the computation process levels.The Parallel Substitution Algorithm (PSA) [3, 4] is used for designing analgorithm. The PSA is the �ne-grained parallelism model, which integratesthe concepts of the cellular automaton and the Markov algorithm. Unlikeother cellular models, the PSA properties and expressive capabilities enablesus to represent any complex algorithm. Moreover, there is one-to-one corre-spondence between the PSA and the automata net, thus forming the basisfor the architectural design.This paper is organized as follows. The �rst section describes the mainoperations in the Knuth number system. In the third section, a 3D multi-layer cellular pipelined algorithm architecture for the complex scalar productcomputation is described, its time complexity being evaluated.2. The Knuth arithmeticThe Knuth number system (NS) is a positional NS with the image radixr = 2i and the base D = f0; 1; 2; 3g. The most interesting property of



Multilayer cellular pipelined algorithm architecture : : : 53this number system is the possibility of representing a complex number asa single number. This property is the key to the high-speed performance ofcomplex multiplication. Here we deal with only Gaussian integers (complexnumbers with integer parts).2.1. The Knuth representationThe Knuth (or quaterimaginary) number system is a positional NS with theimage radix r = 2i and the base D = f0; 1; 2; 3g.In the Knuth NS, any Gaussian integer g = a+bi corresponds to a Knuthrepresentation or a quaterimaginary number as sequence of the coe�cientsg = gn�1 : : : g0:g�1; (1)where gj 2 D for all j 6= �1, and g�1 2 f0; 2g. The digits with evenindices in (1) specify the real part of a Gaussian integer, the digits with oddindices { the imaginary one.A = 8! A4 = 20:0! A�4 = 120:0B = �5! B4 = �2:2! B�4 = 12:28�4 = 1 2 0+++�5�4 = 1 2 2***g = 8� 5i) g4 g3 g2 g1 g0. g�1 ) 11220:2 = gFigure 1The conversion algorithm g ) g is shown in Figure 1. At �rst, both partsof the integer g = 8�5i are transformed to the quaternary numbers, then tothe quaterimaginary ones. The obtained representations are concentratedinto the single vector g in such a way, that digits of the real part are putat the even positions, and the digits of imaginary part are put at the oddones. The length of the quaterimaginary number is equal to the length ofthe greatest part of the Gaussian integer in the binary NS.The conversion g ) g is executed in the usual way as in any positionalnumber system. For example, the inverse conversion of the quaterimaginarynumber g (see Figure 1) is computed as the following sumg = [0(�4)0 + 2(�4)1 + 1(�4)2] + 2i[2(�4)�1 + 2(�4)0 + 1(�4)1] = 8� 5i:



