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Some results of the group approach
in the kinematic seismic problem

A.G. Megrabov

On the basis of group bundle of the eikonal equation the new equations,
estimates and formulas are obtained which give a new description of the
direct and inverse kinematic seismic problem (geometrical optics). The pa-
per given is the summary of these results. They make it possible to reduce
the direct and inverse problems to some boundary-value problems for the
equations obtained.

Introduction

This paper is the summary of the results in the kinematic seismic (geometri-
cal optics) problem obtained by the author on the basis of the group bundle
of the eikonal equation in the space of the variables (¢, z, y, T, n?). Here t is
the source parameter; z, y are the Cartesian coordinates; r = 7(t, z, y) is the
ware time field, and n(z,y) = 1/c(z,y), where ¢(z, y) is the speed of wave
propagation. This approach for investigation of inverse and direct problems
for differential equations is suggested and applied in [1-7]; ibid., the group
bundle of a wide class of differential equations of mathematical physics is
constructed. Some of the results given here are stated in details in [1-7].
At this approach, we consider the initial eikonal equation as the equation
in two equal dependent variables: 7 = u! and n? = 42, Accordingly, the
group which is admitted by this equation is defined as a certain group G of
the point transformations of the space t, z, y, u!, u2, and the group bundle
is constructed relative to G. The properties of the group G are investigated
in [1, 2). The general theory of group bundles is stated in [8]. The group
terms are taken as in [8].

In Section 1, we state the quasilinear wave equation as the transforma-
tion of the eikonal equation by means of a certain differential change of
the independent and dependent variables. This change is generated by the
group bundle of the eikonal equation which is constructed in the explicit
form in [3]. The obtained quasilinear equation has some interesting proper-
ties. In particular, it admits the Lax representation as an L—A-pair. This
equation is the resolving system of the group bundle of the eikonal equa-
tion relative to the group G. As it is found in [3], for a large family {E}
of the differential equations E the corresponding resolving system (of the
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quasilinear differential equations) RE of group bundle of E relative to the
group G admits the Lax representation as an L-A-pair. (The notion of the
Lax pair plays an important role in the solution theory and in the theory of
nonlinear equations integrable by means of the method of inverse problem
[9]). A lot of classic equations of mathematical physics belong to the class
{EY}'. The eikonal equation is one element of this family. More detail about
this question one can find in [3, 5, 6].

Further, it is occurred that certain simple differential combinations U?,
U? of the function 7(t,z,y) along an arbitrary ray are the solutions of the
ordinary differential equations of the classic type, in particular, the Riccati
equation and the linear second-order equation

Urr + K(a:,y)U =0.

This fact is established in [3]. As it is occurred, the variable K(z,y), con-
tained in these equations of the classic form is the Gauss curvature of certain
surface which is defined by the medium characteristic n(z,y) [5]. The vari-
ables U, U?, K are the invariants of the group G.

Besides the function D* = n(z,y)D?*(t,z,y), where D(t, z,y) is the geo-
metric divergence of rays, also satisfies this second-order equation along an
arbitrary ray. That is why it is occurred that exactly the function K (z,y)
operates by the behavior of the geometric divergence D(t,z,y) (and the
function D*) and by its properties.

Applying the theory of such classic equations, we obtain as the conse-
quences the following results (Sections 2-9):

1. A new method of calculating the geometric divergence of the rays
D(t,z,y) in the direct problem.

2. The connection between the n(z,y) (K(z,y)) behavior and the ray
(and D(t,z,y)) properties.

3. The upper and lower estimates for D(t,z,y) and D* with its deriva-
tives.

4. The comparison estimates for D and D* in the different points of the
same ray.

5. The comparison theorems for the geometrical divergence D(t,z,)
(and D*) and its derivatives in the different rays of the same medium
n(z,y) and in the different media.

6. The connection of the equations obtained with the differential and
Riemann geometries.

7. The connection with the Yakobi equation known in the variational
calculus and analytical dynamics [10, § 36; 11, § 186].
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-

8. The series of the integral formulas in the local inverse problems. These
formulas give the expression of some functionals (the integrals along
the ray, along a two-dimensional domain and so on) from the func-
tion n(z,y) or from n(z,y), 7(t,z,y) in terms the data of the inverse
kinematic problem (the hodograph of the refracted waves).

9. The explicit formulas in the quadratures for the variables § = (D?)?2
and Ty as the functions of the new independent variable z = z(7) along
the ray and as the solutions of the equation S; + K = 0 and so on.

Also in the one-dimensional case n = n(y) and some explicit formulas
are obtained. In particular, they make it possible 1) to reduce the one-
dimensional inverse problem to the moment problem which has the explicit
solution; 2) to obtain the explicit expressions for the integrals of the form
J f(n) dS along a ray for the different functions f(n) in terms of the hodo-
graph function o(t, z) = 7(¢, z, 0).

Further, we state the closed scalar quasilinear differential equations for n
and for (A lnn)/n? as the functions of new independent ray (group) variables
t, 7, p = 7t (which are the invariants of the group G). Also the closed system
of the nonlinear first-order equations and the closed system of the quasilinear
second-order equations in the functions ¢ = (¢, 7, p), y = y(¢, 7, p) defining
the rays are obtained. Unlike the known ray equations they do not contain
n(z,y) which is unknown in the inverse problems. Also other systems of the
equations are stated (Section 7).

All these equations and formulas obtained give a new description of the
two-dimensional (direct and inverse) kinematic seismic problem (geometrical
optics) and make it possible to reduce these problems to some problems for
these equations.

Further, we shall consider smooth (classic) solutions. Let Au = ugz+uy,.

1. The basic variables and operators

Let ¢(z,y) = 1/n(z,y) be the speed of propagation of some signals in the
half-plane z,y > 0 which kinematics satisfies the Fermat principle. Suppose
that the point sources of signals are continuously distributed on the interval
[0,T] of the z-axis. Suppose also that ¢t = J' is the source parameter (its
z coordinate), and 7 = 7(t,z,y) = J? is a certain solution of the eikonal
equation

n(a:,y) 2n > 01 (1)
p = 7(t,z,y) = J® = —n(t,0)sin by, where 6 is the angle between the

positive direction of the y-axis and the tangent line to the ray (geodesic)
in the source point. The function r(t,z,y) is the time of the signal (wave)
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propagation along the ray (¢, p) which connect the points (¢,0) and (z,y).
The value p is the constant along any ray v(t,p) and is its parameter. We
suppose that the equalities z = z(t,7,p), y = y(¢,7,p) give a parameter
representation with the parameter 7 (22 4+ y2 = n~?) of the ray with the
vertex in the source z =t and the parameter p.

