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The simulation of a laminar flow in a local
constriction of a pipe by a cellular automaton∗

Yu.G. Medvedev

Abstract. A two-dimensional case of the process of laminar flow passing through
a pipe constriction is investigated. The two-dimensional statement corresponds
to the case with a three-dimensional flow between two parallel planes. A cellular
automaton model of a flow is used, which has an integer alphabet of cell states and
a synchronous operation mode. The dependences of the velocity and pressure on
the coordinate along the direction of a flow for different constriction clearances and
different pressure gradients at the ends of the pipe are obtained.

Introduction

At present, the possibility of applying discrete methods of simulation [1] to
problems of spatial dynamics [2] is being actively studied, since these meth-
ods make it possible to obtain relatively simple software implementations
on modern supercomputers [3]. One of the discrete models — the cellular
automaton model of the gas flow FHP-MP [4] is used in this study.

The objective of this paper is to check the possibility of using the model
under study in conditions of a flow in a straight pipe at a constant temper-
ature in a subcritical mode; under these conditions, the critical Reynolds
number makes up several thousands[5].

This paper investigates a gas flow passing in the space between parallel
flat walls (Figure 1a).

Figure 1. A flow diagram between
parallel planes: a) without constriction
in the three-dimensional form; b) with-
out constriction in the two-dimensional
form; c) with constriction in the two-
dimensional form

This flow corresponds to the two-dimensional case shown in Figure 1b,
and is described in [5, §17]. Since the characteristics of the three-dimensional
flow between two parallel planes and in a pipe with a circular cross-section,
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not considered here, differ only in coefficients, for brevity we will call the
described two-dimensional structure a pipe. So, the constriction or a variable
distance between the planes in the three-dimensional case corresponds to the
variable diameter of the two-dimensional pipe (Figure 1c).

The sought for dependencies are the distribution of velocity and pressure
along the direction of a flow for different constriction clearance and different
pressure gradients at the ends of the pipe.

We pose the problem of simulating a flow with the boundary conditions
just described using the FHP-MP discrete cellular automaton model and
comparing it with the known results obtained using continuous methods.
Such a comparison is needed as part of the investigation into the feasibility
of using the discrete model.

1. Description of the model

The two-dimensional simulating area is covered
with hexagonal cells c0, c1, . . . , c6, . . . arranged in a
regular structure, each one having six neighbors (Fig-
ure 2).

Each cell is assigned to one of the three types, and
it performs a simple transition function, depending on
its type:

Figure 2

• conventional–– the flow spreads through such cells;

• wall –– the boundaries of the pipe and obstacles are built from such
cells;

• valve–– gas enters or exits the pipe through such cells.

The state of a cell c0 is a vector of six integers, those denote the number
of discrete model particles with the unit mass and the unit velocity directed
towards one of the six neighboring cells c1, . . . , c6. In Figure 2, these direc-
tions for the cell c0 are shown by arrows.

The cellular automaton operates in a synchronous mode [6] using an
iterative transition function. The iteration has two steps: collision and
propagation.

Upon collision, the velocity vectors of particles in each cell are changed,
regardless of the states of the other cells:

• conventional cell–– a new state is equiprobably selected from all possi-
ble states that preserve the total mass and total momentum of particles
in the cell;

• wall –– in a new state, the velocity vector of each particle is replaced
by a counter-directional one;
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• valve–– in a new state, a predetermined number of particles is installed
into the cell, called the nominal concentration of this valve.

Upon propagation, each particle from the cell c0 moves to one of the
neighboring cells c1, . . . , c6 in the direction of its velocity vector. Particles
from the neighboring cells with oppositely directed velocity vectors, in turn,
move into the cell c0, while no particles interact with each other.

The simulation result is a velocity
field and a pressure field obtained after
the required number of iterations in the
following way. In Figure 3, the points
at which the value of the velocity and
the pressure are calculated are indicated;
those ones form the corresponding fields.
An averaging neighborhood at each such
point is a set of cells whose centers are
located at a distance from this point no
further than a certain averaging radius.

Figure 3. Averaging vicinities

The vicinities are indicated in Figure 3 by circles. Depending on the step
and size, the averaging vicinities can intersect or be at some distance from
each other.

