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The Godunov Inverse Iteration algorithm
for symmetric tridiagonal matrices

Anna M. Matsekh, Ella P. Shurina

We have developed a hybrid procedure based on the Godunov algorithm for
computing eigenvectors of tridiagonal symmetric matrices and inverse iteration,
which we call the Godunov Inverse Iteration algorithm. It employs the inverse iter-
ation to improve the accuracy of eigenvectors computed according to the Godunov
method with the embedded Modified Gram-Schmidt procedure to reorthogonalize
eigenvectors corresponding to computationally coincidental eigenvalues and which
may be missing a few digits of precision due to the round-off errors. We present
some experimental results to illustrate that the new hybrid method produces re-
sults superior to both the Godunov method and standard implementations of the
inverse iteration just on an iterative step. We also discuss some issues involved in
the parallel implementation of the new method.

1. The Godunov method

Consider the fundamental algebraic eigenvalue problem, in which
Az = Az (1)

for real symmetric matrices A € R™*™. There always exists a real orthogonal
transformation X € X™*" such that the matrix A is diagonalizable, that is,

XTAX = diag(\), (2)

where eigenvalues \;, ¢ = 1,...,n, are all real. The Godunov method em-
ploys the Rayleigh-Ritz scheme to solve problem (1) with a real symmetric
matrix A in three steps:

(i) compute the orthonormal transformation @ such that matrix 7' =
QT AQ is tridiagonal;

(ii) solve the eigenproblem Tu = pu;
(iii) take (u,Qu) as approximation to the eigenpair (A, z).

The Godunov method [1] was designed to compute eigenvectors of unre-
duced symmetric tridiagonal matrices by a sequence of plane rotations on
architectures that support an utmost precision and directed rounding. The
Godunov eigenvector approximation u® corresponding to the eigenvalue p;
of the matrix T from the interval (a;, ;) such that
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‘ﬂz - ai‘ < EmachHT”?, (3)
determined by a Sturm-sequence-based bisection procedure, is found recur-
sively from the two-sided Sturm sequence Py(u;), i,k = 1,...,n, where
Py 1(p;) = ctgb;, setting

; signbg_j

ub=1 and ul=—ut —=—"— (4)
0 k k-1 Pkfl(/iz)
in just O(n) operations per a normalized eigenvector. The two-sided Sturm

sequence

def _ _
Po(i), -, Pa1(pi) = Py (i), B (), Py (Bi), - Poq () (5)
is constructed from the left-sided and the right-sided Sturm sequences
Pf(a;), k =0,...,n—1, and P, (3;), k = n—1,...,0. The left-sided
Sturm sequence P, (o;) is computed from minors of the matrix T — o;]
according to the formulas [1]

bo
1
bi|
P (1) = | , 6
B (dy — i — [br_1]) Py 1 (i) (6)
1
Pr_btl(ai) =

(dn—1 — i — [bp_2|) P 5(0y)’

while the right-sided Sturm sequence P, (;) is computed from minors of
the matrix T' — ;I as follows [1]

P, 1(8:) = dn1— B,

di — B — |b|/ P, i
o) BB .

Py (Bi) = do — Bi — |bol/ Py (Bs)-

Although analytically equivalent, eigenvectors constructed in finite pre-
cision from the left-sided and the right-sided Sturm sequences for the same
parameter X\ are in general different. An eigenvector with an ensured accu-
racy is obtained when the left- and the right-hand sequences (5) are joint at
an index [ chosen according to the rule based on the Sturm theorem: for any
real A\¢ the number of roots A of the n-th principal minor of the matrix T'— A1,
such that A < )\ coincides with the number of non-positive values in the

Sturm sequence Pj();), k = 1,...,n. Let [T be the number of non-positive
elements in the sequence P (;), k =0,...,m —1,and n — 1 — I~ be the
number of non-negative elements in the sequence P, (5;), k =n —1,...,0.

