Joint NCC & I1S Bull., Comp. Science, 4 (1996), 27-42
© 1996 NCC Publisher

Two new cellular pipelined algorithms
for computing a sum of products

V. Markova

Two new cellular pipelined algorithms (2D and 3D) for computing a sum of
products with a very short multiplication time (six and three steps, respectively) are
proposed. The initial data and results are binary signed-digit integers. The design
and investigation tool is an experemental computer simulating system (Animating
Language Tools), based on an original model of distributed computation (Parallel
Substitution Algorithm).

1. Introduction

Designing fast algorithms for computing a sum of products today has arisen
a great theoretical and practical interest, as the fast massive multiply-add
computation is the main problem in digit signal processing and matrix ope-
rations. In this paper we develop two new algorithms (2D and 3D) for
computing a sum of products that has a very short wultiplication time (six
and three steps, respectively) due to the following features:

e harnessing the binary signed-digit number system [1,2];
e pipelining at both the initial data and the computation process levels;

e loading of the initial data, transformation of the intermediate results
and thier moving in parallel.

In both algorithms the multipliers are loaded digit serially, the multipli-
cands - digit parallelly, the results are produced digit parallelly. A doubling
of the multiplication time in the second algorithm is achived due to pipelin-
ing of the computation process in the third dimension. It is based on the
stratification of 2D pairwise summation of the intermediate results (partial
products and their sums) from the first algorithm, that is, on the execution
of the pairwise summation in four layers of 3D array. The idea of the strat-
ification consists in the replacement of the neighborhood in the rows in 2D
array by the neighborhood in the layes in 3D one. As a result, a one-layer
summation is transformed into a four-layer one.

The presented algorithms calculate a sum of m products of n-digit binary
signed-digit integers in time equal to n+6m + 1 and n/2+2log, n+3m+1,
respectively.

28 V: Markova

The design and investigation tool is the computer simulating system
Animating Language Tools (ALT) [4]. It realizes all properties of an ori-
ginal model of cellular computation named Parallel Substitution Algorithm
(PSA) [3]. PSA is specified by a set of parallel substitutions which operates
over a cellular array in parallel (everywhere and at the same time). ALT
system consists of the graphlca,l means and the language for representing
of parallel algorithms. It is the graphical representation of both cellular
arrays and substitutions which allows us to construct easily, to modify a
parallel algorithm, and to watch what is happening at any cell of all arrays
during computational process. Moreover, ALT system checks out a parallel
algorithm and determines its time complexity.

This paper is organized as follows. The first section describes the main
operations in the binary signed-digit number system. The basic features of
PSA and ALT are given in the second section. The third section presents the
2D cellular pipelined algorithm for computing sum of products and its time
complexity. 3D cellular pipelined algorithm for computing sum products
and its time complexity are described in the fourth section.

2. Binary signed-digit number system

2.1. Binary signed-digit representation

Binary signed-digit (BSD) number system falls in a class of redundant. It
is defined as a positional number system with the radix r = 2 and the base
B = {1,0,1} (I = -1). Due to the redundancy any number can be repre-
sented in the BSD number system more than by one way. For example, the
interger “7” has the following binary signed-digit representations (numbers):
0111, 1001, 1011, 1T11.

The important characteristics of the BSD number system are as follows:

e the sign of the algebraic value is the sign of the most significant non-
zero digits;

e the algebraic value of binary signed-digit integer is zero iff all its digits
have zero value;

e the negation of binary signed-digit integer is directly defined by chang-
ing the signs of all nonzero digits in the integer;

¢ the carry propagates to one digit position.

The conversion of n-bit binary integer X = X,_1X,_2 . ..Xp into n-digit
BSD integer X = z,_1%,_3...2¢ is very simpie. If integer X is an unsigned
binary integer, then z; = x; for all j = 0,1,...,n — 1. If integer X is two’s
complement integer, then z,_; = X,-; for Xn-1 = 1, otherwise z,,_; = 0,
and z; = x; forall =0,1,...,n— 2.

