
Bull. Nov. Comp. Center, Comp. Science, 19 (2003), 39{50c 2003 NCC PublisherThe Godunov Inverse Iteration algorithmfor symmetric tridiagonal matricesAnna M. Matsekh, Ella P. ShurinaWe have developed a hybrid procedure based on the Godunov algorithm forcomputing eigenvectors of tridiagonal symmetric matrices and inverse iteration,which we call the Godunov Inverse Iteration algorithm. It employs the inverse iter-ation to improve the accuracy of eigenvectors computed according to the Godunovmethod with the embedded Modi�ed Gram-Schmidt procedure to reorthogonalizeeigenvectors corresponding to computationally coincidental eigenvalues and whichmay be missing a few digits of precision due to the round-o� errors. We presentsome experimental results to illustrate that the new hybrid method produces re-sults superior to both the Godunov method and standard implementations of theinverse iteration just on an iterative step. We also discuss some issues involved inthe parallel implementation of the new method.1. The Godunov methodConsider the fundamental algebraic eigenvalue problem, in whichAx = �x (1)for real symmetric matrices A 2 Rn�n. There always exists a real orthogonaltransformation X 2 Xn�n such that the matrix A is diagonalizable, that is,XTAX = diag(�i); (2)where eigenvalues �i, i = 1; : : : ; n, are all real. The Godunov method em-ploys the Rayleigh{Ritz scheme to solve problem (1) with a real symmetricmatrix A in three steps:(i) compute the orthonormal transformation Q such that matrix T =QTAQ is tridiagonal;(ii) solve the eigenproblem Tu = �u;(iii) take (�;Qu) as approximation to the eigenpair (�; x).The Godunov method [1] was designed to compute eigenvectors of unre-duced symmetric tridiagonal matrices by a sequence of plane rotations onarchitectures that support an utmost precision and directed rounding. TheGodunov eigenvector approximation ui corresponding to the eigenvalue �iof the matrix T from the interval (�i; �i) such that



40 A.M. Matsekh, E.P. Shurinaj�i � �ij � "machkTk2; (3)determined by a Sturm-sequence-based bisection procedure, is found recur-sively from the two-sided Sturm sequence Pk(�i), i; k = 1; : : : ; n, wherePk�1(�i) = ctg �i, settingui0 = 1 and uik = �uik�1 sign bk�1Pk�1(�i) (4)in just O(n) operations per a normalized eigenvector. The two-sided SturmsequenceP0(�i); : : : ; Pn�1(�i) def= P+0 (�i); : : : P+l (�i); P�l+1(�i); : : : P�n�1(�i) (5)is constructed from the left-sided and the right-sided Sturm sequencesP+k (�i), k = 0; : : : ; n � 1, and P�k (�i), k = n � 1; : : : ; 0. The left-sidedSturm sequence P+k (�i) is computed from minors of the matrix T � �iIaccording to the formulas [1]P+0 (�i) = jb0jd0 � �i ;P+k (�i) = jbkj(dk � �i � jbk�1j)P+k�1(�i) ;P+n�1(�i) = 1(dn�1 � �i � jbn�2j)P+n�2(�i) ; (6)while the right-sided Sturm sequence P�k (�i) is computed from minors ofthe matrix T � �iI as follows [1]P�n�1(�i) = dn�1 � �i;P�k (�i) = dk � �i � jbkj=P�k+1(�i)jbk�1j ;P�0 (�i) = d0 � �i � jb0j=P�1 (�i): (7)Although analytically equivalent, eigenvectors constructed in �nite pre-cision from the left-sided and the right-sided Sturm sequences for the sameparameter � are in general di�erent. An eigenvector with an ensured accu-racy is obtained when the left- and the right-hand sequences (5) are joint atan index l chosen according to the rule based on the Sturm theorem: for anyreal �0 the number of roots � of the n-th principal minor of the matrix T��I,such that � < �0 coincides with the number of non-positive values in theSturm sequence Pk(�i), k = 1; : : : ; n. Let l+ be the number of non-positiveelements in the sequence P+k (�i), k = 0; : : : ; n � 1, and n � 1 � l� be thenumber of non-negative elements in the sequence P�k (�i), k = n� 1; : : : ; 0.Then the left and the right sequences (5) are joint at the index l = l+ = l�,for which the following condition is satis�ed [1]:



The Godunov Inverse Iteration algorithm : : : 41(P+l (�i)� P�l (�i))(1=P�l+1(�i)� 1=P+l+1(�i)) � 0: (8)In our attempt to improve the Godunov method, we were motivated bythe fact that it is a direct method, and due to the round-o� errors in the�nite precision, the error bound [1]k(T � �kI)ukk2 � 13p3 "machkTk2kukk2 (9)is not attained. At the same time, the two-sided Sturm sequence compu-tations are susceptible to division by zero and overow errors, while forcomputationally coincident and closely clustered interior eigenvalues it pro-duces coincident or nearly coincident eigenvectors, taking no measures forreorthogonalization. In empirical studies, our implementation of the Go-dunov method consistently delivered residuals that were approximately twoorders of magnitude larger than those of the eigenvectors computed accord-ing to the LAPACK version of the inverse iteration [2] and the EISPACKversion of the inverse iteration TINVIT [3] for the same eigenvalue approxi-mations. In addition, due to the round-o� errors, the machine representationof the matrix T , that is, generally obtained either by the Householder or theLanczos tridiagonalization, has the form Tmach = T +G [4], wherekGk � kpn 2�t (10)and t is the number of mantissa bits in the machine representation ofoating-point numbers. Therefore in the �nite precision, the error bound(9) rather takes takes the following form:k(Tmach � �kI)ukk � 13p3 "machkTk2kukk2 + kpn 2�tkukk: (11)2. The Godunov Inverse Iteration algorithmThe Godunov Inverse Iteration is a hybrid procedure for computing accurateapproximations to the symmetric eigenvalue problem based on the algorithmby S.K. Godunov et al. [1] and on the inverse iteration. The GodunovInverse Iteration algorithm was constructed to avoid common computationalproblems arising both in the Godunov method and in the inverse iterationmethod. It can be viewed as an algorithm that delivers the reorthogonalizediteratively improved the Godunov eigenvectors.Instead of initiating an inverse iteration with a random vector, or solvinga linear system to �nd a starting vector, as is customary in many implemen-tations of the inverse iteration, we use the eigenvector, computed by theGodunov method in just O(n) arithmetic operations as an extremely accu-rate starting vector in the Inverse Iteration. Before the inverse iteration is



42 A.M. Matsekh, E.P. Shurinaapplied, any non-numeric elements of the Godunov eigenvectors are substi-tuted with random numbers. This semi-deterministic approach to �ndinginitial vectors to the inverse iteration reduces the number of steps necessaryfor the convergence to a desired accuracy. In most cases the convergence isattained after one step of inverse iteration.Typically, the inverse iteration breaks down when very accurate eigen-value approximations are used as shifts, because the corresponding system inthis case is nearly singular. To avoid such a breakdown, small disturbancesare usually introduced into the eigenvalues used as shifts in the inverse iter-ation to ensure the convergence to the corresponding Ritz vectors. But evensmall arbitrary departures of the Ritz values from exact eigenvalues mayproduce signi�cant departures of the Ritz vectors from actual eigenvectors.We solve this problem by using the right-hand bounds �k of the intervals�i 2 (�i; �i), i = 1; : : : ; n, as shifts that are ensured to be within the er-ror bounds (3). We apply the Modi�ed Gram{Schmidt reorthogonalizationfor the eigenvector approximations corresponding to multiple eigenvalues orto the clustered eigenvalues with small relative gaps. We use Wilkinson'sstopping criteria [4] kxkk1 � 2t=(100n) to verify that the convergence isattained. Below we present a formal description of the Godunov InverseIteration algorithm.Godunov Inverse Iteration algorithm Compute eigenvectors ui, i =1; : : : ; n, of the tridiagonal matrix T = T T 2 Rn�n with the main diagonald and the codiagonal b on a processor with the machine precision "mach andt mantissa bits.godunov_inverse_iteration(d, b, n)bisection(d, b, n)for (i=1, i<=n, i++)�nd eigenintervals (�i; �i) that contain eigenvalues �i 2 (�i; �i)s.t. k�i � �ij � "machkTk2, i = 1; : : : ; n.endgodunov_eigenvector_method(d, b, n, �, �)for (i=1, i<=n, i++)compute the two-sided Sturm sequence Pn(�i):P+1 (�i) = jb1j=(d1 � �i),P+k (�i) = jbkj=(dk � �i � jbk�1j)P+k�1(�i), k = 2; 3; : : : ; n� 1,P+n (�i) = 1=(dn � �i � jbn�1j)P+n�1(�i),P�n (�i) = dn � �i,P�k (�i) = (dk � �i � jbkj=P�k+1(�i))=jbk�1j, k = n� 1; n� 2; : : : ; 2,P�1 (�i) = d1 � �i � jb1j=P�2 (�i)



The Godunov Inverse Iteration algorithm : : : 43�nd l = l+ = l� s.t. (P+l (�i)� P�l (�i))(1=P�l+1(�i)� 1=P+l+1(�i)) � 0set P1(�i); : : : ; Pn(�i) def= P+1 (�i); : : : P+l (�i); P�l+1(�i); : : : P�n (�i)compute the Godunov eigenvector ui: ui1 = 1,for (k=2, k<=n, k++)uik = �uik�1 sign(bi�1)=Pi�1(�i)endendinverse_iteration(d, b, u, �)/* Preprocessing step */for (i=1, i<=n, i++)for (k=1, k<=n, k++)if uik is not a machine numberthen set uik to a random uniform number from (0; 1)enduse the right ends of the eigenintervals as shifts: i = �iperturb the computationally coincident eigenvalues:if (i > 0 \ ji � i�1j � 10"machjij)then i = i�1 + 10"machjijend/* Inverse iteration step */k = 0, � = 2t=(100n)dok = k + 1Solve (T � iI)z = ukThe Modi�ed Gram-Schmidt reorthogonalization stepfor (j=1, j < k, k++)if jj � kj � kTk1=1000then z = z � (z; uj)ujenduk = z=kzk2while (kzk1 > �)3. Experimental resultsWe have implemented and tested the Godunov method, the Godunov InverseIteration algorithm, the inverse iteration algorithm with random startingvectors which we call the Random Inverse Iteration algorithm (our imple-mentation of the LAPACK procedure xSTEIN [1], and the inverse iterationalgorithm with initial vectors found as direct solution to the eigenproblem,which we call the Direct Inverse Iteration algorithm (our implementation



44 A.M. Matsekh, E.P. Shurinaof the EISPACK procedure TINVIT [3], in ANSI C (GNU C compiler) inIEEE double precision and tested these programs on an IntelR XeonTM CPU1500MHz processor.To make a fair comparison, we compute eigenvalue approximations tothe symmetric eigenproblemAxk = �kxk; k = 1; 2; : : : ; n; (12)only once and use these eigenvalues to compute eigenvectors using four dif-ferent routines, while in all the three inverse iteration implementations weuse the same direct solver for systems of linear algebraic equations withtridiagonal symmetric matrices. We use the Householder tridiagonalizationwith dense matrices and restarted the Lanczos procedure with selective re-orthogonalization with sparse matrices.Following Godunov [1], we have implemented the bisection algorithm to�nd the intervals (�i; �i) containing the eigenvalues �i of the tridiagonalmatrix T = ~QTA ~Q, with the ensured accuracyj�i � �ij � "machkTk2; i = 1; : : : ; n; (13)where "mach is the unit round-o� error. The bisection algorithm requiresO(tn2) operations, where t is the number of bits of precision in a computerrepresentation of oating point numbers.In both the original Godunov method and in the new Godunov InverseIteration procedure we used eigenintervals (�i; �i) to compute the corre-sponding eigenvectors, while in the Random Inverse Iteration and the Di-rect Inverse Iteration versions of the inverse iteration algorithm we used�i = (�i + �i)=2, i.e., a typical choice for the i-th eigenvalue approximationin the inverse iteration implementations. If the analytical solution to a testeigenvalue problem is available, we report the accuracy of the computedeigenvalues as the maximum absolute deviation of the computed eigenvalueapproximation �i = (�i + �i)=2 from its analytical counterpart. If the