Then the left and the right sequences (5) are joint at the indexl =1" =1,
for which the following condition is satisfied [1]:



The Godunov Inverse Iteration algorithm . .. 41

(P (i) = B (8:))(1/ P4 (Bi) — 1/ P (i) <0, (8)

In our attempt to improve the Godunov method, we were motivated by
the fact that it is a direct method, and due to the round-off errors in the
finite precision, the error bound [1]

(T — prI)ugll2 < 13v/3 emach | T2]|us 2 (9)

is not attained. At the same time, the two-sided Sturm sequence compu-
tations are susceptible to division by zero and overflow errors, while for
computationally coincident and closely clustered interior eigenvalues it pro-
duces coincident or nearly coincident eigenvectors, taking no measures for
reorthogonalization. In empirical studies, our implementation of the Go-
dunov method consistently delivered residuals that were approximately two
orders of magnitude larger than those of the eigenvectors computed accord-
ing to the LAPACK version of the inverse iteration [2] and the EISPACK
version of the inverse iteration TINVIT [3] for the same eigenvalue approxi-
mations. In addition, due to the round-off errors, the machine representation
of the matrix T, that is, generally obtained either by the Householder or the
Lanczos tridiagonalization, has the form Ty,cn = T + G [4], where

IG|| < kv/n2™* (10)

and t is the number of mantissa bits in the machine representation of
floating-point numbers. Therefore in the finite precision, the error bound
(9) rather takes takes the following form:

|(Tmach — peD)uzll < 13V3 emacn|| Tll2ljukll2 + kv/n 2 jug |- (11)

2. The Godunov Inverse Iteration algorithm

The Godunov Inverse Iteration is a hybrid procedure for computing accurate
approximations to the symmetric eigenvalue problem based on the algorithm
by S.K. Godunov et al. [1] and on the inverse iteration. The Godunov
Inverse Iteration algorithm was constructed to avoid common computational
problems arising both in the Godunov method and in the inverse iteration
method. It can be viewed as an algorithm that delivers the reorthogonalized
iteratively improved the Godunov eigenvectors.

Instead of initiating an inverse iteration with a random vector, or solving
a linear system to find a starting vector, as is customary in many implemen-
tations of the inverse iteration, we use the eigenvector, computed by the
Godunov method in just O(n) arithmetic operations as an extremely accu-
rate starting vector in the Inverse Iteration. Before the inverse iteration is
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applied, any non-numeric elements of the Godunov eigenvectors are substi-
tuted with random numbers. This semi-deterministic approach to finding
initial vectors to the inverse iteration reduces the number of steps necessary
for the convergence to a desired accuracy. In most cases the convergence is
attained after one step of inverse iteration.

Typically, the inverse iteration breaks down when very accurate eigen-
value approximations are used as shifts, because the corresponding system in
this case is nearly singular. To avoid such a breakdown, small disturbances
are usually introduced into the eigenvalues used as shifts in the inverse iter-
ation to ensure the convergence to the corresponding Ritz vectors. But even
small arbitrary departures of the Ritz values from exact eigenvalues may
produce significant departures of the Ritz vectors from actual eigenvectors.
We solve this problem by using the right-hand bounds §; of the intervals
wi € (a;,0), i = 1,...,n, as shifts that are ensured to be within the er-
ror bounds (3). We apply the Modified Gram—Schmidt reorthogonalization
for the eigenvector approximations corresponding to multiple eigenvalues or
to the clustered eigenvalues with small relative gaps. We use Wilkinson’s
stopping criteria [4] ||zx|loo > 2!/(100n) to verify that the convergence is
attained. Below we present a formal description of the Godunov Inverse
Iteration algorithm.

