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Conservation laws for a time field (the eikonal
equation solutions) in kinematic seismics

(geometric optics)∗

A.G. Megrabov

Abstract. A number of non-classical formulas of vector analysis are represented as
differential identities that, on the one hand, relate the modulus to the direction of
an arbitrary smooth vector field in a three- and two-dimensions. On the other
hand, these formulas, in a sense, separate these characteristics. In particular, for
an arbitrary smooth plane vector field v(x, y) = |v|τ with the module |v| and a
direction τ , the conservation law in two equivalent forms is presented: in terms of
the direction τ and in terms of the vector field v. It is established that each of these
forms is equivalent to a conservation law for vector lines of a field v, expressed in
terms of the curvature vector of vector lines Lτ of the field v and of the curvature
vector of orthogonal to them curves. Application of these formulas to the solutions τ
of the eikonal equation has allowed us to discover a number of the new identities
relating the time field τ , the refractive index n(x, y) and the ray slope (direction)
angle α. In particular, differential conservation laws for the time field τ (the eikonal
equation solutions) in the kinematic seismics (geometrical optics) were discovered.
The geometric interpretation of these conservation laws from the point of view of
the differential geometry in terms of curvature vectors of rays and fronts of waves
corresponding to the time field τ is obtained.

Introduction

This paper is an extension of papers [1–5].
In [2–5], a number of non-classical formulas of the vector analysis in the

form of differential identities of first, second and third orders are obtained
which, on the one hand, relate the modulus |v| to the direction τ of an
arbitrary smooth vector field v in a three-dimensional (space, v = v(x, y, z))
and a two-dimensional (plane, v = v(x, y)) cases. The direction τ of a
vector v, as usual [6, Ch. 1, § 2] is understood as unit vector τ = v/|v|,
tangential to the vector line of vector field v so we have v = |v|τ . Thus, the
quantities v, |v|, τ can depend, in addition to the “spatial” variables x, y, z,
also, on the “temporal” variable t, playing the role of a parameter in the
general identities obtained. However, without necessity we will not explicitly
indicate to a possible dependence on t assuming v = v(x, y) and etc.
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On the other hand, the formulas obtained in a sense separate the mod-
ulus |v| and the direction τ of the vector field v = |v|τ . Namely, the basic
identity (see Section 1.2) to any smooth vector field v (force or non-force
in the physical sense) explicitly assigns a vector field Q = Q(v), repre-
sentable in the form of the sum of the two vector fields P and S with the
following properties. The field P is defined only by the modulus |v| of the
field v and is potential in a two- and in a three-dimensional cases, while
the field S is defined only by the direction τ of the field v and is solenoidal
in a two-dimensional case. In the case of a potential vector field v = gradu
with a potential, the obtained formulas relate the Laplacian of an arbitrary
function u(x, y, z) or u(x, y), the modulus of its gradient and its direction,
and the field Q is collinear with the initial field v [2–5]. A similar relation is
also obtained and in the case of a solenoidal field v = rotA with the vector
potential A [3–5].

In the given paper, we present the proof of the basic identity (Section 1.2)
from which other identities follow as corollaries. In [2–5], this identity is
presented without the proof.

In a two-dimensional case (v = v(x, y)) a differential conservation law for
an arbitrary smooth plane vector field v = v(x, y) = |v|τ in two equivalent
forms is obtained: in terms of the direction field τ = τ (x, y) of the form

divS(τ ) = 0, (1)

where S(τ ) = τ div τ + τ × rot τ (other forms of the field S(τ ) are found
as well), and in terms of the vector field v of the form

div
{v div v + v × rotv

|v|2
− 1

2
grad ln |v|2

}
= 0. (2)