Two new cellular pipelined algorithms 29

The conversion of n-digit BSD integer X into n-bit binary integer X is
carried out as follows. Integer X is decomposed into two components X+
and X, where X*, X~ - unsigned integers formed of the positive and the
negative digits of X, respectively. Then X~ is substructed from X*, the
obtained (n + 1)-bit result is two’s complement integer. '

2.2. The main operations in binary signed-digit number
system ‘

Let X = zp_1Zn-2...20and Y = y,_1yn_2...yo be two binary signed-digit
integers.

Binary signed-digit (carry-free) addition is performed in two steps.
In the first step, we determine the intermediate carry digit c;4, and the
intermediate sum digit s; at each digit position j by examining digits z;,
Yj»y j-1 and y;_; according to Table 1. In the second step, we calculate the
final sum digit s; at each digit position j by adding the intermediate sum
digit s} and the intermediate carry digit ¢;_;, without generating the carry.
Thus, in the binary signed-digit addition the carry propagation is limited
to a single digit position irrespective of the wordlength. Each sum digit 8;
depends only on six digits: z;, y;, zj—1, yj-1, Tj—2 and y;_s.

Table 1
7 Yj Tj-1, Yj-1 Ci+1 8}
0 0 Both are of any sign 0 0
0 1 Both are nonnegative 1 1
1 0 Otherwise 0 1
0 1 Both are nonnegative 0 1
1 0 Otherwise 1 1
1 1 Both are of any sign 0 0
1 1 —"— 0 0
1 1 —"— 1 0
1 1 —— 1 0

The above addition is called the carry-free addition. The carry-free ad-
dition prqperty of the BSD number system is based on the recording of all
digit pairs of the summed integers according to Table 1 in such a way that
in the second step the final summation never generates the carry.

Example 1. Let X = TOIO].].I].O, Y = I].OOOOOO-I- (Xm = —162, Ylg =
—127). The computation of the BSD sum is shown Figure 1. It is easy to
check that the obtained sum agrees with the sum computed directly. Indeed,

30 V. Markova

+T01011110 X

1101010{0[T Y

+ OTTOTT_uT s

11101117070 C

T107T1007T171 S
Figure 1

the inverse conversion of the signed-digit integer S is S;o = 1(2)% + 1(2)® +
1(2)° + 1(2)° + 1(2)2 + 1(2)" + 1(2)° = —289.

Binary signed-digit multiplication is calculated in a classic manner.
Firstly, n partial products are generated, and secondly, they are summed
up.

All digits of the partial product P; = p; ny1pipn - - -Pip, 1 =0,1,...,n—1,
are calculated in parallel and take the following values:

fe;=y;=lora;=y; =1,

L,
pij=aj-yi=4 1 if(z;=1landy;=T)or (z; =T and y; = 1),
0, otherwise.

Then the partial products are added up by means of the binary tree
using the BSD addition. Computations at each k-th level of the tree, k =
0,1,...,logyn — 1, are done in parallel. The sum obtained at the level
k =log,n — 1 is the BSD product P.

Example 2. Figure 2 shows the multiplication of two BSD integers X =
1001 and Y = 0101.

1001 X
0101 Y
1001
+ _ _
Too01 101101 E i
, T001 +) - T10100T1 P
0000 — 11011

Figure 2

3. Computer simulating system ALT

Animating Langﬁage Tools (ALT) [4] is the computer simulating system
intended for design of cellular algorithms and determination of thier time

Two new cellular pipelined algorithms ' 31

complexity (humbef of steps needed for obtaining the result). It realizes all
properties of original model of cellular computation named Para]lel Substi-.
tution Algorithm (PSA) [3].