Godunov Inverse Iteration algorithm Compute eigenvectors uf, i =
1,...,n, of the tridiagonal matrix T' = TT € R"*" with the main diagonal
d and the codiagonal b on a processor with the machine precision e3¢, and
t mantissa bits.

godunov_inverse_iteration(d, b, n)

bisection(d, b, n)
for (i=1, i<=n, i++)
find eigenintervals (o;,3;) that contain eigenvalues u; € (a;, 5;)
st 1B — 0] < cmpan| T2, i = 1, om0,
end

godunov_eigenvector_method(d, b, n, a, )
for (i=1, i<=n, i++)
compute the two-sided Sturm sequence P, (u;):
Py (ai) = [by|/(dr — ci),

Plj—(al) = ‘bk|/(dk - oy |bk71|)Pk_:t](ai): k=23,...,n—-1,
P (i) = 1/(dn — @i — [bn1]) Py (e),

(Bi) = dn — Bs,

(ﬂz) = (dk - /32 - ‘bk|/Pk:+1(IBZ))/|bk71|7 k=n— 17n - 27 cee 72:

(Bs) = d1 — B; — |b1|/ Py (Bi)
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find 1 =1" =1 st. (B (a;) = P, (8:))(1/ Py, (Bi) — 1/P (i) <0
def

set Pr(pi), .., Po(pi) = P (),... B (), Py (Bi), - - Pr ()
compute the Godunov eigenvector u’: uf = 1,
for (k=2, k<=n, k++)
uj, = —ug_qsign(bi—1)/Pi-1(pi)
end
end

inverse_iteration(d, b, u, ()

/* Preprocessing step */
for (i=1, i<=n, i++)
for (k=1, k<=n, k++)
if u}c is not a machine number
then set u} to a random uniform number from (0,1)
end
use the right ends of the eigenintervals as shifts: v; = 3;
perturb the computationally coincident eigenvalues:
if (> 0N [y — Yi-1] < 10emacn|vil)
then ~v; = v;_1 + 105mach")’i‘
end

/* Inverse iteration step */
k=0, =2t/(100n)
do
k=k+1
Solve (T — v;I)z = u*
The Modified Gram-Schmidt reorthogonalization step
for (j=1, j < k, k++)
i 7; — Wl < [/ 700/1000
then z = z — (z,u/)uw?
end
uf = z/| 2|2
while (||z]lec > 0)

3. Experimental results

We have implemented and tested the Godunov method, the Godunov Inverse
Iteration algorithm, the inverse iteration algorithm with random starting
vectors which we call the Random Inverse Iteration algorithm (our imple-
mentation of the LAPACK procedure xSTEIN [1], and the inverse iteration
algorithm with initial vectors found as direct solution to the eigenproblem,
which we call the Direct Inverse Iteration algorithm (our implementation
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of the EISPACK procedure TINVIT [3], in ANSI C (GNU C compiler) in
IEEE double precision and tested these programs on an IntelR Xeon™ CPU
1500MHz processor.

To make a fair comparison, we compute eigenvalue approximations to
the symmetric eigenproblem

Amk:)\kmk, k:1,2,...,n, (12)

only once and use these eigenvalues to compute eigenvectors using four dif-
ferent routines, while in all the three inverse iteration implementations we
use the same direct solver for systems of linear algebraic equations with
tridiagonal symmetric matrices. We use the Householder tridiagonalization
with dense matrices and restarted the Lanczos procedure with selective re-
orthogonalization with sparse matrices.

Following Godunov [1], we have implemented the bisection algorithm to
find the intervals (a;, ;) containing the eigenvalues p; of the tridiagonal
matrix T = QT AQ, with the ensured accuracy

|/Bz*az| ngachHTH% i:]-:"'an: (13)

where €macn is the unit round-off error. The bisection algorithm requires
O(tn?) operations, where t is the number of bits of precision in a computer
representation of floating point numbers.