Let the functions h(t, 7, p), v(t, 7,p), U'(t, 7, p), U(t, 7, p) be defined by
the equalities

AT
h(t,r,p) = ?(t,w,y) = J4, v(t,T,p) = Tu(t,z,y) = J5, (2)

Ty Ttz — Tz Tt'y
nZ

-1
Ut r) =0, U= { b= ®
where we set z = z(¢,7,p) and y = y(t,7,p) in the right-hand sides. The
following equalities hold:

d(z,y) ____U_2 n2=P2+(U1)2
a(r,p)  n?’ of +y7

Let the operators A;, A;, A3 be defined by the equalities

i 1 0 i) 1 d (7]
A = E, Ag = ;2'(1'3;5;; + Ty%), Az = F(Ty%‘ - Txa—y) (4)

We have the identities A4;® = ﬁ,;(,o that hold for each smooth function
®(t,z,y) = ¢(t, 7, p), where

~ 0 0 d < 0 = 19 10
Al = E‘}‘p'a_r‘i'va_ps A2— a0 AS— Iroa. — a0 (5)

where v is the normal to the ray (¢, p).

The following statements are established by means of group bundle of
the eikonal equation in the variables ¢, z, y, u! = 7, u? = n? (some of them
are stated in details in [1-7]).

2. The quasilinear equations and the Lax pair

Theorem 1. Suppose that in some neighborhood of the point M (t,z,y) the
Junction 7(t,z,y) satisfies equation (1); the derivatives Ty, Tity, Ttwz, Ty,
Ttyys Nz, Ny are continuous; and J = 9(t,7,p)/0(t, x,y) = TuTyy — TyTex # 0
at the point M. Then in a certain neighborhood of the point M (t, T, p), where
t=t, 17=n1(tz,y), p=nltz,y) the function v satisfies the quasilinear
wave equation
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PUrr + Vst + VVpp — 2”1'”19 =0, (6)
and the functions U, U?, v = vy, v; = 1/U? defined by formulas (2), (3)
satisfy the equivalent systems
pUZ+ U+ Uy =0, UW?-UU!=1, )
vr = —(v2)%, Pz + vuay + var — vav, = 0. (8)
The derivatives entered in (6)—(8) are continuous.
The proof of Theorem 1 is given in [3, 5, 6] Equations (6)—(8) also follow
from the system _
Ajiz=0, Ay=0, (9)
Ut +y,=0, Uy, —z,=0. (10)
The equalities Ayz = 0, Ayy = 0, 2, = 7,/n?, y, = 7,/n?, zp/U? =
Ty /12, yp/U? = —1,/n? imply (9), (10).
Theorem 1 gives the local transformation of the eikonal equation (1) into
equation (6) or into (7), (8). However, equations (6)—(8) hold in whole if

the family of rays is regular (see Section 4).
We have

70

lim r’*+l@ = (-1)*kle?, k=0,1,2 (11)
37" - . 1 — Yy Ly &y
Ul=—-0, Ul=0, U?=0, Ul=-alforr=0, (12)

where o = {n?(t,0) — p?}'/2 = n(t,0) cosfp > 0.
Equation (6) and systems (7), (8) have some interesting properties:

2.1. For them there exists the so-called L-A-pair or the Lax representa-
tion. This means that there exist two linear differential operators L and A
acting on the functions of 7, p, with coefficients depending on the solution
of equation (6) (or (7), (8)) so that equation (6) (or (7), (8)) is equivalent
to the equation ‘ ‘

[L,Q—A]=0 - A = [A, L],

at at
where [ ] is the commutator. For (6) L and A are as follows:
SN S S N I |
Torr Topr 2lwv. 01 PO = Por p’

The operators L and A for (7), (8) are obtained from here after the change
vy = —(v2)?, v =U'/U?, vy = 1/U? The operator L = UL is self-adjoint,
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Lo = (o,U%), + ((ep/{fz)p,~anii if ®(¢,z,y) = (¢, 7,p), then Ly = A®/n?.
We also have L = A, A; + A3A3 + hA,.

2.2. Equation (6) can be written as the conservation law or in the divergent
form

div{(~vr) 2T+ p7 + vp)},
where £, 7, {7 are the orts.
2.3. After the renaming 7 =t, p = 2!, t = y and the change z = (21)2/2,
v(t, 7,p) = u(t,z,y) equation (6) becomes as follows

{us + wug + (23:)_1/211,3,}; — 3ugug = 0,

wnere u; + uu, is the left-hand side of the known nonlinear equation.
2.4. In the one-dimensional case n = n(y), we have r = r(z~t,y), p = —7,
V= Ty, ¢ =0, ¢ = 1, yy = 0; and instead of (6) we have the equation

PV77 + vUrp — 20,0, = 0 which has the hyperbolic type everywhere if v # 0,
otherwise it has the parabolic type (if v = 0, y, = 0). The equivalent system

vr = —(U?)~2, pU2? + (vU?), = 0 has the following conservation laws
3@(7,19, v, Uz) 6‘1’(7-7 p,v, Ug) _ 2
ar + 31) —f(T,p,U,U),
where 5
ce=P) v = p,
_ 2y_ 1 0% __FK%
f - pfo('UU ) (U2)2 av ’ fO(‘f) - E {;‘,

and F(§), ®o(£) are arbitrary differentiable functions. This means that
we have more than a countable set of‘ conservatiqn laws. We also have
Ul = (p* + (U')?), where 9(n?) = [nfa(n)]"!, y = f(n) is inverse to
n = n(y).

2.5. Equation (6) has the class of solutions of the type of traveling waves
v = V(ut+pBr, p) (p = const, B = const) satisfying the equation (u+8p) Vee+
VVep — 2VeV, = 0. Thus, the one-dimensional case satisfies the particular
class of such solutions with the parameters p =0, 8 = 1.