54 V. Markova2.2. The Knuth arithmeticLet us consider the main operations in the Knuth number system. Let g =gn�1 : : : g1g0:g�1 and h = hn�1 : : :h1h0:h�1 be two n-digit quaterimaginarynumbers.The quaterimaginary sum s = sn+1 : : : s1s0:s�1 is produced in two steps.At the �rst step, for each pair of digits (gj ;hj), j = �1; 0; : : : ; n � 1, thesum modulo (�4) is obtained as(gj + hj) mod (�4) = cj+2 + vj;where cj+2 2 f0;�1g and vj 2 D are called the intermediate carry digit andthe intermediate sum digit, respectively. Further, the digits belonging to thebase are referred to as the sta� ones. Distinctly from other number systemsthe carry is transferred to two positions ahead of a current intermediate sumdigit. At the second step, the �nal sum digit sj is calculated by the usualarithmetic additionvj + cj = sj for all j = �1; 0; : : : ; n+ 1:It is easily seen that sj may occur not to belong to the set D. Such digitsare further called the unsta� digits. In order that an intermediate resultbecomes the quaterimaginary number, modi�cation of unsta� digits (thecalculation of new values) should be performed according to Rule 1 beginningwith the least signi�cant digit. Further, the modi�cation of an unsta� digitto the base is referred to as the digit-modi�cation. The calculation of newvalues of the intermediate result digits is similar to the carry propagationalong the number. The conversion process of s0 ) s1 ) : : : si ) : : : ) saccording to Rule 1, is further called the sequential number-modi�cation.Rule 1. Let si be an intermediate result. Then for any pair of digits(sij ; sij+2), j = �1; 0; : : : ; n+ 1, sij =2 D, the following computation is done:� If sij < 0, then si+1j = sij + 4 and si+1j+2 = sij+2 + 1.� If sij � 4, then si+1j = sij � 4 and si+1j+2 = sij+2 � 1.In worst case, the time required for the sequential number-modi�cationof n-digit intermediate result is n=2 steps.Example. Let g = (227 � 34i)2i = 101220023:0, h = (�111 � 30i)2i =2211021:0. Figure 2 shows computation of their quaterimaginary sum.Three steps are needed for the number-modi�cation of the indeterminate re-sult s0 = 001�13030�100:0 to the quaterimaginary number s =01132103300:0. It is easy to check up that the sum obtained in the Knuthnumber system agrees with directly computed sum. Indeed, the inverse
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�1 ,,,,,,666 s1s2Figure 2conversion of the quaterimaginary number s is [0(�4)0+3(�4)1+0(�4)2+2(�4)3 + 1(�4)4] + 2i[0(1=4)�1 + 0(�4)0 + 0(�4)1 + 0(�4)2 + 3(�4)3 +1(�4)4] = 116� 64i.The quaterimaginary product p = p2n�1 : : :p1p0:p�1 is calculated in aclassic manner �rst by obtaining n partial products and then performingtheir summation.Each k-th partial product pk = (pk;n+1 : : : pk;1pk;0:pk;�1), k = �1; 0; : : : ;n � 1; is obtained in two steps. At the �rst steps, for each pair (gk; hj),j = �1; 0; : : : ; n� 1, the product modulo (�4) is de�ned(gj � hk) mod (�4) = rk;j+2 + zk;j;where rk;j+2 2 f0;�1;�2g and zk;j 2 D are called the intermediate carrydigit and the intermediate product digit, respectively.At the second step, the partial product digit pk;j is calculated by theusual arithmetic additionzk;j + rk;j = pk;j for all j = �1; 0; : : : ; n+ 1:If the obtained partial product is not a quaterimaginary number, then thenumber-modi�cation should be performed according to Rule 1. The �nalresult (the quterimaginary product) p is calculated by summation of allpartial products using the quaterimaginary addition.As one can see, the quaterimaginary product requires only one mul-tiplication distinctly from three multiplications and three additions for aconventional positional NS. One of the reasons which restrains the use ofthe Knuth number system is the sequential number-modi�cation.In [3], the parallel number-modi�cation was presented. It is done ac-cording to Rule 2 in time O(log n).



56 V. MarkovaRule 2. Let si be an intermediate result. For each pair (sij ; sij+2), j =�1; 0; : : : ; n+ 1, the following computation is performed in parallel1. If sij < 0, then si+1j+2 = ~sij+2 + 1, where~sij+2 = 8>><>>:sij+2 + 4 if sij+2 < 0;sij+2 if sij+2 2 D;sij+2 � 4 if sij+2 > 3: (2)2. If sij > 3, then si+1j+2 = ~sij+2 � 1 where ~sij+2 is calculated according to(2).3. If sij 2 D, then si+1j+2 = ~sij+2 where ~sij+2 is calculated according to (2).0 0 1�1 3 0 3 0�1 0 0 . 00 3 0 4 0 3 0 0 . 00 2 0 0 0 3 0 0 . 01 1 3 s066 s1s2 = s1 1 36 Figure 3An example of the parallel number-modi�cation of the sum s0 from theexample performed according to Rule 2 is shown in Figure 3.3. Multilayer cellular pipelined algorithmarchitecture for complex scalar productcomputationIn this section, we present a new 3D cellular pipelined algorithm architecturefor the complex scalar product computation and evaluate its time complexity(the period (Tp) the latency (Tl) and the execution time (Te)). In this case,Tp is the time between two successive calculations of products, Tl is the timeneeded to generate the �rst product, and Te is the total time to generatethe result. At �rst, we will describe the main principles of a new algorithm.3.1. Main principles of the new algorithmLet G = (gm�1;gm�2; : : : ;g0) and H = (hm�1;hm�2; : : : ;h0) be two vec-tors, whose components are n-digit quaterimaginary numbers. It is requiredto calculate the scalar product of the two vectors G and H



Multilayer cellular pipelined algorithm architecture : : : 57P = G�H = m�1Xi=0 pi = m�1Xi=0 gihi: (3)Let us design the algorithm architecture, based on the belief that only asingle 3D array can be used for computing the products gihi. This meansthat in spite of a special parallelism (3), the high-speed sequential compu-tation of the product P can be attained due to the following:� abandonment of the classical form for multiplication and� deep pipelining at both the data and the computation process levels.Clearly, the process pipelining is based on functional decomposition oftask (3). In our case, the pipeline has two stages. The �rst stage generatesthe products. The second stage accumulates the sum asP i = P i�1 + gihi: (4)The data pipelining is classi�ed as two types: the initial data pipeliningand data reduction. The initial data pipelining or data forwarding is de�nedas loading and moving of the initial data inside a cellular array. The Datareduction is interpreted as high-speed summation and moving a result inthe direction of the computation front. Currently, there are many reductionschemes.In Figures 4 and 5, two reduction schemes for multiplying 12-digit in-tegers are shown. Here the symbols r=z and p stand for the intermediate
g0g0g0g0g0 g0 g0g0g0g0g0g0

p p p pm cv�ms mp mmsp m smm smmmp m mmm smp m mmm m smp m mmm mm sm ss m mmm mmmp m mmm mmmm smmp m mmm mmmmm sm sp0