3.1. Basic features of PSA

Bellow we bneﬂy remind the basic features of PSA

® PSA processes data represented by a cellular array W. Each cell isa
pair (a, m), where a is the state from given finite alphabet A, m is the
name from a set of names M (as a rule, names are the coordmates in
' p—dlmensmnal discrete space, p = 1, 2, 3)

e Processing of a cellular array is performed by a set of substitutions
Wl * W2 - W3,) ' (1)

- where Wy, W,, W3 are cellular arrays, Wy - the base, W3 - the context,
- Wy * W, — the left-hand side and W — the rzght-hand side. The sub—
stitution (1) is applicable to the array W if W, U W, C W. Each side
of a'substitution is a pattern, it points out space relations between the
neighboring cells, i.e., cells, which participate in data processing. The
ezecution of an a.pphcable substitution is the replacement of the array
W, by the array W3. To map the applicability of a substitution (1) to
each cell (ai,pi), 1=1,2,...,t, in W, the certain names in the arrays

Wi, Wg, W3 are specified by naming functions o(m) : M LI M, the
_arrays are specified by configurations S = {ai, pi(m)}, @i(m) # @;(m),
¢ # j. For certain my; € M a configuration defines a subarray of the
~ neighboring cells. In terms of configurations a pa.ralle] substitution is
as follows

51*52.453. - 2)

Substitution (2) is applicable to W, if there exists at least one my, € M,
such that S;(mg) U Sz(my) C W .The execution of-an appllcable
substitution is the replacement of the subarray S3(my) by the subarray
S3(myg), i.e., the base cells change their states. This replacement. is
performed snmultaneously for.all sets-of the neighboring cells which
meet the applicable conditions. All substitutions are applied in pa,rallel
(at once) at each cell of the array W.

® The computation is an iterative procedure. At each step all applica-
ble substitutions are executed resultmg in a new cellular array. This
procedure is repeated until we arrive at such cellular array to which
no single substitution 1s applicable.

32 . V. Markova

3.2. Computer simulating system ALT

Bellow we present only a kernel of ALT system: the graphical represen-
tation of cellular arrays and substitutions, and the main operators of the
ALT-language.

The graphical representation of cellular arrays and substitu-
tions. A cellular array is pictured a bundle of sheets, only the 0-th layer
being entirely seen. The left-hand and right-hand sides of substitutions are
displayed as 1D, 2D or 3D right-angled patterns (a 3D pattern is considered
as a multilayered structure). The coordinate origin in cellular arrays and
patterns is always chosen in the left-top cell which is closest to the observer.
The neighboring cells in the patterns are labelled by variable symbols, whose
domain is in the initial alphabet A, or the fixed color corresponding to the
given symbol of the alphabet A. In other cells “don’t care” symbols are writ-
ten. In the arrays cells are labelled by fixed color or “don’t care” symbols.
Each cellular array and pattern are assigned by a unique names. They are-
displayed in a special window on the monitor screen. The graphical represen-
tation not only of cellular arrays but also of the both sides of substitutions
is the peculiarity of this system. It is the graphical representation which
allows us to construct easily and to modify the patterns, and, moreover,
to watch what is happening at any cell of the array during computational
process. o o :

The main operators of the ALT-language. Data processing in
arrays is specified by the program scheme which is also displayed in a special
window on the monitor screen. The following operators are used in the
program scheme. ‘

e The operator ex specifies the syﬁchronous and the iterative execution
of the PSA.

~ @ The operator in followed by the name of the array specifies the space,
where the substitutions are to be executed. It is possible to use a com-
position of severel arrays. In this case their names are listed separated
by the symbol . '

e The ordinary substitution is given by two operators at and do. The
word at preceeds the pattern name from the left-hand side of the
substitution (or the list of pattern names separated by the symbol *
and located as well as the names of the arrays in the operator in). The
word do preceedes the pattern name from the right-hand side of the
substitution (or the list of pattern names separated by the symbol
and located in the same order that the names of the arrays in the
operator in. '

e The functional substitution is given by two operators ab (instead of
the operator at) and do. The operator do is followed by the name

Two new cellular pipelined algorithms 33

of the function. It calculates new values of variable symbols. Each
function is an expression of C-language operator. It is shown in the
special window. '

A representation of PSA in ALT is called ALT-model.
Below the design of the cellular algorithm is demonstrated by the exam-
ple of the binary signed-digit summation of many integers.