3. The Riccati equation and the linear equation

As it is occurred along each ray v(¢, p), the functions h, U, U2, v as the
functions 7 are the solutions of the linear ordinary differential equations of
the classic type.
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Theorem 2. Suppose that in some neighborhood of the ray v(t,p) : z =
z(t,T,p),y = y(t, 7, p) the solution v(t,z,y) of equation (1) and a function
n(z,y) are defined. Suppose also that the derivatives Tozz, Tozy, Toyys Tyyys
Nz, Nyy are continuous in y(t,p). Then the function h(t,,p) of the form
(2) satisfies the Riccati equation

hy + h? = -K(z,y), (13)

and h,, K are continuous in v(t,p). Moreover, if the derivatives Tizz, Tizy,
Tiyy are continuous, then U2 = hU? and the functions U'(t, T, p), U%(t, T, p),
of the type (3) form the fundamental system of solutions of the following
linear ordinary (with respect to 7) differential equation of second order

Urr + K(z,y)U =0, (14)

with the initial conditions (12), and the function v(t, 7, p) satisfies the equa-
tion 5
TTT 3 (VUrr .
frry= 2 - 2(2) < 2K (e,) (15)

vy 2\ v,

with the initial conditions (11), where {v,T} is the so-called differential
Schwarz invariant of equation (14). Here the function K(z,y) is defined
by the equality

Alnn(z,y)

K="

= JW (16)

This statement is formulated in [5, 6]. Note that equations (13), (14),
(15) are established in 1988 (see equalities (9.17), (12.1)-(12.3) in [3]), but
this statement is not formulated in [3] in the form of the special theorem.

Equation,. (13) follows from the identity A;J* + (J*)? = —J'! which
holds for each smooth solution 7(¢,x,y) of equation (1) (see [3, 5]). This
identity is a special case of more general formula [1-3, 5]. The equality
U2 = hU? follows from the identity A;J® = —J*J6. From here we obtain
(14) for U = U?. The equalities U2, + KU? = 0, and v, = —(U?)~? imply
U, + KU' =0 and (15).

Note that (7) implies A; (UZ,/U?) = 0,i = 1,2 and (6) implies A;{v,7} =
0. This means that (UL, /U?) and {v,7} depend only on z, y.

Remark 1. Equalities (14) for U = U, U = U? and (13), (15) also can be
obtained from system (9), (10) if we set n=2 = 22 + y2 (see also Sections
7.5, 7.6).

Theorem 2 implies

Corollary 1. Let D(t,z,y) be the geometric divergence of the rays with
vertices in the source * = t. (The function D(t,z,y) is defined by the
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equality D*(t,z,y) = do/dfy, where do is the ray cut with the angle db,).
Then the function D*(t, T, p) of the form

D*(t,,p) = n(z,y)D*(t, z, y) (17)
is the solution of equation (14) with the initial conditions
D*=0, D;=1 forT=0. (18)
It follows from the formula ‘
D(t,2,y) = o|U?|/n(z, y) (19)
and from (12).

Remark 2. Determining D* as the solution of (14) under conditions (18),

we obtain a new method of calculating the geometric divergence of the rays
D(t,z,y).

Theorem 2 implies the following statements.

Remark 3. Using the known formula of differential geometry [10, p. 113],
we obtain that in equations (13)—(15) the function K (z,y) of the form (16)
is the Gauss curvature of the surface in the three-dimensional Euclidean
space with the linear element d7? = n%(z,y)(dz? + dy?). This gives us the
connection of equations (13)—(15) with differential and Riemann geometries.

Remark 4. Equation (14) can be associated with the equation of vibra-
tion of an inhomogeneous string ¢, + {k*V?(z)}¢ = 0, where the function
V(z) = —v, = (U?)~? is the speed of wave propagation, z = v(t,T,p) +
const. This equation is transformed into the Sturm-Liouville equation
Wer + {k% — q(t,7,p)}W = 0, where ¢ = —{v,7}/2 = —K(x,y), after
the change 7 = [} (U?)2dz, W = U%p, and vice versa.

Remark 5. There is the following connection between equation (14) and
the Yakobi equation known in the variational calculus *

Vggl + R;lkiji?kfl =0, i=1,2,...,m,

Where .
) dft t eIk
V.E —__+|Jk£-7$ .

*The relation of equation (14) to the Yakobi equation was considered by the author
after discussion with A.L. Bukhgeim.
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Here [, are the Christoffel symbols, Ri, is the Riemann tensor, z = 2(r)

is the parametric representation of the geodesic (ray) for the metric g;;(z),
z = (z!,z%,...,2™), &' = dz*/dr [10, § 36).

In our case, m = 2, 2! = z, 22 =y, g;; = n%(z,y)é;;, &; is the Kronecker
symbol, ! = z,, 22 = y,,

I‘{l = —Féz = F?z = Pgl = (Inn)g, RélZ = an = —Alnn,
~Iy =T}y =T3 =T3, = (lnn),, Ry =Riy=Aln,

and all the others Ruk? R2 . are vanishing functions; so the Yakobi equation
is the system of the form

L+ a1€l — ap€2+ 0,8 — b8 — Alnn -y (v, — 2,€2) =0,
&, + abr + m€2 + 0ot + 082+ Alnn - 2, (y-£' — 2,£%) =0,

where
ay =2(Inn),, b = (Inn),, +[(Inn),]* — (A3ln n)?,
az =2Aslnn, by = (Aslnn); +2(lnn),Azlnn.
Here
d ., _ 0 0 _ o 7] " _1 19
E—A2—xrax+yraya A3—y‘ram_m1'ay (U) 3

v is the normal to the ray (¢, p). Suppose that the vector field €= (&1,&2)
solves the Yakobi equation and is orthogonal to the ray v(t, p) As is known

[11, §186], the length & = n(z,y){€2 + £2}1/2 of the vector £ in the metric
dr? = n?(dz? 4 dy?) satisfies equation (14). Hence it follows that

1) £ can be represented as £ = "2, ¢;(t, p)U'(t, T, p);

2) if £ is the Yakobi vector field along the ray (t, p) with the conjugate
points (t,0) and (zo, yo), then

€ = c(t, NU*(t,7,p) = —=e(t, D)n(2,4) D*(t,2,v),

where c;, ¢ are certain functions and D(t, zo, yo) = 0, i.e., the rays are
focused in the point (z, yo)-

The other consequences from Theorem 2 are obtained in the subsequent
sections. :
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4. The connection between the n(x,y) behavior
and the ray properties

From the known comparison theorem for the equation of the form (14) we
obtain the connection between the n(z,y) behavior, i.e., K(z,y) and the ray
properties (zeros of the functions U2(t, 7, p), D(t,z,y)). Suppose that the
rays v(t, p) fill some domain 2 in the half-plane z,y > 0. We consider two
examples.