Based on the results obtained in [1], in the present paper we give the ge-
ometric interpretation of conservation laws (1) and (2) in terms of curvature
vectors of the curves generated by the vector field v(x, y). Namely, both
conservation law (1) for the field directions τ , and conservation law (2) for
the vector field of v = |v|τ are equivalent to the following conservation law
for the vector lines Lτ of the field v:

divS∗ = 0, (3)

where the vector field S∗ is the sum of the vector field of the curvature
vector of the vector line Lτ of the field v and the vector field of the curvature
vector of the curves Lν , orthogonal to the curves Lτ . The field S∗ can also
be expressed in terms of only one curvature vector of the vector lines Lτ of
the field v or in other forms in terms of a tangential unit vector τ of the
curves Lτ or (and) its normal unit vector ν.
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In [4, 5], the above-mentioned general identities are applied to the eikonal
equation, which is the basic mathematical model of kinematic seismics (ge-
ometric optics). In the two-dimensional case, the eikonal equation for the
time field τ = τ(x, y) in an inhomogeneous isotropic medium with the re-
fractive index n(x, y) looks like [7, Ch. 1, § 1]:

| grad τ |2 def= τ2
x + τ2

y = n2(x, y) ⇔ ∆1τ
def=

τ2
x + τ2

y

n2(x, y)
= 1. (4)

In [4, 5], this application leads to the following results (see Section 4). A
number of vector and scalar differential identities of second and third orders
relating the time field τ(x, y), the refractive index n(x, y) and the ray slope
(direction) angle α = α(x, y), distinct from the classical ray equation and
known identities from [8–10] are obtained.

In particular, in [4, 5] the existence in a kinematic seismic problem (ge-
ometric optics) of two conservation laws for the time field τ = τ(x, y, t)
(t is the parameter of a source defining its position) is detected. The first
conservation law looks like:

divT = 0 (at any t = const), (5)

where
T = grad lnn− ∆τ

n2
grad τ ,

is a special case of identity (2) for the case v = grad τ , where τ is a solution
to the eikonal equation (4). This conservation law in its form is similar to the
differential conservation law div v = 0 (v is velocity) for an incompressible
fluid [11]. The second conservation law looks like:

∂

∂t
divQ = 0

(
⇔ div

∂Q

∂t
= 0
)
, (6)

where
Q =

∆τ
n2

grad τ, divQ = ∆ lnn.

The role of the “time t” is thus played by the parameter t of a source.
This conservation law means the existence in kinematic seismics (geometric
optics) of a differential invariant of the wave propagation I = divQ =
div
{
τxx + τyy

n2 grad τ
}

, i.e., the quantity, expressed in terms of τ and n(x, y)
and independent of the location of a wave source. To it, there corresponds
an integral invariant.

In this paper, based on formula (3), the geometric interpretation of con-
servation laws (5) and (6) in terms of curvature vectors of rays and fronts
of waves corresponding to the time field τ is given.
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In addition, we present the vector fields Q(x, y) and R(x, y), found in
[4, 5] in the explicit form, with following properties. A potential vector com-
ponent of the vector Q is defined only by the refractive index n(x, y) and
coincides with the vector field grad lnn, and a rotational (solenoidal) compo-
nent of the vector Q is defined only by the angular characteristic α(x, y) and
coincides with rot(αk). The potential and the rotational components of the
vector R are equal to (− gradα) and rot(lnnk), respectively. There are also
presented: formulas for ∆ lnn, ∆α in terms of divergence and a rotor of the
same vector field (Q or R); a non-classical form of the ray equation. In [4],
the integral formulas, allowing the calculation of a number of functionals in
the direct and the inverse kinematic problems, etc., are obtained.

The eikonal equation is of interest because the vector fields Q, R, P ,
S and other quantities entering the differential identities obtained and con-
structed on a potential non-force vector field v = grad τ(x, y), where τ(x, y)
is a solution to the eikonal equation, admit the physical and geometric in-
terpretation: they are related to the refractive index, the geometrical di-
vergence of rays, the ray transformation and the differential geometry (Sec-
tion 3.4).

The symbols (a · b) and a× b denote the scalar and the vector products
of vectors a and b, ∇ is the Hamiltonian operator (“a nabla”), (v · ∇)a is a
derivative of the vector a in the direction of the vector v, ∆u = uxx + uyy.