Example 3. The summation is performed in arrays named p and ¢ with
the sets of names {(i,j) : i=0,1,2,3, j =0,...,8}, and {(¢,5) : i=
0.1,2,3,4, j = 0,1}, respectively. Their initial states are shown in Figure 3a
'the symbol x denotes “don’t care” symbol). The array p is the processing
one. Two processes (the summation and the data shift in the direction of the
larger value of ¢) are performed in it. Each row of the array p in the initial
state stores one out of four integers, the least significant digit is placed in the
“-th column. The cell states in the array p takes the values from the base.
The sum is generated in the 3-rd row of p. The array c is the controlling
ome. The array c_0 (the 0-th column without the top cell) distinguishes the
even and the odd rows in pa. The array c_1 (the 2-nd column without the
top cell) generates the signals for performing one out of two steps of the
addition and a data shift. The cell states in the array c¢ are from the set
11.2.3,4}. _ '

P [4 p c

x|1] x|1

*i0j0jojoj1fof1|T|of (23] [o]ofofolo]o]ofolo] [1]4

sj0jofojo|T|1|of1|of |{x|3| [o]lolofo]r|T]1lo]o] [x[3

10jojofrjofojofT|o| [1]3]| |oflofo]ofolofololo] [1]4

0lofojoj1f1|1]|ofo] [x]|3 0J0[0]1|o|Tf1|T|0] |x]|3
a) b)

P C_ p c

x|1 x|1

@jojojofojojofofo]| [1]1 ojojojofofolofofof |1]1

8fojojojojofojojo| |x[4| |ofofofo]o]olololo] [x]1

giojofofr|T|1|ofo| f1(3| |o]lofofofofolololo] |14

(@;0i0j1jo|T|1|T]o] [x[3] [o]o[1]Tloltlo[T]0] [x[3
) ' Q)

Figure 3

34 V. Markova

How does this algorithm work? At the fist two steps, the algorithm
carries out the BSD summation of two pairs of neighboring integers of the
processing array. (Here neighboring integers are located in two rows, the first
having the even and the second having the odd numbers.) Each summation
step is accompanied by the cell states changing in c_1. At the 3-rd step, the
algorithm moves the top sum of the array p to the 2-nd row. Further the
summation is performed in two latter rows. The cells (1, (3,0)), (3, (3, 1)),
and (3, (4,1)) in the array ¢ form the applicability condition for performing
the 1-st step of the summation (in bracets the first symbol stands for the
state, the second symbol - the name of the cell). The results of the 2-nd, 3-rd
and 5-th (the last) steps are shown in Figures 3b, 3c and 3d, respectively.

F——— = = =~ = - == = = = = — - —- -

vin prc_Oxc_11 1 down () ! I _ rl
| at lxblxgol | o o x|0]1 1fx
| do rl ! | (2==3 && y==4 x|[1]1 x| T

——a\? -
| in ¢ : : il_fb x;;03) X | 12 r2 st sl2
| a:;l 2 9 | :}) 1/3 X | % 12 E '
G - bh B
| In Cc_] | | . o
| ab slixsl2 | | ! bl gol
{_dodown 1 i !