4.1. If K(z,y) <0, ie.,
Alnn(z,y) >0 (20)

in each ray y(t,p) C Q then each non-trivial solution of (14) has not more
than one zero in each ray «(t, p). Therefore, according to (12), the function
U?%(t,,p) for each t = const p = const has the zero only for r = 0 and
U? < 0 for 7 > 0. (Also, we have U? < 0, U2, < 0 for 7 > 0). Thus we
obtain the following statement as the corollary of equation (14) and formula
(19).

Rule 1. If condition (20) holds in the ray v(t,p) or in the domain 2, then
the geometric divergence of the rays D(t,z,y) > 0 everywhere in the ray
v(t,p) or in Q except the source points z =t, y =0 (where D = 0).

The condition D(t,z,y) > 0 is necessary and sufficient for regularity of
the ray family for each ¢. Inequality (20) is the known sufficient condition
for regularity.

The theorem about alternation of zeros of linearly independent solutions
of (14) and (12) imply the following

Rule 2. If the condition (20) holds in the ray v(t,p) or in the domain Q
then the functions U', v have no zeros and U' < const < 0 (also U} < 0,
UL, <0), v(t,7,p) = Tut(t, z,y) > const > 0 in the ray ¥(¢,p) or in Q.

More exact valuations for D,U!, U? and its derivatives are obtained in
Section 5. '

4.2. If K(z,y) < (v/7)? in the interval [0, 7] of the ray v(t,p), then each
non-trivial solution of (14) has no more than one zero in this interval. So
U?(t,,p) has zero only for r = 0, U2 < 0 for 7 € (0,7] and D(t,z,y) > 0
everywhere in the interval 7 € (0,7] of the ray «(t,p). If we consider the
whole ray 7(t,p), then ¥ = ¢(¢,p) is the hodograph function in 7, t, p.
(We have @(t, p) = 7o(t, z), where 7 = 79(t, z) = 70(t, z, 0) is the hodograph
function in 7, t, z; p = T0:(t, z).) Therefore we have
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Rule 3. If
Alnn(z,y)

n?(z,y)
(where 7 = (t, p) is the hodograph function) in the ray y(t, p) or in the do-

main 2, then the geometric divergence of the rays D(t,z,y) > 0 everywhere
in y(t,p) or in Q except the source points x =t, y =0 (D(t,t,0) = 0).

> ~{n/e(t,p)}* (21)

Condition (21) is more general than (20) since the values of the function
Alnn(z,y) may be negative.

Rule 4. If condition (20) holds in the ray v(t,p), then the functions D* =
n(w:y)Dz(tumsy)} |U2|, {Tﬁ(t!xvy)}_l = {v(t,T,p)}_'l = Uz/Ul are in-
creasing and D}, |UZ|, |UY|, |U}| are non-decreasing functions of v for v > 0
in y(t,p) and

U2(‘r,t,p) UI(Ta 2 p)

for T>€&>0.

5. The estimates for the geometric divergence
D(t,z,y) and the functions U!, U?

Let the function V(t,7,p), V(t,,p) be defined by the equalities
Vi=_o U, V2= _aU.

Then V', V2 form the fundamental system of solutions of (14) with Jthe
initial conditions

vi=1, V}=0, Vv?=0, V?=1 forr=0.
The equality (19) implies
V?=D*=nD?.

5.1. Using the comparison theorem for (14) and V!, V2 [12, Sections 24.3,
25.5] we obtain the first set of estimates in the form of

Rule 5. Suppose that the ray v(t,p) fill some domain Q in half-plane
z,y > 0. If condition (20) holds in the ray v(t,p) or in the domain §,
then in each points (z,y) of y(t,p) or of Q we have the following estimates
for the geometric divergence D(t,z,y) and its derivatives:
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7(2,9) < n(z,y) D*(t, 2,y) < k™' sh{kr(2,y)},
1< (nD?), < chikr(z,y)}, (22)
ko7 (2,y) < |K (2,y)I7(2,y) < (nD?),
< k7K (2, y) sh{kr(z,y)} < ksh{kr(z,y)},

where k > 0, k* = sup |K (z,y)|, ko = inf |K(z,y)| and the operations sup,
inf are making in the ray vy(t,p) or in the domain Q respectively.

The estimates for U2, UZ, U2, can be obtained from (22) by meas of
division into « since U? = —a~'nD?. Also, we have

1< Vi< ch(kr), 0<V}(t,p) < ksh(kr)
and the analogous estimates for |UY|, |U}|. -

5.2. Representing equation (14) in the form of the first order system U, =
U, U, = -KU and using the estimates theorem for its solutions U, [/ [12,
Section 8.4] we obtain the second set of estimates for the functions D(t, z, y),
V1, V2% U, U? in arbitrary ray v(t,p).