# AAAcv�AAA cs�AAA cs�AAA cv�AAA cv�AAA cv�AAA cv�AAA cv�AAA cv�AAA cv�AAA
h00

#@@zr
! @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr

g1g1g1g1g1 g1 g1g1g1g1g1g1
p p p pm cv�ms mp mmsp m smm smmmp m mmm smp m mmm m smp m mmm ms m mmmp m mmp mm

# AAAcv�AAA cs�AAA cs�AAA cv�AAA cv�AAA
@@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zrcv�AAA { the 1st step of two-layer multiplication{ the 1st step of two-layer summation!h011

h01 !h02 !h03 !h04 !h05 !h06 !h07 !h08 !h09 !h010!
g2# g2@@zr300 15 25 time-

Figure 4



58 V. Markova

p0#
h00!

p1#
g0g0g0g0g0g0 g0g0g0g0g0

p p p pm m p s s sp mp sp mp p s
# s s s spm

pm s s
mmmm

g0
@@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr @@zr zr zr

cv�AAAcv�AAA cv�AAAcv�AAA cv�AAAcv�AAA cv�AAAcv�AAA cv�AAA
g1g1 p#@@zr @@zr #h01! h04!h05!h02!h03! h06!h07h08h09!h10!h11!!!

#g1g1p p pm m pmmmm@@zr @@zr @@zr cv�AAAcv�AAAg1 g2g2 p@@zr @@zr pmmmmm cv�AAAss cv�g1p ppmz@@zr @@zr cv�AAAg1 g1 AAAg1g1p sp mp@@zr @@zr @@zrsms
g2

p spm sg1zr @@zr
cv�AAAcv�AAA s cv�AAAcv�AAAmpcv�AAAcv�AAA cv�AAAcv�AAA

g3 p@@zr @@zr pmmmmm AAAss cv�g2g2 p@@zr @@zr pm cv�AAA
g1 scv�AAA p spm sg2zr @@zr cv�AAAg2

cv�c v�AAA ss cv�AAAg3 pzr @@zr pmg2 p@@zr p pmz@@zr cv�AAAg2cv�AAAg2 p@@zrg2 p s@@zr m cv�AAA s cv�AAAg2g2 p mp@@zr @@zr cv�AAAmp cv�AAA
g3 @@

@@ @@
g3 #cv�AAA sscv�AAAg4 cv� ss cg3 p@@zr p pmz zr cv�g3AAA @@ scv�AAAg3

g4 p@@zr @@zr pmcv�AAA g4g2g4@@zrrg3 p@@zrg3 p@@zr m cv�AAAAAAg3g3 p@@zr zr@@
0 7 14 21 28

�
-time

p2#

17 24
@@@Figure 5carry/the intermediate product and product, and m denotes the integer,which is modi�ed. The symbols c=v and s stand for the intermediate carry /the intermediate sum, sum, respectively, and � denotes the integer with theunsta� digits. In both schemes the multipliers are loaded digit serially, theleast signi�cant bit �rst. The multiplicands are loaded digit paralleling inw step intervals, w = Tp. The value of w will be estimated bellow.Let us consider the calculation of the �rst product in Figure 4. Beginningwith the 4th step, a single summation of the neighboring intermediate resultswithout preceding reduction is done every 1st step. (Here a pair of theneighboring intermediate results is written in the neighboring rows witheven and odd indices.) As a result, the intermediate results are reducedone row per two step to the bottom of the processing array. So, accordingto this reduction scheme the algorithm calculates the �rst product at the(2n + 2)-th step, the second product { in (n + 3) step intervals. Hence,loading the multiplicand g1 is performed at the (n+ 3)-th step.As distinct from the reduction scheme in Figures 4 and 5 two summa-tions of the neighboring intermediate results are carried out in parallel. Thesecond step of summation of the �rst pair is merged with shifting the ob-tained sum one position down. As a result, two rows leave the process ofcalculation of the product and are ready to take a new multiplicand. Hence,loading the g1 is performed at the 7th step and the latency equals (n+ 6).So, the computation process is distributed over a 3D cellular array ac-cording to the following principles:1. The multiplicand is shifted one row to the bottom.2. The multipliers are loaded digit serially, the least signi�cant bit �rst.