Figure 4

In Figure 4 the fragment of the ALT-model of the BSD summation is
presented, using the patterns I1, r1, 12, r2, bl, gol, st1, st2. The 1-st pair
(at-do) is one out of the forty one substitutions realizing the 1-st step of
the summation. The patterns 1, bl, gol, whose names are pointed out in
the operator at, are recognized in the composition of the arrays pxc_0Oxc_1.
The entry of those patterns is thought to be recognized, if the pattern I1 is
included in the array p, the pattern bl - in the array c_0, the pattern gol -
in the array ¢_1, and, moreover, the coordinates of the left-top cells of those
patterns coincide. The 2-nd pair (at-do) is the substitution generating the
signal in the array c for the 2-nd step of the summation. The pair (ab-do)
is the data shift substitution in the processing array. '

4. 2D cellular pipelined algorithm for computing
a sum of products

In this section, we present 2D cellular algorithm for computing a 'sum of
products and evaluate its time complexity (the multiplication time T, and
the ezecution time T,). The former is defined as a time between two succes-

Two new cellular pipelined algorithms ' 35

sive ca,lcula,tlons of products the latter — as the total time to genarate the
result. . &

4.1. 2D Cellular plpellned algonthm for computmg a sum
of products ‘

2D cellular pipelined a,lgonthm for computing a sum of products is ca.rned
out in the arrays y, z, pl, p2, c1, c2, ¢3. The initial state of those arrays
for summing three products of 8-digit integers are shown in Figure 5. The
arrays y and z store the initial data (the multipliers and the multiplicands).
The least significant digit of the multiplier is placed in the 0-th row of y,
the least significant digit of the multiplicand — in the 16-th column of z.
The first: pair of the initial data (Yo, Xo) is located in the arrays y_y (the
3-rd column of y) and p—z (the 0-th rows of pi). The arrays p? and p2 are
intended for processing: the former calcu]a,tes products, the latter — a sum
of products. The cell states in y, z, p1, p2 take the values from the base.
The array c! controls the generating of partial products and multlphcand -
shifting in p1 as well as the loading of a new multiplier digit serially in y_y
and a new multlpllcand dlglt concurrently in p-z. Two columns from the
array c2 play the same role that the array ¢ from Example 3. The cell
named (8,2) from the array ¢2 generates the mgna,l mdlca.tmg that the BSD

olojofojof0{0|0]0]0O 010 0({0(0]0
ojojofojojofofjolojof1f{o]1]1fol1]0]0
0jojojofojojojojofojijt]ofofo]1]T]0
! ‘ ' c2
cl y . ‘ rl : x[310
IE‘UHJT oloJoJoJoJoJoJoJo]1]ol1[1]e 1]ol1[0] [1]0]0]
010 jojo 1| [xx]x[x|x[x]x]x]x]x]x[x[x[x[x]x[x[x] [x[0]0
70001xxx‘xxk'xxkxxxxxxxxx 1{0]0
rz0100'xxxxxxxxxx'xxxxxx,xx x{0(0].
j..0100_'xx'x.xxx'xxxxxxxxxxxx100
‘Eooi'o XX X[x[xfx|x|[x|x|[x]|x]x[x]x][x|[x]x] [x[o]0]
(8100 [T]1] [x]x|x]x|x]x[x]x|x|x|x][x|x|x|x]|x]|x]|x 1lolol
E0101‘xxx_x'x'xxxxx‘x'-xxxxxx.x <100
o ~ ' 1]0f0
cd - p2
0] [x]x]xx]x]x]xx[x]x x| x| x
x X x X

Figure 5

36 . V. Markova

product is obtained, and then it is transfered to in the array p2 under the
control of the array ¢3. Moreover, this array controls the BSD summation
in the array p2. The cell states in ¢! are from the set'{0,1}, in ¢2 and ¢3 -
from the set {0,1,2,3,4}.

To achive a short mulptiplication time, the computation process in the
algorithm is organized as follows.

e Loading of a new multiplier digit in y —y is done at each step. Loading
of a new multiplicand in p_zis performed at six step intervals, begining
from the second multiplicand.

e Loading of the initial data, transformation of the intermediate results
(generation of partial products and the BSD summation) and thier
moving are carried out in parallel. Moreover, the 2-nd step of summa-
tion in h-th, h = 0,1,...,n/2 — 1, pair of the neighboring integers is
merged with shifting the obtained sum one position down, if in (A+1)-
th pair of the neighboring integers the 2-nd step of summation is aslo
under execution.