The flow velocity at a point is the average velocity of particles located
in the cells of the averaging neighborhood. The average velocity, in contrast
to the velocity of the model particles, can be directed not only towards
one of the neighboring cells, and its modulus does not have to be equal to
unity. The gas pressure at a point is proportional to the concentration of
the particles located in the cells belonging to the averaging neighborhood
centered at this point.

Since the velocity of particles has a discrete direction and modulus, and
the mass of particles is unity, the resulting averaged values of velocity and
concentration will have some inaccuracy, called the discrete model noise.

The larger is the averaging radius, the more discrete particles are in-
volved in calculating each value of the averaged velocity and concentration.
Consequently, the less the discrete noise of the model is expressed; but at
the same time the high-frequency component of the flow characteristics is
roughened up, i.e. small vortices, pressure drops, etc. vanish.

In addition, if cells of obstacles or valves fall into the vicinity of the
averaging, then the averaged value may be calculated incorrectly; since par-
ticles from cells located on different sides of this obstacle can be involved,
where, possibly, the flow moves in other direction. Therefore, in this case, we
assume the averaged values of velocity and concentration to be undefined.
This condition does not allow calculating the velocity and pressure fields at
a distance less than the averaging radius from obstacles.
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2. Computer simulations

The simulating process takes place at three stages [7]:

1. Setting initial conditions.

2. Launching the simulator.

3. Averaging and visualization of the result.

These steps for the case under study are described below.

Figure 4. Computer simulation
scheme

2.1. Initial conditions. Figure 4
schematically shows the cellular array,
on which the pipe walls are marked. Di-
mensions of the cellular array are given
in relative model length units, which
are equal to the distance between the
centers of the neighboring cells:

• pipe length–– 5000 cells;

• 0000–1000 cells –– wide part;

• 1000–2000 cells –– constriction;

• 2000–3000 cells –– constricted part;

• 3000–4000 cells –– expansion;

• 4000–5000 cells –– wide part;

• diameter of the wide part is 500 cells;

• diameter of the constricted part D = 100, 200, 300, or 400 cells (for
four simulations).

As before, a pipe means a 2D structure that describes an analogue of a
3D flow between two parallel planes. Accordingly, the distance between the
planes in this section of this pipe will be called the diameter.

The walls were defined as two polylines with vertices in the following
coordinates for each of the four simulations.

Simulation 1. Clearance of the constricted part D = 100 cells.
1st: (0, 0), (1000, 0), (2000, 200), (3000, 200), (4000, 0), (5000, 0).
2nd: (0, 500), (1000, 500), (2000, 300), (3000, 300), (4000, 500), (5000, 500).

Simulation 2. Clearance of the constricted part D = 200 cells.
1st: (0, 0), (1000, 0), (2000, 150), (3000, 150), (4000, 0), (5000, 0).
2nd: (0, 500), (1000, 500), (2000, 350), (3000, 350), (4000, 500), (5000, 500).
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Simulation 3. Clearance of the constricted part D = 300 cells.
1st: (0, 0), (1000, 0), (2000, 200), (3000, 200), (4000, 0), (5000, 0).
2nd: (0, 500), (1000, 500), (2000, 400), (3000, 400), (4000, 500), (5000, 500).

Simulation 4. Clearance of the constricted part D = 400 cells.
1st: (0, 0), (1000, 0), (2000, 50), (3000, 50), (4000, 0), (5000, 0).
2nd: (0, 500), (1000, 500), (2000, 450), (3000, 450), (4000, 500), (5000, 500).

In all simulations, the inlet valve is located on the segment with co-
ordinates (0, 0) – (0, 500), the outlet valve is located on the segment with
coordinates (5000, 0) – (5000, 500).

2.2. Simulation parameters. To establish a stationary flow mode, 100K
iterations were performed in each simulation.

The nominal concentration of the inlet valve was set to 60 particles per
cell, and the nominal concentration of the outlet valve was 20 particles per
cell. Due to the peculiarities of the software implementation of the valve
function, the observed averaged concentration of particles near the inlet and
outlet valves does not coincide with the nominal concentration of the valves
and is given in the table below.

The sought for dependencies are the distribution of velocity and pressure
along the direction of flow for different constriction clearance and different
pressure gradients at the ends of the pipe.

To calculate the averaged particle concentration, the averaging radius
was chosen to be equal to five cells. To calculate the average particle velocity,
the averaging radius was chosen equal to twenty cells.