1. Differential identities and the conservation law for an
arbitrary plane vector field v(x, y)

1.1. Basic initial quantities. Let D be a domain in the plane x, y; i,
j, k are unit vectors along the axes of the rectangular co-ordinates x, y, z;
v = v(x, y) = v1i+v2j is a vector field defined on D, vk = vk(x, y) are scalar
functions (k = 1, 2), |v|2 = v2

1 + v2
2; α = α(x, y) is the angle of slope of the

vector (v1i + v2j) to the axis Ox, so that cosα = v1/
√
g, sinα = v2/

√
g,

where g = v2
1 + v2

2, i.e., α(x, y) is the polar angle of a point (ξ = v1, η = v2)
on the plane ξ, η:

α
def= arctan (v2/v1) + (2k + δ)π, k ∈ Z, (7)

where δ = 0 and δ = 1 in quadrants I, IV and II, III of the plane ξ, η
respectively. This means that |v|, α are polar coordinates on the plane
ξ = v1, η = v2. Thus, v = |v|τ , where

τ
def= v/|v| = τ (α) def= cosα i+ sinα j (8)

is a unit tangential vector to the vector line of the vector field v or the
direction (unit vector) of the vector field v (|τ | ≡ 1).
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1.2. The basic identity for an arbitrary plane vector field v(x, y)

Theorem 1 (The basic identity). For any plane vector field v = v(x, y) =
|v|τ with the components vk(x, y) ∈ C1(D) (k = 1, 2), the modulus |v| 6= 0
in D and direction τ , we have the identity

Q = Q(v) = P (|v|) + S(τ ), (9)

where

Q(v) def=
v div v + v × rotv

|v|2
, P (|v|) def= grad ln |v| = grad |v|2

2|v|2
, (10)

S = S(τ ) def= τ div τ + τ × rot τ = Q(v)− P (|v|). (11)

For the vector field S(τ ), any of the following representations holds:

S(τ ) = τ div τ−τs = −{(τ×∇)×τ+(τ ·∇)τ} = −((v×∇)×v)/|v|2 (12)

(τs = (τ ·∇)τ = rot τ×τ is the derivative of the vector τ in the direction τ ),

S(τ ) = rot(αk) = gradα× k, (13)

S(τ ) = τ div τ − kν, (14)

where k is the curvature of the vector line of the field v, ν is its unit normal,

S(τ ) = τ div τ + ν div ν = τ × rot τ + ν × rotν

= S(ν) def= ν div ν + ν × rotν. (15)

The vectors τ , ν form the right-hand side system of the Frene unit vectors
(the Frene basis) of the vector lines Lτ of the field v and are related by the
Frene equations [12–14]

dτ

ds
= kν,

dν

ds
= −kτ , (16)

where s is a natural parameter of the curve Lτ , i.e., its length being calculated
from its certain point.

Hence, under conditions of the theorem for any plane vector field v(x, y),
we have the identity:

Q
def=
v div v + v × rotv

|v|2
= grad ln |v|+ rot(αk) ⇒ (17)
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div v = ({grad ln |v|+ rot(αk)} · v),
rotv = {grad ln |v|+ rot(αk)} × v.

(18)

Identity (9) or (17) can be written down in the equivalent form:

v div v + v × rotv
|v|2

− 1
2

grad ln |v|2 = S(τ ). (19)

Proof. Let us present the proof as in [3, 5] the given statement is given
without it. From known formulas of the vector analysis [6, § 7]

div(ϕa) = ϕdiva+ (gradϕ · a),

rot(ϕa) = ϕ rota+ gradϕ× a,
a× (b× c) = b(a · c)− c(a · b),

where a, b, c are any vectors (vector functions), ϕ is a scalar function, for
v = |v|τ , ϕ = |v|, a = τ we have:

v div v
|v|2

= τ div τ + (grad ln |v| · τ )τ ,

v × rotv
|v|2

= τ × rot τ − (grad ln |v| · τ )τ +
1
2

grad ln |v|2.