4.2. The time complexity of 2D cellular pipelined algorithm
for computing a sum of products

In Figure 6 the dependence graph of multiplication algorithm for three pairs
of 8-digit integers is shown. Here the symbols c, s, @, 0 and * stand for the
carry, the sum and three BSD integers (partial products and their sums),
respectively.

pY N
Xp—re—re—ic - X oo Xg—r—r—C
X XN X XN %X\
Yo Xg—re—s—e—re Yo X,—o—s0—0 Yo Xo—d+—8—rx—r*
P h b N e N
n XO_}'_)._)'C —iC y1 Xl—}o—)o—}c o—C U1 }(2—)*—.)*._)(: *—3C
X OXNX \ XXX XXX \
Y2 Xoers—re—s Y2 X —o—s—ro—ds Y2 Xo—r—ds—hrs
X \ X N % N
U3 Xg—re—e—c e—ic Yz X|—ro—ro—c o—c Y3 Xo—r—pr—rC % ...

Y4 Xg—re—s—re —s Y4 X —o—s—ro—rs Ya Xo—h—ds—% - . .

X p X N Pat

Ys Xo—re—re—C e Ys X oo o—c Ys Xo—r+—rk - - -

XOXRNXN XX XN X

X E\)C\ 3 >§\>§\ XOXN

Ys Xp—re—rs—re—rs—re Y6 X;—ro—rs—ro—rs—o Yo Xo—r -
7 ! s 1 7
g yr Y7
Py Py

Figure 6

Two new cellular pipelined algorithms 37

Let us consider the calculation of the 0-th product F,. As distinct from
the summation by means of the binary tree, i.e., the serially-parallel scheme,
here the summation is performed for all those pairs of the neighboring in-
tegers, which meet the applicable conditions. The execution in h-th pair of
neighboring integers precedes (with overlaping) the execution in (h + 1)-th
pair. Each pair is involved in the product calculation during a constant
time independent of the word lenght of an integer. Begining from the 2-nd
pair, this time is 6 steps for the 1-st integer and 5 steps for the 2-nd one.
Hence, loading of the multiplicand X, is performed at the 6-th step, the
time, needed for obtaining the product Py, is T = n + 4 for n-digit integers.

So, the presented 2D algorithm has the following time complexity:

(a) the multiplication time is a constant (T, = 6), independently of the
lenght of an integer; '

(b) the execution time is T, = (n+4)+6(m — 1)+ 3 =n+ 6m + 1, where
m is the number of products.

This algorithm and the algorithm realized in a classic manner, i.e., in
which shifting the obtained sum is performed after the 2-nd step of summa-
tion, has been simulated for same values of n (from 16 - to 64) with the help
of ALT. As distinct from the former, in the latter the multiplication time is
dependent of the length of an integer:

n 16 24 32 48 64
T 12 13 15 16 18

5. 3D cellular pipelined algorithm for computing
a sum of products

Further way to improve the time complexity of the above algorithm is the
pipelining of the summation process in the third dimension. It is achieved
due to the stratification of 2D pairwise summation of the intermediate re-
sults, namely, the execution of the pairwise summation in four layers of 3D
array. In this section, we describe the idea of the stratification, at first, and
then the 3D algorithm and its time complexity.

5.1. Idea of the stratification of 2D pairwise summation

The stratification of 2D pairwise summation is based on the replacement the
neighborhood in the rows in the 2D pattern by the neighborhood in the layers
in the 3D one (Figure 7). As a result, a 1-layer pattern is transformated
into a 4-layer one. A pair of integer digits to be summed up and the results
of the 1-st summation step are placed in the 0-th and the 1-st layers of the

33 V. Markova

imiE

Figure 7T

" 4-layer pattern. The final .sum dlglts (sl, 32) are.written in the 2'nd or
3-rd layers of the pattern. The pa.lrWlse summation is performed, usmg the .
4-layer pattern, further reffered as the four-layer summation.