In both the original Godunov method and in the new Godunov Inverse
Iteration procedure we used eigenintervals (a;, ;) to compute the corre-
sponding eigenvectors, while in the Random Inverse Iteration and the Di-
rect Inverse Iteration versions of the inverse iteration algorithm we used
wi = (o + B3;)/2, i.e., a typical choice for the i-th eigenvalue approximation
in the inverse iteration implementations. If the analytical solution to a test
eigenvalue problem is available, we report the accuracy of the computed
eigenvalues as the maximum absolute deviation of the computed eigenvalue
approximation p; = (a; + (3;)/2 from its analytical counterpart. If the ana-
Iytical solution is not available we report the ensured accuracy with which
eigenintervals (a;, 3;) were computed. To determine the orthogonality of the
computed eigenvectors X , we consider the maximum euclidean vector norm

err; & max [[(XTX — e (14)

of the matrix XTX — I, which represents a deviation of the computed basis
X from the standard orthonormal basis I comprised of the unit vectors ey:
I=lel,k=1,2,...,n.

To determine the accuracy of the computed eigendecomposition
XTAX = diag(j\i) of the eigenproblem we consider a maximum absolute
residual error of the computed eigenpairs (5\;“ Zr) in the euclidean norm:
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def maxy, [|(AZy — Ex ) |12

= (15)

maxp, |Ax|
In all the tests presented below, the Godunov Inverse Iteration procedure
converged to desired accuracy in just one step, while the results were almost
as accurate, and in a number of cases superior to the ones obtained with the
Random Inverse Iteration and Direct Inverse Iteration.

Example 1. The tridiagonal symmetric eigenproblem Rz = Az, A(R) =
—cos(km/(n+1)), k=1,...,n,

0 05 0
05 0
R =
.05
0 05 0
1.0q
0.5
0-0 T T T T 1
200 400 600 800 1000
—0.51
—1.0-

Figure 1. Eigenvalues A(R) computed by the bisection method for n = 1000

The problem of finding eigenvalues and eigenvectors of tridiagonal sym-
metric matrices with a zero main diagonal, in the so-called Golub—-Kahan
form [5], which arises in singular-value computations for bidiagonal ma-
trices, and, generally, for non-symmetric matrices, presents a number of
computational challenges. In Example 1, we compare the eigenvectors com-
puted with the Godunov Inverse Iteration method against the eigenvectors
computed according to the Godunov method, and Direct and Random In-
verse Iteration algorithms for the same approximations of the eigenvalues of
1000 x 1000 tridiagonal matrix R which has zero diagonal entries and the
entries equal 0.5 on the codiagonals. The eigenvalues of this matrix coin-
cide with zeros of the Chebyshev polynomials of the second kind, and so we



46 A.M. Matsekh, E.P. Shurina

were able to compare the analytical solution against eigenvalues computed
with our bisection routine. Test results for this example are summarized
in Table 1. For the eigenvalue approximations computed with a maximum
absolute deviation of 3.3307e—16 from the analytical solution, some of the
Direct Inverse Iteration and Random Inverse Iteration eigenvectors X did
not converge and were set to zero, which is indicated by the fact that the
orthogonality measure equals 1 in these tests.

Table 1. Error estimates for the eigenvectors of the matrix R (n = 1000), cor-
responding to the eigenvalues A = A(R) computed with the specified maximum
absolute deviation A(A) from the exact eigenvalues A = A(R)

Algorithm ‘ errp ‘ erry ‘ 7 iter.

A(X) = 3.3307e—16

The Godunov Method 1.1535e—12 2.9458e—11 -

Direct Inverse Iteration 4.3392e—12 1.0000e+-00 1

Random Inverse Iteration 2.3845e—16 1.0000e+-00 3

Godunov Inverse Iteration 2.3461e—16 1.1138e—14 1
A(X) = 4.9960e—16

The Godunov Method 2.0175e—12 4.8818e—11 -

Direct Inverse Iteration 5.9214e—12 8.2480e—11 1

Random Inverse Iteration 2.7557e—16 2.2042e—14 3

Godunov Inverse Iteration 2.6821e—16 1.0970e—14 1

The Godunov method and the Direct Inverse Iteration produced eigen-
vector approximations that were accurate only to 12 digits of machine preci-
sion, yet the Godunov eigenvectors satisfied the orthogonality measure to 11
digits of precision. In just one step of iterative improvement, the Godunov
Inverse Iteration produced eigenvectors that satisfied the original problem to
16 digits of machine precision, just as the Random Inverse Iteration solution
did after three iteration steps. In addition, the Godunov Inverse Iteration
solution satisfied the orthogonality measure to 14 digits of machine precision.