Rule 6. Denote
5O (r,t,p) = Vi(r,t, D)l + Vi(r,t, D),
Sj(tszvy) = {n(m,y)Dz(t,m,y)}j + {[n(.’c,y)Dz(t, xay)]'r}ja
M; = max{l,sup|K(z,y)]}, Mz =1+sup|K(z,y),
¥ ¥
where i,j = 1,2. Then for each two points (z,y) and (zo,y0) of the same

ray ¥(t,p) and for each two values T = 7(t,z,y) and & = 7(t, o, y0) of the
variable T in the ray (¢, p) the following estimates hold true:

A' Egi) (r,t,p) < Eg-i) (&,¢t, p)eMsilT=¢l,
S;(t,2,y) < Si(t, zo, yo)eMiITtm¥)=7(tzow0)]

for i,j =1,2. In particular, for £ =0, i.é., zg = t, Yo = 0 we obtain the
eslimates

sO(r,t,0) < M7, Sit,z,y) < MTETN, =19,

The analogous estimates we have for the functions U! = —aV! and
U? = —a"'V2 = —a~'nD? We remind that (see (4), (5))

a1 a i
{Tm-(;’;'{-fya—y} (— Az)

or ~ n?
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6. The comparison theorem for the geometric
divergence D(t,x,y) and for the functions
Ui, U?

6.1. The comparison of two rays in the same medium. Suppose that
v1 = 7(t, 1) and 2 = (¢, p2) are two any rays in the same medium n(z, y)
with the parameters p;, p2 and with the vertices in the source point z = ¢,
y = 0. We consider the same interval 0 < 7 < 7 in the rays 4y, 742, and
denote (i = 1,2)

Ki(f) = K(tv T, Pu) = K(&J(t, T,p“), y(ts T pi))s
D:(T) = D*(ta T, Pi) = n(a:(t, T, pa'): y(t: T, Pi))Dz(t, m(t: T, pi): y(ty T, Pi)),

where z = z(t,7,p), y = y(t,7,p) are the equations of the ray v(¢,p),
D(t,z,y) is the geometric divergence of the rays with vertices in ¢.

Rule 7. Suppose that Alnn(z,y) > 0 and |K,(7)| < |Ka(7)| for 0 < 7 < 7.

Then dm D o~
d‘r"‘l (r) < dTm2 (r) for0< T <%, m=0,1,2. (23)

Note the points with the value 7 = const in 7; and 7, are in the wave
front 7 = const. Analogously we can consider two rays with different vertices
t; and t,.

6.2. The comparison of two rays in the different media. Suppose
that vy = ¥1(t1,p1) and 2 = 7,(f2,p2) are two any rays in the medium
n1(z,y) and ny(z,y) respectively. The source coordinates t;, t; and param-
eters p;, p; may be'arbitrary (the same or different). We consider the same
interval 0 < 7 < 7 of the rays 7, 2. Denote (i = 1, 2)

I(i (T) = Ki(tii T, pi) = I(;‘(.’B,‘(t;‘, T, pt')s yi(tir T, pt'))'l
D:(T) = Df(t.-,‘r,p,-)
= n;(m,-(t,—, T, Pi')a yi(ti'a T,p,'))D?(t,', .’I:.’(t,’, T, pi)r yi(ti's T, pi'))y

where z = z;(t,7,p), y = yi(t,7,p) are the equations of the ray ¥(t,p),
D;(t,z,y) is the geometric divergence of the rays with vertexes in ¢ in the
medium with the parameter n;(z,y),
Alnni(z,y)

nf(z,y)

Rule 8. Suppose that Alnn;(z,y) > 0 and |K;(7)| < |K2(7)| for0 < 7 <
7. Then the inequality of the form (23) holds true for0 <7< 7, m=0,1,2.

I{',;(Qf, y) =-
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6.3. The comparison of two intersecting rays in the different me-

dia. Suppose that v; = v1(t,p1) and y2 = 72(t, p2) are two rays with the
same vertex ¢ in the medium n,(z,y) and na(z,y) respectively and v;, 2
have the intersection point (zg,yo). Denote (: = 1,2)

Ki(T) = I(‘z (ti T, pt') = K,‘(:Ui(t, T, Pi), yi(tl T, Pi)),
D:(T) - D:(th;pi)
- ni(wi'(tl T, Pi)a yi(t'n Ty p,;))Dz?(t, xi(ts T, pt'): yi(t! T pi))a

where K;(z,y), D;(t,z,y), =i, y; are defined in Section 6.2. Using Rule 4
(Section 4) we obtain

Rule 9. Suppose that Alnn;(z,y) > 0 and 1 = 11 (t, o, Yo) < T2(t, To, Y0),
where T;(t,z,y) is the time field T(t,z,y) for ni(z,y), i = 1,2. If | K (7)| <
| Ko(7)| for 0 < 7 <11, then

n1 (20, %0) DI (t, To, Yo) < na(o, ¥0) D3 (¢, 2o, Yo)
and in the point x = 2y, y.= Yo
k
{m(@ ) DIt o, )1 < {ma(e,y)D3(t,2,9)}s), k=12 (24)
where we denote by f,-(k) the derivative of the k-th order of the function
f(t,z,y) along the ray +; (with respect to 7). We have

1

™ _ . 9. . _3_} .
fg - n?(a:, y) {Ttx(t) CE, y) aw + Tl‘y(t!m'ly) 3y f1 1= 1? 2' (25)

6.4. The “global” comparison theorem. Suppose that for some source
t = const the rays v;(t,p) in the medium n = n;(z,y) fill the domain Q in
the half-plane z,y > 0 and the functions K;(z,y), Di(t,z,y), 7i(t,z,y) are
defined in ; according to Section 6.2, 6.3, ¢ = 1,2. Rule 9 implies

Theorem 3. Suppose that:
1) Alnn;(z,y) 2 0in Q;, 1 =1,2;
2) for each point (z,y) of the intersection domain 2 = Qy N Q2

Tl(t'n T, y) S T2(t: T, y);

3) for each pair of points (z,y) and (zo,y0) of the sum domain Qt =
QU
|K1(z,y)| < |K2(zo, yo)|-

Then in every point (z,y) of the domain Q we have the inequality
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n1(z,y) Di(t, 2,y) < na(z,y) D3 (¢, 2, y)
and the inequalities of the form (24), (25).

Note the inequality n;(z,y) < na(z,y) imp]ies the second condition of
Theorem 3.