5.2.. 3D cellular plpelmed algorlthm for computmg a sum
of products . ,

The algorithm is carried out in 3D arrays 2':, Y, pl1, p2, cl, ¢2 and ¢3. The-
initial state of those arrays for computing a sum of.three products of 8- -digit
BSD integers are shown in Flgure 8. The array y has n+1 rows, 4 columns-

and 3 layers. The 0-th layer of y stores the set of multlpller The a,rra.y r

o

cf . R
n ooJoJoJolololo]ofolololo])
0] olofofolo[1]of1]1]o1]o]o] -
10| 0l0jojoloj1f1|0f0f0]1[T]O
10| 0[0jojofrjoj1]1|0f1]0f2]O]
-Q- E .
0]
10§
0 1
0] P
I'I ‘
v 1
[|
0l1]0]|T x I x> x| x| x| x| x| x| x xx
ojojof1} XXy x x| x]x]x|[x]x]x|x]x X | x
0j0]0}1 X XX x> x> xix|x|x]|x]x Ix[x
0/1(01]0 XU xx xx [x]x [xxx[x]x] x kx|
olol1]o] || 2 PR
01017111 | Ixlxlxlx]x|x]xIxxxxTx]x o]
0f1]0]1 xIxIxfx]xfxfx|x|x]x]|x[x]x 0l

Figure 8

Two new cellular pipelined algorithms ' 39

has 4 rows, 2n + 5 columns and 3 layers. The 0-th and the 1-st layers of
z store two sets of multiplicands X* and X, the first shifted one position
left relative to the second. In both arrays the 2-nd layer. is the controlling
one. The arrays p! and p2 are intended for processing. The former has n/2
rows, 2n+5 columns, and 2log, n layers. Products are calculated in it. The
latter has 2 rows and 2n 4 5 columns. A sum of the obtained products is
defined in it. The array cI controls the generating of partial .products and
multiplicand shifting in pI as well as the loading of the initial data. It has
n 4 1 rows, 1 column ‘and 2 layers. The control for computation process
in the array p1 is carried out the array c2. It has n/2 rows, 2 columns and
2log, n layers. The array c2 controls the BSD summation process in the
array p2. The presented algorithm consists of two threads.

The first thread transforms the multiplier set into two subset, located
in the 0-th and the 1-st layers of the array y. This transformation for one
multiplier is illustrated in Figure 9. Here the symbols & and O stand for
even and odd digits. The transformation consists in the following. At the
1-st step, in the array y all even multiplier digits are dropped from the 0-th
layer to the identical rows of the 1-st layer, all odd digits are shifted one
digit to the top of the 0-th layer. At the 2-nd step, the 0-th pair of multiplier
digits is fed to the 0-th rows of the 0-th and the 1-st layers of the array p1,
the other pairs are shifted one position to the top. Beginning with the 3-rd
step, the moving digit pairs in y is continue. Each j-th pair reaches to j-th
row of the 0-th and the 1-st layers of the array y and is fed to the identical
rows and layers of the array pl. The transformation of the 2D multiplier
array is finished at the (n/2 + 1)-th step.

[) e QO e
V) IAVAY 3 Q
L TOIERLNE T
- L] : QO 4=
‘:'O‘: = = =
@ Q&
® O
O .
‘ ,'Figure9

The second thread carries out the BSD multiplication itself in the
array pl. The main procedure in this thread is the four-layer summation.
For simplicity Figure 10 gives the graphical representation of this thread for
multiplying three pair of 8-digit integers.” Here, using three symbols e, o
and +. the propagation of three computation fronts is shown. Each above
svmbol stands for the intermediate results obtained by calculating one out
of three products Py, P, P;. '