When eigenvalues were computed with slightly lower precision (with a
maximum absolute deviation of 4.9960e—16 from the analytical solution)
all the three versions of the Inverse Iteration converged to a high accuracy,
and again, the Godunov Inverse Iteration converged in only one step to
virtually the same high accuracy as the Random Inverse Iteration in three
steps. Clearly, the conventional Inverse Iteration implementations appear to
be very sensitive to the accuracy with which eigenvalue approximations are
computed, while the Godunov Inverse Iteration exhibits a robust behavior.

Example 2. Dense symmetric eigenproblem Ux = Az:

Y+ -1), =y,
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Figure 2. Eigenvalues A(U) computed by the bisection method for n. = 100

In Example 2 we compare the Godunov method, the Godunov Inverse
Iteration, the Random Inverse Iteration, and the Direct Inverse Iteration on
an eigenvalue problem with a dense symmetric 100 x 100 matrix U which
was derived from the Hilbert matrix: U has entries equal to 1/(:+j — 1) on
the main diagonal and off-diagonal elements equal to —1/(z + 7 — 1). This
is an example of a matrix with clustered eigenvalues which makes a good
demonstration of capabilities of both the Godunov and the Godunov In-
verse Iteration algorithms. The Godunov method and the Inverse Iteration
procedures were applied to the tridiagonal matrix obtained from the matrix
U by the Householder reduction. Test results for this example are sum-
marized in Table 2: here we see again that the Godunov Inverse Iteration
solution satisfies the original problem and the orthogonality condition to 15
digits of machine precision in one step, virtually the same results as those
produced by the Random Inverse Iteration in three steps. The Godunov
method and the Direct Inverse Iteration delivered errors about two orders
of magnitude higher than the Godunov Inverse Iteration and the Random
Inverse Iteration.

Table 2. Error estimates for the eigenvectors of the matrix U (n = 100), corre-
sponding to the eigenvalues A = A(U) from the eigeninterval computed with ensured
accuracy 8.8818e—16

Algorithm errp erry 7 iter.
The Godunov Method 3.2466e—13 8.0953e—12 -
Direct Inverse Iteration 5.1916e—14 1.2718e—11 1
Random Inverse Iteration 9.1271e—16 2.8498e—15 3
Godunov Inverse Iteration 1.0023e—15 2.7849e—15 1

Example 3. The block-diagonal symmetric eigenproblem Pz = Az,

A(P) = ¢ + 2¢q cos

s
Vn +

2
1 + 2c; cos

Jjm
Vn+1’

i,7=1,...,m,
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Figure 3. Eigenvalues A(P) computed by the bisection method for ¢; = 1,
co = —0.33, ¢c; = —0.17, and n = 225

In Example 3 we provide the results of the Godunov Inverse Iteration
procedure used to solve a sparse symmetric eigenproblem Pz = Az, trans-
formed to the equivalent tridiagonal problem by the Lanczos method with

selective reorthogonalization. The matrix P € R™*" n=m

2 is a version of

the matrices arising in the finite difference approximations of the Laplacian
on a rectangle. It has tridiagonal m x m blocks on the main diagonal and the
codiagonals located m columns and m rows apart from the main diagonal.

Table 3. Error estimates for the eigenvectors
of the matrix P with ¢ = —0.33, ¢; = —0.17,
corresponding to the eigenvalues A computed
with a maximum absolute deviation A())
6.6613e—16 from the exact eigenvalues A by

the Godunov Inverse Iteration

Parameters

€errj

€rrp

n=225¢c =1
n = 400, c2 = 0.5

4.6356e—16
5.2595e—16

3.2918e—15
4.8720e—15

This is a very common test ex-
ample with known analytical
solution and makes a good il-
lustration of the correctness of
our routines. Test results for
this example are summarized
in Table 3: for both sets of pa-
rameters the original problem
was satisfied to 16 digits and
the orthogonality condition to
15 digits of precision.
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4. The parallel implementation of the Godunov
Inverse Iteration