ana-lytical solution is not available we report the ensured accuracy with whicheigenintervals (�i; �i) were computed. To determine the orthogonality of thecomputed eigenvectors ~X, we consider the maximum euclidean vector normerr1 def= maxk k( ~XT ~X � I)ekk2 (14)of the matrix ~XT ~X � I, which represents a deviation of the computed basis~X from the standard orthonormal basis I comprised of the unit vectors ek:I = jekj, k = 1; 2; : : : ; n.To determine the accuracy of the computed eigendecomposition~XTA ~X = diag(~�i) of the eigenproblem we consider a maximum absoluteresidual error of the computed eigenpairs (~�k; ~xk) in the euclidean norm:



The Godunov Inverse Iteration algorithm : : : 45err2 def= maxk k(A~xk � ~xk~�k)k2maxk j~�kj : (15)In all the tests presented below, the Godunov Inverse Iteration procedureconverged to desired accuracy in just one step, while the results were almostas accurate, and in a number of cases superior to the ones obtained with theRandom Inverse Iteration and Direct Inverse Iteration.Example 1. The tridiagonal symmetric eigenproblem Rx = �x, �(R) =� cos(k�=(n+ 1)), k = 1; : : : ; n,R = 0BBBBBBBB@ 0 0:5 � � � 00:5 0 . . . .... . . . . . . . .... . . . . . . 0:50 � � � 0:5 0
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Figure 1. Eigenvalues ~�(R) computed by the bisection method for n = 1000The problem of �nding eigenvalues and eigenvectors of tridiagonal sym-metric matrices with a zero main diagonal, in the so-called Golub{Kahanform [5], which arises in singular-value computations for bidiagonal ma-trices, and, generally, for non-symmetric matrices, presents a number ofcomputational challenges. In Example 1, we compare the eigenvectors com-puted with the Godunov Inverse Iteration method against the eigenvectorscomputed according to the Godunov method, and Direct and Random In-verse Iteration algorithms for the same approximations of the eigenvalues of1000 � 1000 tridiagonal matrix R which has zero diagonal entries and theentries equal 0:5 on the codiagonals. The eigenvalues of this matrix coin-cide with zeros of the Chebyshev polynomials of the second kind, and so we



46 A.M. Matsekh, E.P. Shurinawere able to compare the analytical solution against eigenvalues computedwith our bisection routine. Test results for this example are summarizedin Table 1. For the eigenvalue approximations computed with a maximumabsolute deviation of 3.3307e�16 from the analytical solution, some of theDirect Inverse Iteration and Random Inverse Iteration eigenvectors X didnot converge and were set to zero, which is indicated by the fact that theorthogonality measure equals 1 in these tests.Table 1. Error estimates for the eigenvectors of the matrix R (n = 1000), cor-responding to the eigenvalues ~� = ~�(R) computed with the speci�ed maximumabsolute deviation �(�) from the exact eigenvalues � = �(R)Algorithm err1 err2 # iter.�(�) = 3.3307e�16The Godunov Method 1.1535e�12 2.9458e�11 {Direct Inverse Iteration 4.3392e�12 1.0000e+00 1Random Inverse Iteration 2.3845e�16 1.0000e+00 3Godunov Inverse Iteration 2.3461e�16 1.1138e�14 1�(�) = 4.9960e�16The Godunov Method 2.0175e�12 4.8818e�11 {Direct Inverse Iteration 5.9214e�12 8.2480e�11 1Random Inverse Iteration 2.7557e�16 2.2042e�14 3Godunov Inverse Iteration 2.6821e�16 1.0970e�14 1The Godunov method and the Direct Inverse Iteration produced eigen-vector approximations that were accurate only to 12 digits of machine preci-sion, yet the Godunov eigenvectors satis�ed the orthogonality measure to 11digits of precision. In just one step of iterative improvement, the GodunovInverse Iteration produced eigenvectors that satis�ed the original problem to16 digits of machine precision, just as the Random Inverse Iteration solutiondid after three iteration steps. In addition, the Godunov Inverse Iterationsolution satis�ed the orthogonality