So. the array pI in this example has 1. column, 4 rows and 6 layers.
At the 1-st step of the second thréa,d,_two first multiplicands belonging to

40 V. Markova

A A
o]
o]e]
o][e]
[o][e]
n .
=1 t=2 t=3 t=4
N
[0
[x][o][o]
][]]
]][] .
a
o]
t=5 t=8 t=9 t=11
]
|]
L
o]
4
t=12 t=14 t=15 t=17
Figure 10

X* and X from the array z are loaded into the 0-th rows of the 0-th and
the 1-st layers of the array p1 concurrently. At the 2-nd step, two partial
products are calculated in the 0-th rows of the 0-th and the 1-st layers, and
multiplicands are shifted one position to the bottom in the 0-th and the 1-st
layers of pl. The result of the 4-th step of this thread are the first BSD
sum in the 0-th row of the.2-nd layer of the array p1, the first intermediate
carry and sum in the 1-st rows of the O-th and the I-st layers, two partial
products in the 2-nd rows of the same layers and two first multiplicands
in the 3-rd rows. At the same time, the next two multiplicands are loaded
into the 0-th rows of the 0-th and 1-st layers of the array. At the 5-th step,
leaving out the calculations in the first two layers, the second BSD sum is
‘calculated and located in the I-st row of the 3-rd layer. At the same time,

Two new cellular pipelined algorithms 41

the first BSD sum is shifted into the 1-st row of the 2-nd layer, as a result
of which, the pair of integers to be summed up is formed in the 2-nd and
the 3-rd layers. The multiplication process is repeated, involving new layers
of p1 and new multiplicands, until the last BSD product is obtained in the
3-th row of the 5-th layer. _

As one can see, the above algorithm calculates the first product in time
T = (n/2+1) + 2log, n for n-digit numbers. In our case, the first product
is computed at the 11-th step. '

This algorithm has been simulated for same values of n (from 16 to 64)
with the help of ALT. '

5.3. The time complexity of 3D cellular pipelined algorithm
for computing a sum of products

The introduced time complexity estimates of the presented 3D algorithm
are as follows.

e The multiplication time is a constant (T}, = 3).

o -The execution time is T, = (n/2+ 1+ 2log,n) +3(m — 1) +3 =
n/2 4+ 2log; n 4+ 3m + 1, where m is the number of products.

6. Conclusion

In this paper we persent two new cellular pipelined algorithms (2D and 3D)
for computing a sum of products. They have the following characteristics.

e The initial data and the results are binary signed-digit integers. The
multipliers are loaded digit serially, the multiplicands — digit parallelly,
the results are produced digit parallelly. :

¢ The time complexity estimates of the presented algorithms ‘are listed

in Table 2.
Table 2
Algorithm | T, T.
- 2D 6 n+6m+1
3D 3 n/2+4+ 2logyn+3m+1

As would be expected, the 3D algorithm calculetes a sum of products in
better time that presented here 2D one. The speed-up is achieved due to
pipelining of the computation process in the third dimension. However, it
is difficult to compare two algorithms with respect to the implementation
rarea) complexity without doing detailed designs.

42 C V. Markova -

References

[1] A. Avizienis, Signed-digit number representa,tmns for fast paraHeJ' arzthmemc)
IRE ’I‘raus Electron Comput EC-10, 1961 389 400

(2] K. Hwang, A. Loun Optical multiplication and dwrszon usmg mod:ﬁed—mgned :
symbolic substitution, Opt. Eng., 28, No. 4, 1989, 364-372.

[3] S.M. Achasova, O.L. Bandman, V.P. Markova, S.V. Piskunov, Parallel Substi-
tution Algorithm, World Scientific, Smgapore 1994 220 p. ‘

[4] Yu.M. Pogudin, ALT - a graphical system for parallel m:croprogramm}ng, Par-

allel Algorithms and Structures, Computer Center Novosibirsk, 1991, 77-88

(in Russian).