The present-day implementations of eigensolvers for large sparse matrices
are usually designed for distributed memory multicomputers which exchange
data through message passing. The parallel implementation of the Godunov
algorithm on such an architecture should not pose any challenges — the Go-
dunov eigenvectors can be computed independently in only 11n floating
point operations per eigenvector. By distributing a copy of two vectors
containing, respectively, elements of the main diagonal and the codiagonal
of the tridiagonal matrix to all p precesses and the sets of k eigenvalues for
which n = pk eigenvectors are desired, we can independently compute all the
eigenvectors. The Godunov Inverse Iteration, on the other hand, requires a
special treatment of the inverse iteration. On each step of the inverse iter-
ation we need to solve a linear system of equations with tridiagonal matrix
and perform the MGS reorthogonalization, which can bring up operation
count to O(n?) in the worst case. Clearly, the inverse iteration is the most
expensive step of the Godunov Inverse Iteration, and a parallel version of
the algorithm will greatly depend on efficient implementation, as well as
on optimal integration of the Godunov step. There are two ways to imple-
ment the Godunov Inverse Iteration — one is a truly parallel implementation
that targets the efficient implementation of the inverse iteration when each
processor gets a part of the matrix, and all eigenvalues, first making a con-
tribution to the computation of a part of each of the Godunov’s eigenvector,
followed by the inverse iteration step, were again a tridiagonal solver and
the MGS will act on the assigned part of the matrix in parallel. The other
way is to sequentialize the algorithm, by distributing subsets of eigenvalues
corresponding to the desired eigenvectors and vectors containing diagonals
of the tridiagonal matrix to the processors. Neither scheme is superior for all
the cases. One approach can be chosen on the other, depending on the size
of a problem, the cost of having idle processes on the reorthogonalization
step and the cost of data transposition in the sequentialized implementa-
tion on one hand, and the cost of extra communication overhead during the
Sturm sequence and the Godunov vector computations in the truly parallel
implementation.

5. Conclusions

The Godunov method for real symmetric matrices produces accurate eigen-
vector approximations, but usually these vectors have fewer digits of preci-
sion than eigenvectors computed according to some of the inverse iteration
implementations. Designed for unreduced matrices, in the finite precision



50 A.M. Matsekh, E.P. Shurina

the Godunov method produces almost colinear eigenvectors corresponding
to closely clustered and computationally coincident eigenvalues. In the ab-
sence of directed rounding the Godunov method may produce non-numeric
output. At the same time the choice of the initial vector in the Inverse
Iteration algorithms does not ensure that the starting vector has a nontriv-
ial component in the direction of the solution, and the algorithms do not
always converge. The inverse iteration is very sensitive to the accuracy of
the shift — we show that for eigenvalues computed by the bisection method
with ensured accuracy in the order of machine precision the LINPACK and
the EISPACK inverse iteration algorithms may break down. The Godunov
Inverse Iteration algorithm was designed to solve these problems. Changing
any non-numeric components of the Godunov eigenvectors to uniformly dis-
tributed random numbers, we apply the inverse iteration to those vectors,
which usually attain the desired error bounds in one step, in contrast with
other implementations of the inverse iteration algorithm which require a few
more steps to achieve the same accuracy. The Godunov Inverse Iteration
is fairly robust with respect to the choice of the inverse iteration shift —
we use the right-hand bounds of the eigenvalue intervals computed by the
bisection method as extremely accurate shifts in the Godunov Inverse Iter-
ation. We resort to reorthogonalization within the iteration only in cases of
computationally coincident or closely clustered eigenvalues. As the result,
the Godunov Inverse Iteration algorithm produces accurate and robust so-
lutions to the symmetric eigenvalue problem with higher accuracy than the
Godunov method and in a fewer steps than the existing implementations of
the inverse iteration algorithm.
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