measure to 14 digits of machine precision.When eigenvalues were computed with slightly lower precision (with amaximum absolute deviation of 4.9960e�16 from the analytical solution)all the three versions of the Inverse Iteration converged to a high accuracy,and again, the Godunov Inverse Iteration converged in only one step tovirtually the same high accuracy as the Random Inverse Iteration in threesteps. Clearly, the conventional Inverse Iteration implementations appear tobe very sensitive to the accuracy with which eigenvalue approximations arecomputed, while the Godunov Inverse Iteration exhibits a robust behavior.Example 2. Dense symmetric eigenproblem Ux = �x:Uij = � 1=(i+ j � 1); i = j;�1=(i+ j � 1); i 6= j;
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Figure 2. Eigenvalues ~�(U) computed by the bisection method for n = 100In Example 2 we compare the Godunov method, the Godunov InverseIteration, the Random Inverse Iteration, and the Direct Inverse Iteration onan eigenvalue problem with a dense symmetric 100 � 100 matrix U whichwas derived from the Hilbert matrix: U has entries equal to 1=(i+ j � 1) onthe main diagonal and o�-diagonal elements equal to �1=(i + j � 1). Thisis an example of a matrix with clustered eigenvalues which makes a gooddemonstration of capabilities of both the Godunov and the Godunov In-verse Iteration algorithms. The Godunov method and the Inverse Iterationprocedures were applied to the tridiagonal matrix obtained from the matrixU by the Householder reduction. Test results for this example are sum-marized in Table 2: here we see again that the Godunov Inverse Iterationsolution satis�es the original problem and the orthogonality condition to 15digits of machine precision in one step, virtually the same results as thoseproduced by the Random Inverse Iteration in three steps. The Godunovmethod and the Direct Inverse Iteration delivered errors about two ordersof magnitude higher than the Godunov Inverse Iteration and the RandomInverse Iteration.Table 2. Error estimates for the eigenvectors of the matrix U (n = 100), corre-sponding to the eigenvalues ~� = ~�(U) from the eigeninterval computed with ensuredaccuracy 8.8818e�16Algorithm err1 err2 # iter.The Godunov Method 3.2466e�13 8.0953e�12 {Direct Inverse Iteration 5.1916e�14 1.2718e�11 1Random Inverse Iteration 9.1271e�16 2.8498e�15 3Godunov Inverse Iteration 1.0023e�15 2.7849e�15 1Example 3. The block-diagonal symmetric eigenproblem Px = �x,�(P ) = c2 + 2c0 cos i�pn+ 1 + 2c1 cos j�pn+ 1 ; i; j = 1; : : : ;m;
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Figure 3. Eigenvalues ~�(P ) computed by the bisection method for c2 = 1,c0 = �0:33, c1 = �0:17, and n = 225In Example 3 we provide the results of the Godunov Inverse Iterationprocedure used to solve a sparse symmetric eigenproblem Px = �x, trans-formed to the equivalent tridiagonal problem by the Lanczos method withselective reorthogonalization. The matrix P 2 Rn�n, n = m2, is a version ofthe matrices arising in the �nite di�erence approximations of the Laplacianon a rectangle. It has tridiagonal m�m blocks on the main diagonal and thecodiagonals located m columns and m rows apart from the main diagonal.Table 3. Error estimates for the eigenvectorsof the matrix P with c0 = �0:33, c1 = �0:17,corresponding to the eigenvalues ~� computedwith a maximum absolute deviation �(�) =6.6613e�16 from the exact eigenvalues � bythe Godunov Inverse IterationParameters err1 err2n = 225, c2 = 1 4.6356e�16 3.2918e�15n = 400, c2 = 0:5 5.2595e�16 4.8720e�15
This is a very common test ex-ample with known analyticalsolution and makes a good il-lustration of the correctness ofour routines. Test results forthis example are summarizedin Table 3: for both sets of pa-rameters the original problemwas satis�ed to 16 digits andthe orthogonality condition to15 digits of precision.