Summarizing the last two equalities, we arrive at identity (9). From the
known formula [6, § 17, the formula (10)]

1
2

grad |a|2 = (a · ∇)a+ a× rota

at a = τ , |τ | ≡ 1 we have τ × rot τ = −(τ · ∇)τ = −τs and from (11)
we obtain representation (12), and taking into account the first of the Frene
equations (16) – representation (14). Formula (13) is obtained in [3, 5]
and is proved in [1]. From it and from (9)—(11), follows identity (17).
Equalities (15) are proved in [1]. Formulas (18) are obtained by the scalar
multiplication of equality (17) by the vector v. The theorem is proved.

Remark 1. As follows from the above proof, formulas (9)–(12), (14) also
hold for the three-dimensional vector field v = v(x, y, z). A three-dimen-
sional analogy of Theorem 1 is obtained in [3, 5].

As is known [6], any smooth vector field can be represented as sum of a
gradient of a certain scalar and a curl of a certain vector. Identity (17) gives
such a representation for the vector field Q and, moreover, in an explicit
form, directly in terms of the initial vector field v. Hence:
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Corollary 1 (The geometric sense of the basic identity (9) or (17)). For
any plane vector field v(x, y) under conditions of Theorem 1, there exists
a vector field Q(x, y), defined in (9) and (17), which is the sum of two
vector fields with the following properties. The first field P = grad ln |v|
is defined only by the field modulus v and is potential, and the second field
S = rot (αk) is defined only by direction of the field v (the angle α(x, y))
and is solenoidal. Thus, the basic identity (9) or (17), first, separates any
smooth plane vector field v relative to its modulus and direction and, second,
separates the vector field Q(v) to potential and rotational parts.

1.3. A conservation law for an arbitrary smooth plane vector field
v(x, y). The known identities of the vector analysis [6, § 17] div rota = 0
(for any vector field a), rot gradϕ = 0 (for any scalar field ϕ) and formu-
las (13), (17) imply

Corollary 2 (Conservation law for the field of the directions τ of the vector
field v). Under conditions of Theorem 1 we have (S · gradα) = 0, i. e., the
vector lines of the vector field S(τ ) coincide with level lines of the scalar
field of the angles α(x, y). If vk(x, y) ∈ C2(D) (k = 1, 2), then we have
identities

divS(τ ) = 0 ⇔ div{τ div τ + τ × rot τ} = 0, (20)

rotS(τ ) = −(∆α)k ⇒ ∆ ln |v| = divQ,

(∆α)k = − rotQ ⇒ ∆ Ln{|v| e±iα} = divQ∓ i(rotQ · k).

Identity (20) represents a differential conservation law for a vector field
of the directions τ of the vector field v = |v|τ .

From the identities divS(τ ) = 0 and (19) follows

Theorem 2 (The differential conservation law for an arbitrary plane vector
field v(x, y)). For any plane vector field v = v(x, y) = |v|τ with the com-
ponents vk(x, y) ⊂ C2(D) (k = 1, 2), modulus |v| 6= 0 in D and direction τ
(τ | ≡ 1), we have the identity

div{Q(v)− P (|v|)} = 0 ⇔ divS(τ ) = 0

⇔ div
{v div v + v × rotv

|v|2
− 1

2
grad ln |v|2

}
= 0. (21)

Obviously, according to identity (19), conservation laws (20) and (21)
are equivalent.
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2. The conservation law for vector lines of a plane vector
field v(x, y) and its equivalence to conservation
laws (20), (21)

It is possible to geometrically interprete conservation laws (20), (21) as a
certain property of the vector lines Lτ of the vector field v(x, y), related to
the curvature vector of these curves Lτ . This property represents a conser-
vation law for a set of the curves Lτ . For this purpose, let us apply results
of [1, Theorem 2].