The analogous statements we obtain for U!, U2, V1, V2,

6.5. The comparison of U, U2, V1, V2, Suppose that Uf('r), Vij(‘r)
are the solutions of the equation U,, + K;(r)U = 0 (¢,j = 1,2) with the
initial conditions for 7 = 0 of the form

Ul = -a;, UL=0, U?=0, U2=-0o', >0,

1 1

Vi=1 Vi=0, V=0, Vi=1
" Suppose that K; < 0 (i = 1,2) and |K3| > |K,| in some interval 0 < 7 <
7. Then for 0 < 7 <7 .
V-"'>V1", Vi, > Vi, jzl 2;
U3l > = |U1 AR |U1f|, U3l > 2 |U1| U231 > 2 IUnI,

Uzl‘r U]_ . ( UZ)
U21 Ul, h€ Ul >0,

UZ(r) 2(1, U3 (§)
(2 (T)}z(ln 2 ) > (U2(¢ (111 ---)
(P gz ), 2 O o )
for 7 > £ > 0. In two latter inequalities we may substitute V; for U}
and D} = n;D? for U?, i = 1,2. If |Ky| > |K;| at least in one point
T = 719 € [0,7], then we everywhere have strict inequality for 7 > 7y (for
T 2> 702 & >0, 7> £ in the last inequality) and

U3 UL . U;
hy, = U2 > O = hy, e, (lnfff) >0 for 72>71>0.

In the last inequality, we may substitute Df = n;D? or V;? for' U?, i =1, 2.

7. The equations for z(t,r,p), y(¢t, 1,p), nit, T, P)
and others

7.1. The known system of differential equations of the ray for the functions
z, y is not closed since it contains the third function n(z,y) which is un-
known in the inverse problems. The closed nonlinear system of first order
for z(t, ,p), y(t, 7, p) of the form
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— . TtlYp — YtTp
pw'r - yp £g+y§ ) ) (26)
TtYp — YtTp
= gy 27
PYr = Ty (27)

is obtained as the consequence of (9), (10). The closed quasilinear system
of second order for z and y of the form

Az, — (yT) =0, Ayyr- (5'71')2 =0 (28)
is also obtain. Here

/a9 )
Ag=gp (5 +p5) - (g¢ +pgT)a—p-

It follows from (9), (10) or from (26), (27) if we take into account the equality
vr = —(U?)~2 (see also [7, Section 1.1]). Besides each of the functions z, y
solves the scalar nonlinear equation of third order

Sg9 = ByAggr — 2449, (g-rgp)‘r =0.

Here By = g,9,0/0T — A,9,0/0p. This equation can be represented in the
divergent form

{ﬁ}f +Q =0, Q={40.}'/".

Q
7.2. The functions v, U, U? can be expressed in terms of z, y as follows
2
=S e PO ) (29)
z2 + 32 TeYp — YeTp
2 _ Tityi-p*(ai4y? ) e _ Tyt 2 242 a:;‘;+y§
v = =18 _p g ZTh (g,
T 4y = w60
and (U?)? 2 4 (U)?
_ vus)* _p°+
2 _
n +y; . 31
(-'l—‘ y) $2+yp $t2+yt2 ( )
The closed system of second order for z and y of the form
Pszﬂn = nzmr{nyl +P_1U2-T1'L2}93 -
0y {y. L1+ p U, Lo}y — p~ U2, — y, =0, a2)

PUy,r — 0y {2, L1+ p Uy, Lo}y —
n*z.{-2, Ly +p U, Lo}s — p~ Uy, + 2, = 0,

and the equivalent system
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P’Trr — Loz + vz, — p(U*) 2z, — z,(vv, 4 v;) = 0,
P2yrr = Loy + vyr — p(U%) "2y, — yp(vvp + v) = 0, (33)
= (U2
does not include the mixed derivatives z,r, Z¢r, Ypr, Yt (unlike (28)). Here

0? i , 0% d? 0?
hi=vam* oo 1= V57 T o T o
and v, U', U?, n? can be excluded by means of formulas (29), (30), (31).

7.3. The function n(z,y) is arbitrary, so, in terms of the variables z, y the
closed differential equation for it is absent (besides, n; = 0). However, in
the independent variables ¢, 7, p, there exists a closed scalar differential
equation for n(t, 7, p) = n(z,y) which has no other functions: the function
g = In n(t, 7, p) satisfies the nonlinear equation of fourth order

gngg - 2Aggfsgg =0,

where
Myg = 2A99""{3(Agg1'7)1' - 2Agg'r'r-r} - 3(4"1,99'”')2

which is represented in the divergent form

Also, the function

Aln

ft,7,p)=-K(z,y) = —Llnn(t 7,p)

solves the fourth-order equation

Myf=~4(Asfr)*f

which is represented in the form

fo } _Ih — 1/2
{ F o F’ F= (Aff'r) .
7.4. All the functions z, y, Inn, f satisfy the third-order equation

Ag{Ayg‘r + (91')2} =0.

Also, the closed scalar nonlinear equations of third order for U!, U? are
obtained. :
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7.5. The following system is obtained

Alnn(z,y)
1 K 1_¢- =_—_"Jd_
U, + K(z,y)U =0, K(z,y) T Llnn(t,7,p), (34)
P+ (UY Yy, = —pye = Uy, {p*+ (U")?}2, = —px: + U'y:,  (35)
2 132
2 p* 4+ (UY)
1 = b 36
n*(z,y) 22 . (36)

where we differentiate only with respect to two variables t, 7 (unlike (6)-
(8) and other equations of this section), and the third variable p is the
parameter. ‘

This is the system in the functions U'(¢, 7, p), z = z(t, 7, p), y = y(¢, 7, p)-
For n = n(y) we have y; = 0, z; = 1, and we obtain the known system

(n? - pz)uz

y‘T =j: n2

:‘ET —_ =
! n2

7.6. Also, we obtain the system of the form

U? + K (z,y)U? =0, (37)
Ult, +y, =0, Uly,—2,=0, (38)
n’(z,y) = (27 +y7) ™ (39)

in the functions U?, z, y.

We can prove that (34) follows from (35), (36) and (37) follows from (38),
(39). Both system (35), (36) and (38), (39) implies the known equations of
the ray

Trr+ (.’ci - y.,%) (Inn); 4+ 22,y-(Inn), =0,
Yrr + 2337?!7(‘“ n)ﬂ'-' - (333’ - y?)(]n n)y =0.