2.3. Averaging and visualization of the result. Computer-aided sim-
ulation was carried out with a cellular array of 5000 by 500 cells. The pipe
constriction clearance varied from 100 to 400 cells. The velocity field and
the pressure field of the investigated flow are shown in Figure 5. The length

Figure 5. The velocity field and the pressure field of the flow obtained as a result
of computer simulation for different diameters of the constricted part of the pipe
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and direction of each vector shown in the figure are proportional to the
magnitude and direction of the flow velocity at the corresponding point.

Background brightness is proportional to pressure: the darker areas cor-
respond to the lower gas pressure. The figure shows that for each simulation
the left part of the pipe is lighter than the right one, i.e. the pressure in it
is higher, which corresponds to the physical view of the process. This effect
predictably appears to be greater for those simulations in which the pipe is
more constricted.

3. Discussion of the results

The computer simulation was carried out with a cellular array of 5000 ×
500 cells. The pipe constriction clearance varied from 100 to 400 cells.
The velocity field and the pressure field of the investigated flow are shown
in Figure 5. The length and direction of each vector shown in the figure
are proportional to the magnitude and direction of the flow velocity at the
corresponding point.

Background brightness is proportional to pressure: the darker areas cor-
respond to the lower gas pressure. The figure shows that for each simulation
the left part of the pipe is lighter than the right one, i.e. the pressure in it
is higher, which corresponds to the physical view of the process. This effect
predictably appears to be greater for those simulations in which the pipe is
more constricted.

Figure 6 shows an enlarged rectangular fragment of the cellular array
used in simulation 1 with the upper left and the lower right corners coor-
dinates equal to (3500, 350) and (3750, 450), respectively, in which a more
detailed averaging of the velocity and concentration of particles was per-

Figure 6. A fragment of the velocity and pressure fields
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formed. It can be seen from the figure that the flow turned to be laminar:
no vortices are formed in it; in the expanding section of the pipe, the gas
moves uniformly even near the wall.

As is mentioned above, the correct values of the averaged velocity and
pressure cannot be obtained at a distance less than the averaging radius
from obstacles (5 cells for pressure and 20 cells for velocity in our case);
thus, a wall with a thickness equal to one cell is depicted with two addi-
tional averaging radii over its thickness ( 11 cells, 5 additional cells in each
direction), and the boundary of the velocity field is 20 cells from the wall
(or 15 cells from the boundary of the wall image).

The table shows relationship between the
constriction clearance and the gas pressure gra-
dient dp = Pin − Pout at the ends of the pipe,
where Pin and Pout are the pressure at the in-
let and the outlet of the pipe, respectively (see
Figure 4). These pressures depend on many
factors –– valve nominal pressure, flow velocity

D dp k

100 23.8 0.28
200 9.8 0.14
300 3.7 0.11
400 1.9 0.10

and other characteristics. The experimentally obtained normalization coef-
ficient k is also indicated for the flow velocity; it equalizes the wide section
velocity for all the four simulations k1v1 = k2v2 = k3v3 = k4v4 = 1, where
ki and vi are the normalization coefficient and the velocity in a wide section
of the pipe in the ith simulation. The velocity is given in relative model
units, the coefficient k is dimensionless.

The distribution of the longitudinal component of the flow velocity along
the pipe, averaged over the cross-section, obtained in each of the four sim-
ulations, is shown in Figure 7. It can be seen from the figure that, using
the normalization coefficients, it was possible to combine the lower parts of
the graphs, corresponding to the velocities in wide sections at the beginning

Figure 7. Velocity distribution along the direction of flow for different constriction
clearance
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and at the end of the pipe. In the middle of the pipe, in its constricted part,
the flow velocity is maximum in each of the simulations. A comparison of
the simulations also shows that this velocity has an inverse dependence with
the diameter of the constricted part of the pipe, which corresponds to the
existing concepts of the physics of the process.

Conclusion

The velocity and pressure fields of the gas in a two-dimensional pipe are
obtained. Velocity and pressure distributions along the flow direction are
constructed for different constriction clearances and different pressure gradi-
ents at the ends of the pipe. The possibility of using the investigated model
under conditions of flow spreading in a straight pipe at a constant temper-
ature in a subcritical mode with a critical Reynolds number about several
thousands is shown. The simulation results are consistent with the known
data. This allows us to conclude that the FHP-MP cellular automaton gas
flow model adequately simulates the laminar flow in a pipe.
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