Let us consider a set {Lτ} of the vector lines Lτ of the vector field
v = v(x, y) = |v|τ with the Frene basis (τ ,ν) (τ is the direction of the
vector field v and at the same time — unit tangential vector of the curve Lτ ,
ν being its unit normal), continuously filling some domain D on the plane
with the rectangular coordinates x, y. Concerning the set {Lτ}, everywhere
below we will assume the following conditions to be satisfied:

(A) One and only one curve Lτ ∈ {Lτ} passes at any point (x, y) ∈ D so
that curves Lτ do not intersect at any point (x, y) ∈ D.

(B) At any point (x, y) of any curve Lτ ∈ {Lτ} there exists a Frene basis
(τ ,ν), the Frene unit vectors τ and ν being one-valued vector func-
tions of the variables x, y in the domain D: τ = τ (x, y), ν = ν(x, y).
Thus, in D, two mutually orthogonal vector fields of the unit vectors τ
and ν are defined. We consider the unit vectors i, j along axes of the
coordinates x, y and the unit vectors τ , ν to form the right-hand side
system of vectors.

(C) At any point (x, y) ∈ D, there exist quantities div τ , rot τ , div ν, rotν,
i.e., the vector fields τ (x, y), ν(x, y) are sufficiently smooth.

To the given set of the vector lines {Lτ} inD there corresponds a set {Lν}
of the curves Lν , orthogonal to the curves Lτ . The tangential unit vector
of the curve Lν coincides with the normal unit vector ν of the curve Lτ ,
and the normal unit vectors η to the curve Lν coincides with a tangential
unit vector τ of the curve Lτ to within a sign. Sets of the curves {Lτ}
and {Lν} will be called mutually orthogonal. For a curve Lν ∈ {Lν}, the
Frene equations look like dν

dsν
= kνη, dη

dsν
= −kνν, where sν is a natural

parameter (variable length) of the curve Lν , dν

dsν
= (ν · ∇)ν and dη

dsν
=

(ν ·∇)η are derivatives of the vectors ν and η in the direction ν, kν and kνη
are the curvature and the curvature vector of the curve Lν . The curves Lτ
are vector lines of the vector field v = |v|τ and of the vector field of its
directions τ = v/|v|, and the curves Lν are vector lines of the vector field
of the normals ν of the curves Lτ .

Theorem 2 [1] for the case, when a set of the curves {Lτ} is a set of vector
lines of some vector field v(x, y) = |v|τ , can be formulated as follows:
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Theorem 3 (A conservation law for vector lines of a plane vector field
v(x, y)). Let v = v(x, y) = |v|τ be a plane vector field with components
vk(x, y) ⊂ C2(D) (k = 1, 2), the modulus |v| and the direction τ = v/|v|
(|τ | ≡ 1). Let {Lτ} be a set of vector lines of the field v (or τ ) with the
Frene unit vectors (τ ,ν), satisfying in the domain D conditions (A)–(C).
Then in the domain D we have the identity:

divS∗ = 0, (22)

where
S∗

def=
dτ

ds
+
dν

dsν
= (τ · ∇)τ + (ν · ∇)ν = kν + kνη, (23)

η = −τ . Identity (22) means that for such a set of vector lines {Lτ}
there always exists a vector field S∗ = kν + kνη, representing the sum of
the curvature vector kν of the vector line Lτ ∈ {Lτ} and the curvature
vector kνη of the orthogonal curve Lν ∈ {Lν}, which is solenoidal. This
property can be interpreted as existence in the differential geometry of vector
lines of an arbitrary plane vector field v of the conservation law for the vector
field S∗, having differential form (23).