7.7. Joining equations (34), (37), and A K =0, we obtain the system

UL + KU'=0, U2 +KU*=0,

2 ! 25 (40)
pUK, + U'K, + UK, =0,

in the functions U', U?, K = K(¢,7,p) = K(z,y).
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8. The transformation of equations (14), (15)
to the linear equations of first order

For each solution U of equation (14) the function S(z,t,p) of the form
S(z,t,p) = {U;(t,7,p)}* where z = {U(t, 7, p)}? satisfies the equation

S:+ K(z,t,p) =0, K(zt,p) = K(a(t,7,p),y(t, 7,p)).

Suppose that Alnn(z,y) > 0. We consider two cases.

8.1. Set U = D*(t, 7,p) = n(z,y)D?*(t, z,y), where D(t, z,y) is the geomet-
ric divergence of the rays which vertices in 2 = ¢. Then

2= (D*)? = (nD??  S(zt,p) = (D})* = {(nD?),}".

We have 2z = 0 for 7 = 0 and z > 0, z; > 0 for 7 > 0 according to
the properties of the function D* (see Rules 4, 5 and the estimates (22) in
Sections 4, 5) and obtain the explicit formula in the quadratures

St =Statp) - [K@tpds, 22220 ()
2

8.2. Set U = U%(t,7,p). Then

z= —1/'01- = {Uz(t? T:p)}z: S(z,t,p) = {U'J?(t’T’p)}2 = —i (("-:-))3

and formula (41) for S holds true. Besides for each solution v(t,,p) of
equation (15) functions V/(z,t,p), V*(z,t, p) defined by

V(z!tip) = v(t’T?p)i V*(zit!p)z (Vz)-2
are the solutions of the equations

Ve + %z_lvz = 233[%(z1t1 p)(vi")s =0, (42)
(V:)? = (42°9)7", S.=-K, | (43)
Vz* - gV* + 423R(Z, t:p) = 0. (44)

Equation (42) has the second order unlike the initial equation (15) of
the third order and (44) is the linear equation of the first order. Equalities
(41)—(44) imply the explicit formulas

T = V(z,t,p) = %fz“’f?{S(z, t,p)}"Y%dz + V(z0,t,p),

V*(z,t,p) = 4235 (z,t,p),
where S is defined by (41).
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9. The inverse problem

In this problem the function n(z,y) is unknown and should be determined.
The hodograph function I' : 7 = 7(t,z,0) = 7o(t,z) is given for t € [0, 7],

€ [t,T]. Suppose that (¢, p) is the ray connecting the points t and z of
the line y = 0 so that p = 7(t,z) and D, is a domain in the plane z,
y bounded by the interval [t, z] of the line y = 0, and the ray v(t,p). We
suppose that the set of rays is regular in Dy, i.e., through each point of
the domain D;; only one ray from the source ¢ is passing. In this case, we
have one-to-one correspondence between the points ¢, z, y and ¢, T, p except
for the points of the source z = t, y = 0. The point (t,0) develops into
the interval [—~n(t,0), p] of the line ¢ = const, 7 = 0. Let J(¢, p) (this is the
interval of the line ¢t = const, p = const), ' : 7 = ¢(t,p) and A;, be the
images of the ray 7(t, p), the hodograph I', and the domain D; , respectively
in the space t, 7, p. The rays 4(t, p), the surface I and the boundary of Asp
are uniquely determined by the inverse problem data.

9.1. The integral formulas and the local inverse problems. The
regularity condition in Dy, implies D?(t,z,y) > 0 for 7 > 0 in each ray
v(t,p). Hence U2(t,7,p) # 0 for r > 0 and U? = —|U?| = —nD?/o.
Besides dz dy = |U?|drdp/n? = —U? dr dp/n®. Using these equalities and
integrating term-by-term (14) for U = U? along arbitrary ray v(t,p) or
along arbitrary domain D;.(A:,)) we obtain the following equalities for
each twice continuously differentiable function W (¢, z,y) = w(t, r, p)

@(t,p)
- [ PwDtsyds=a [ QuUtdr=adip),  (45)
¥(t.p) 0

P
_ //in dr dy = / QuuwU%drdp= - f ®(t, pl)dpl, (46)
Dis Arp —n{t,0)
where
Paw = Alnn(z,y)w — n*(z, y)w,,
Alnn
n2

1
Quw = Fpnw = W — Wrr,y

w(t,0,
{U‘?w - Uz'“"l'}lf:ﬂﬂ(tm) + M

o(t,p) "

fl

Here ds is the length element of the ray v(¢,p). The right-hand side in
the equality with the integral along 7(t,p) is uniquely determined by the
function 7o(t, z) given locally in the intervals [t,t +¢], [z — ¢, z]. The right-
hand side in the equality with the integral along D ; is uniquely determined
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by the function 7o(t,z) given in the intervals [t,t + €], [t,z]. Here ¢ > 0 is
arbitrary small. In such local inverse problems, using these equalities, we can
determine certain functionals from n(z,y) or from n(z,y), 7(t, z,y) setting
various W or w despite the fact that the rays y(¢,p) are unknown. For
example, we may set w = 1, w = 7, W = w(r(t,z,y), n(t, z,y)), W =
f(K(z,y)) and so on. (The value n(t,0) necessary for calculation of the
right-hand side in (45), (46) we can define by means of the formula: n(t,0) =
— lim 7o¢(t, z) for z — . If w(t, ¢(¢, p),p) # 0, we must give ny(z,0) also).

For example, setting w = 1 and w = 7 we define for arbitrary ray (¢, P)
or for arbitrary domain D, , the functionals of the form

/[A]n n(z,y) dz dy, f Alnn(z,y)r(t, z,y) dz dy,

Dt,z Dt,:
[ Alnn(z,y)D*(t, z,y) ds, f Alnn(z,y)D%(¢, z, y)7(t, z,y) ds.
(t,p) ¥(t,p)

Using the Green formula for the Laplace operator we obtain in particular
that in the local inverse problem with given hodograph function 7o(t,z) in
intervals [t,¢ + €], [t, z] the values of the functional

dlnn

v
~(t,p)

ds

are uniquely determined for all rays ¥(t, p) filling D; .. Here v is the normal
to the ray (¢, p).