Multilayer cellular pipelined algorithm architecture : : : 59The multiplicands are loaded digit paralleling at 7 step intervals ac-cording to the scheme in Figure 5.3. The generation of partial products is carried out in two layers.4. The summation of the sta� digits and the processing of the unsta�ones in each pair of intermediate results are done concurrently in twolayers.5. The parallel number-modi�cation of the intermediate results.6. The generation of the partial products, the number-modi�cation of theintermediate results, the data reduction and the initial data loadingare performed concurrently.3.2. New algorithm architectureThe 3D cellular pipelined algorithm for the complex scalar product compu-tation is carried out in the arrays H, G, P1, P2, CH , CG, CP2 (Figure 6).
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P2 # gihi# PFigure 6The 2D arrays H and G store the initial data (multipliers and multipli-cands). The least signi�cant digit of multiplier is placed in the 0th row ofthe array H. The least signi�cant digit of the multiplicand is placed in the2nd column of G. In Figure 4, the �rst pair of the initial data (h0;g0) to



60 V. Markovabe multiplied is marked. Data loading is accomplished by the control of thearrays CH and CG.The 3D arrays P1 and P2 are intended for processing. The array P1 hasfour layers. The 0th and the 1st layers constitute a pure processing �eld.The generation of the partial products is performed as follows. At the �rststep, the intermediate carry digits and the intermediate product ones aregenerated in the 0th and the 1st layers, respectively. At the second step,the obtained results are summed up and the partial products are placed inthe 0th layer. If the obtained result is not an quaterimaginary integer, thenit is modi�ed i� it does not participate in summation.The summation is carried out as follows. At the �rst step, for each pairof the sta� digits the intermediate sum and carry digits are obtained andplaced in the 1-th layer. At the same time, the unsta� digits from the oddrow of the given pair are added to the unsta� ones of the even row. At thesecond step, the algorithm calculates the arithmetic sum of the unsta� digitsand the quaterimaginary sum of the sta� ones and loads in the 0th layeraccording to the scheme in Figure 5. Each product is generated in the lastrow of the 0th layer and then is transferred into the 0th layer of the arrayP2. The data processing is done by control of the 2nd and the 3rd layers.The above processes are repeated until the last product is calculated. Thismoment is indicated by the array CP2.The array P2 has three layers. The algorithm accumulates the sum(4) in two layers and modi�es a result when it does not participate in thesummation. The 2nd layer of the array P2 controls the two-layer summationas well as the modi�cation. The result (the quaterimaginary product P) isconsidered to be obtained when the fact of termination is recognized by thearray CP2.3.3. The time complexityThe presented 3D algorithm has the following time complexity:� The latency Tl = n+ 5.� The period Tp = 7.� The execution time is Te = (n+5) + 7(m� 1) + 3+ log n = n+7m+1 + log n, where m is the number of products.This algorithm calculates a complex scalar product faster than that ofordinary algorithms. Of course, the cost of the hardware has not beenassessed.



Multilayer cellular pipelined algorithm architecture : : : 614. ConclusionIn this paper, we present the new 3D cellular pipelined algorithms for com-plex scalar product computation.As would be expected, the 3D algorithm has a very short period (7 steps).This is achieved due to the following features:� using the Knuth number system,� deep pipelining at both the data and the computation process levels,� the parallel number-modi�cation of the intermediate results,� the generation of the partial products, the number-modi�cation of theintermediate results, data reduction, and loading the initial data inparallel.However, it is di�cult to estimate the proposed algorithms with respectto their ability to be embedded on a chip without doing a detailed design.References[1] Knuth D.E. An imaginary number system // Commun. ACM. { 1960. { Vol. 3. {P. 245{247.[2] Markova V.P. The cellular Knuth algorithm for complex number multiplica-tion // Parcella'94. Proceedings of the VI International Workshop on ParallelProcessing by Cellular Automata and Arrays, Potsdam, Sept. 21{23, 1994. {P. 91{98.[3] Markova V.P. Multilayer cellular algorithm for complex number multiplica-tion // Proceedings of ASAP-95, Strasburg, France, July 16{20, 1995. { Los-Alamos, USA: IEEE Computer Society Press, 1995. { P. 290{297.[4] Achasova S.M., Bandman O.L., Markova V.P., Piskunov S.V. Parallel Substi-tution Algorithm. Theory and Application. { Singapore: World Scienti�c, 1994.
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