In addition, in the domain D the following identity takes place:

S∗ = −S(τ )

and, hence, for the vector field S∗ of form (23) we have any representation
obtained from formulas (11)–(15):

S∗ = − rot{α(x, y)k} = −αyi+ αxj ⇒ rotS∗ = (∆α)k, (24)

S∗ = −(τ div τ + τ × rot τ ) = −τ div τ + kν = −(ν div ν + ν × rotν),

= −(τ div τ + ν div ν) = −(τ × rot τ + ν × rotν). (25)

The vector field S∗ of form (23), in addition, can be expressed only in
terms of one curvature vector kν = τs = (τ · ∇)τ of the vector line Lτ of
the field v by the formula

S∗ = τs + {(τs · ∇)τs − τs(grad ln |τs| · τs)}/|τs|2. (26)

Corollary 3. Under conditions of Theorem 2, identity (19) can be noted
as

v div v + v × rotv
|v|2

− 1
2

grad ln |v|2 = −S∗. (27)

Hence, conservation law (22) for vector lines of the vector field v(x, y),
conservation law (21) for the vector field v(x, y) and conservation law (20)
for the field of the directions τ of the vector field v(x, y) are equivalent
identities:
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divS∗ = 0 ⇔ div
{v div v + v × rotv

|v|2
− 1

2
grad ln |v|2

}
= 0

⇔ divS(τ ) = 0. (28)

3. The cases of a plane potential and solenoidal field v(x, y).
Identities for a scalar function u(x, y) and conservation
laws

For a plane potential field v = gradu(x, y) = uxi + uyj, and for a
plane solenoidal field, representable without loss of generality as v =
rot{u(x, y)k} = uyi−uxj, the angle α = α(x, y) is given by the formula (7)
with v1 = ux, v2 = uy and v1 = uy, v2 = −ux, respectively, and for the
quantities |v|, αx, αy, gradα, rot(αk), Q, S∗, S, we obtain the same for-
mulas in terms of derivatives of the function u(x, y). Thus, in both cases we
have

|v| = √g, g = | gradu|2 = | rot(uk))|2 = u2
x + u2

y, (29)

Q =
∆u

u2
x + u2

y

gradu,

S∗ = −{τ div τ + τ × rot τ} = − rot(αk) = −(αyi− αxj) = P −Q (30)

= −
{ ∆u
u2
x + u2

y

gradu− 1
2

grad ln(u2
x + u2

y)
}

(31)

=
uyuxy − uxuyy

u2
x + u2

y

i+
uxuxy − uyuxx

u2
x + u2

y

j =
(gradu×∇)× gradu

| gradu|2
, (32)

divS∗ = divS = 0, rotS∗ = − rotS = (∆α)k. (33)

From Theorem 1 in both cases follows:

Theorem 4. For any scalar function u(x, y) ∈ C2(D) with the property
u2
x + u2

y 6= 0 in D we have the identity

Q
def=

∆u
u2
x + u2

y

gradu =
∆u√
u2
x + u2

y

τ

= grad
{1

2
ln(u2

x + u2
y)
}

+ rot{α(x, y)k} ⇔ (34)

R
def=

∆u
u2
x + u2

y

rot(uk) = − ∆u√
u2
x + u2

y

ν

= − gradα(x, y) + rot
{1

2
ln(u2

x + u2
y)k
}
. (35)
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Here α = α(x, y) is the slope angle of the vector gradu to an axis Ox, defined
from formula (7) with v1 = ux, v2 = uy, τ = gradu/| gradu| = (uxi +

uyj)/
√
u2
x + u2

y = cosα i + sinα j is the direction (the unit vector) of the
vector field gradu or a unit tangent vector of a vector line of the field gradu,
ν = − rot(uk)/| rot(uk)| = (−uyi+ uxj)/

√
u2
x + u2

y = − sinα i+ cosα j is
the direction (the unit vector) of the normal to this line. Each of vector
identities (34), (35) is equivalent to the system of scalar identities(

ln
√
u2
x + u2

y

)
x

= −αy +
∆u

u2
x + u2

y

ux,(
ln
√
u2
x + u2

y

)
y

= αx +
∆u

u2
x + u2

y

uy.

(36)

According to equalities (29), ∆u = div(
√
g τ ), τ = τ (α), ν = ν(α)

each of identities (34), (35) can be considered to be a relation only between
the two scalar fields g(x, y) and α(x, y) (between the modulus of the vector
field gradu or rot(uk) and the angle characterizing its direction).