The other formula for [fAlnndz dy was obtained earlier by Anikonov
[13] who used another method. The analogs of the equalities (45), (46) are
obtained if we change D? by r;D? P,w by r4P,w and & by ¥(t,p) =
(Upw = U'wr)|r=g(tp) — {Ulw — 0w, }|,=0 and also the three-dimensional
analogs with the integrals along z, y, t. :

In local inverse problems with given hodograph function T = ¢(t, p), we
also can define the functionals

2\ k
—~-/:[Alnn(é—;n£) dzdy = (~1)* ffKUﬁ(hUZ)*drdp,
Dt.;r

[5-[02)] wfra= [J{s-[)] e

where £ = 0,%1,%£2,..., ¥(¢,z,y) = ¥(t, 7,p) is each differentiable func-
tion. Also we obtain analogous integrals along the ray (¢, p) and the other
functionals.
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9.2. The reduction to the direct problem. We suppose that the set of
rays y(t, p) is regular in Dy 7 for each ¢ € [0, T]. Denote the union of all flat
domains D; 1 and A¢p((P = 70:(t,T)) for t € [0,T] by Dt and Ar. The
inverse problem to determine n{z,y) in Dr is reduced to one of the following
direct boundary-value problems in the domain A7 of the variables t, 7, p
with the known boundary: 1) to find solutions vy, vz or U 1. U? of system
(8) or (7) with the given values in I' and conditions (11) or (12); 2) to find
the solution v of equation (6) with conditions (11) and with data in T'; 3) to
find the solution z, y of system (26), (27) or (28) (and of each other system
from Section 7 for z, y) with the datain I' and for 1 =0 (z = ¢, y = 0 for
7 = 0); 4) to find the solutions g = Inn(t,r,p), f(t,7,p) = Alnn/n? and so
on equations described in Section 7 with data in I' and for 7 = 0.

These scheme can be inverted. For example, we can consider the quasi-
linear equation (6) as initial equation and each boundary-value problem for
this equation we may reduce to the inverse (or direct) problem for the eikonal
equation.

9.3. The one-dimensional inverse problem. In the one-dimensional
inverse problem (n = n(y)), the hodograph function 7 = 7(0, z,0) = 1o(z) =
#(p) (p= —70z(z)) is given for z € [0, T]. |

Setting in the conservation law (see Section 2.4) &, = 1, F(£) = ¢*,
k=1,2,... and applying the Ostrogradsky formula in the domain Aq, and
the mathematical induction, we obtain the explicit formula to determine
the integrals from degrees of the function n(y) taken over an arbitrary ray

7(0,p) = v(p)

»(p) I(p)
/[n ,p) =/ n(s, p)F+! ds = /[n P+ ds = Wy(p), (47)
] +(p)
k=0,1,...,
where

k . l . o
Ui(p) = e@p™ + Y (-1)18,Cip*EDpi(p), k=1,2,...,

i=1
4
¥;(p) = fplfpz fP:‘P (p;)dp;...dp2dp1, j=1,2,.
To=ng —ng —no

Wo(p) = ¢(p), no = n(0), Ci = k!/[j!(k — 5)!] are the binomial coefficients,
B; =292 -1)/(j—1)!'=1-3-5-...-(25 —1). Here n(r,p) = n(y(r,p)) =
n(s'l P), where z = .‘B(T,p), y= y(T,p) and z = z(s,p), y = y(S,P) are the
parametric equations of the ray v(p) with the parameter T (the time of the
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signal propagation along the ray y(p)) and s (the length of the ray from the
source (0,0)), I(p) is the complete length of the ray v(p).
The known formula of the mathematical analysis implies

—1)i-t f .
¢j(p)=2,%8—j:ﬁ [ ="y Hp(®)dt, j=1,2,....

—ng

Hence

k

Ui(p) = Pz“‘"”{pzw(p) ~ fp { Y o (;—Z - 1)j_1}tcp(t) dt,

Zng d=1

o} = CiB;2'~7 /(j — 1)!.
Also we have

¢(p)

f{Ul(r,p)}”“: (-1)*Bryn(p), k=1,2,.... (48)
0

Taking the equality y, = f,(n)n, = [n? — p?]'/2/n? (y = f(n) is the inverse
function to n(y)) into account, we reduce the inverse problem to the known
problem of moments which has the explicit solution. More detail exposition
of these results is given in 3, 6]:

Multiplying both parts of equality (47) or (48) by the coefficients of the
known expansions in a power series for some functions f and then summing,
we obtain the expressions for the integrals along the ray v(p) from the cor-
responding function f(U?') or f(n) in terms of the hodograph function ¢(p).
For example, multiplying (48) by {(—1)**'p=2*¥/5} and using the known
expansions in a power series for the functions In(1 4 z) and (1 + 2)~/2, we
obtain the formula

#(p) D ()
Inndr=1Inp- - —= d7p.
Of p-@(p) _nop_i_pp

The other approaches for the inverse kinematic problem can be found in
[13-16].

10. The group substance

The variables and the equations which we consider and obtain above, have
the following group substance [1-7]. Let G be an infinite group of the point
transformations of the space of five variables z, y, t, u! = 7, u? = n? with
the Lie algebra of infinitesimal operators X of its one-parameter subgroups
of the form
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N i)
X =&(z,y)5-+ ¥, y)a—y = 28,(z, y)uza%g.
where ® and ¥ are arbitrary conjugate harmonic functions. Then the ex-
pressions J! — J1! defined in Sections 1, 3 are functionally independent
differential invariants of the group G. The basis of differential invariants
of the group G is formed by the invariants J!, J2. The operators A;, A2,
As defined by (4) are the operators of invariant differentiation of the group
G. The operator of invariant differentiation A; gives differentiation with
respect to the parameter of the point source, A3 along the ray, A3 along the
normal to the ray. Equation (1) admits the group G. The system J7 = 1,
J® = v(t, 7, 7:) is the automorphic system AG and equation (6) and each of
systems (7), (8) is the resolving system RE of the group bundle of equation
(1) relative to G. The Gauss curvature K (z,y) defined by (16) in equations
(13)—(15) and in the statements of Sections 3-9, is a differential invariant of
second order of the group G.
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