The Godunov Inverse Iteration algorithm : : : 494. The parallel implementation of the GodunovInverse IterationThe present-day implementations of eigensolvers for large sparse matricesare usually designed for distributed memory multicomputers which exchangedata through message passing. The parallel implementation of the Godunovalgorithm on such an architecture should not pose any challenges { the Go-dunov eigenvectors can be computed independently in only 11n oatingpoint operations per eigenvector. By distributing a copy of two vectorscontaining, respectively, elements of the main diagonal and the codiagonalof the tridiagonal matrix to all p precesses and the sets of k eigenvalues forwhich n = pk eigenvectors are desired, we can independently compute all theeigenvectors. The Godunov Inverse Iteration, on the other hand, requires aspecial treatment of the inverse iteration. On each step of the inverse iter-ation we need to solve a linear system of equations with tridiagonal matrixand perform the MGS reorthogonalization, which can bring up operationcount to O(n3) in the worst case. Clearly, the inverse iteration is the mostexpensive step of the Godunov Inverse Iteration, and a parallel version ofthe algorithm will greatly depend on e�cient implementation, as well ason optimal integration of the Godunov step. There are two ways to imple-ment the Godunov Inverse Iteration { one is a truly parallel implementationthat targets the e�cient implementation of the inverse iteration when eachprocessor gets a part of the matrix, and all eigenvalues, �rst making a con-tribution to the computation of a part of each of the Godunov's eigenvector,followed by the inverse iteration step, were again a tridiagonal solver andthe MGS will act on the assigned part of the matrix in parallel. The otherway is to sequentialize the algorithm, by distributing subsets of eigenvaluescorresponding to the desired eigenvectors and vectors containing diagonalsof the tridiagonal matrix to the processors. Neither scheme is superior for allthe cases. One approach can be chosen on the other, depending on the sizeof a problem, the cost of having idle processes on the reorthogonalizationstep and the cost of data transposition in the sequentialized implementa-tion on one hand, and the cost of extra communication overhead during theSturm sequence and the Godunov vector computations in the truly parallelimplementation.5. ConclusionsThe Godunov method for real symmetric matrices produces accurate eigen-vector approximations, but usually these vectors have fewer digits of preci-sion than eigenvectors computed according to some of the inverse iterationimplementations. Designed for unreduced matrices, in the �nite precision



50 A.M. Matsekh, E.P. Shurinathe Godunov method produces almost colinear eigenvectors correspondingto closely clustered and computationally coincident eigenvalues. In the ab-sence of directed rounding the Godunov method may produce non-numericoutput. At the same time the choice of the initial vector in the InverseIteration algorithms does not ensure that the starting vector has a nontriv-ial component in the direction of the solution, and the algorithms do notalways converge. The inverse iteration is very sensitive to the accuracy ofthe shift { we show that for eigenvalues computed by the bisection methodwith ensured accuracy in the order of machine precision the LINPACK andthe EISPACK inverse iteration algorithms may break down. The GodunovInverse Iteration algorithm was designed to solve these problems. Changingany non-numeric components of the Godunov eigenvectors to uniformly dis-tributed random numbers, we apply the inverse iteration to those vectors,which usually attain the desired error bounds in one step, in contrast withother implementations of the inverse iteration algorithm which require a fewmore steps to achieve the same accuracy. The Godunov Inverse Iterationis fairly robust with respect to the choice of the inverse iteration shift {we use the right-hand bounds of the eigenvalue intervals computed by thebisection method as extremely accurate shifts in the Godunov Inverse Iter-ation. We resort to reorthogonalization within the iteration only in cases ofcomputationally coincident or closely clustered eigenvalues. As the result,the Godunov Inverse Iteration algorithm produces accurate and robust so-lutions to the symmetric eigenvalue problem with higher accuracy than theGodunov method and in a fewer steps than the existing implementations ofthe inverse iteration algorithm.References[1] Godunov S.K., Antonov A.G., Kiriljuk O.P., Kostin V.I. Guaranteed Accu-racy in the Solution of SLAE in Euclidean Spaces. { Novosibirsk: Nauka, 1988(in Russian).[2] Anderson E., Bai Z., Bischof C., et al. LAPACK Users' Guide: Second edition. {Philadelphia: SIAM, 1995.[3] Smith B.T., Boyle J.M., Dongarra J.J., et al. Matrix eigensystem routines {EISPACK guide / Lecture Notes in Computer Science. { Berlin: Springer-Verlag, 1976. { Vol. 6.[4] Wilkinson J.H. The Algebraic Eigenvalue Problem. { Oxford: University Press,1965.[5] Fernando K.V. Accurately counting singular values of bidiagonal matrices andeigenvalues of skew-symmetric tridiagonal matrices // SIAM J. on Matrix Anal-ysis and Applications. { 1998. { Vol. 12, ü 3. { P. 373{399.