Corollary 4. Identity (34) can be represented as

T
def=

1
2

grad ln(u2
x + u2

y)−
∆u

u2
x + u2

y

gradu = S∗, (37)

where the vector field S∗ is expressed by any of formulas (23), (24)–(26),
(31), (32).

Other corollaries of Theorem 4 are considered in [2–5].

Corollary 5. For any function u(x, y) ∈ C3(D) (| gradu| 6= 0), the identi-
ties of third order are valid:

∆ ln
√
u2
x + u2

y =
(
ux

∆u
g

)
x

+
(
uy

∆u
g

)
y

= divQ, (38)

∆αk = −
{(
uy

∆u
g

)
x
−
(
ux

∆u
g

)
y

}
k = − rotQ ⇒ (39)

∆ Ln(ux ± iuy) = divQ∓ i(rotQ · k),

as well as divergent identities

divT = 0 ⇔ divS∗ = 0, (40)

divM = 0, (41)

where
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T
def=

1
2

grad ln(u2
x + u2

y)−
∆u

u2
x + u2

y

gradu = P −Q, (42)

M
def= gradα(x, y) +

∆u
u2
x + u2

y

rot{u(x, y)k} = gradα+R. (43)

Corollary 6. The equation of a vector line of the field gradu(x, y) can be
represented as S∗ = (S∗ · τ )τ + τs or as rot(αk) = (rot(αk) · τ )τ − τs, i.e.,
in its classical equation grad ln

√
g = (grad ln

√
g · τ )τ + τs, the replacement

grad ln
√
g for S∗ or for (− rot(αk)) is admissible.

4. Differential identities and conservation laws for a time
field (for the eikonal equation solutions)

4.1. Differential identities for the eikonal equation. Let c(x, y) =
1/n(x, y) be a propagation velocity of signals (waves) of any nature in
the plane x, y with their kinematics satisfying the Fermat principle, n =
n(x, y) be a refractive index; and t be a parameter of the point source of
the waves, determining its coordinates x, y. Assume D to be a domain in the
plane x, y and τ = τ(x, y, t)–– a solution to equation (4) for n(x, y) ≥ n0 > 0.
The function τ(x, y, t) is the travel time (the time field) of a signal along
the ray (along the geodesic of metric ds2 = n2(x, y)(dx2 + dy2)), connecting
the source with the parameter t and the point (x, y).

Let a source be located at the point M∗ (t = const), then τ = τ(x, y).
The potential vector field v = grad τ(x, y) = |v|τ has the modulus |v| =
n(x, y) and the direction τ = cosα i + sinα j = grad τ/n, where α =
α(x, y) is the angle the ray (the vector grad τ or τ ) makes with the axis
Ox at the point x, y;it is defined by formula (7) with v1 = τx, v2 = τy. The
ray is the vector line Lτ of the field grad τ with the unit tangent vector τ
and the unit normal ν = − sinα i + cosα j = − rot(τk)/n. The vectors τ ,
ν form the right-hand side system of the Frene unit vectors of a ray. The
rays Lτ and fronts of the waves Lν (lines of the level τ(x, y, t) = const at
t = const) form mutually orthogonal sets of curves for any location of the
source t = const. Thus, the unit vectors ν, η = −τ make up the right-hand
system of the Frene unit vectors for a front curve Lν (ν is the tangential unit
vector of the curve Lν , η is the unit vector of its normal). The vectors kν
and kνη, where k is the curvature of the ray Lτ , kν is the curvature of the
front Lν , represent curvature vectors of the ray and the front, respectively.
The vector S∗, defined by equality (23) as

S∗ = kν + kνη, (44)

in the case in question is the sum of the curvature vector of a ray Lτ and
the curvature vector of a front Lν . The vector S∗ can be expressed by any
of formulas (24)–(26), (31), (32) with u = τ .
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The classical ray equation has the form

grad lnn = (grad lnn · τ )τ + τs, (45)

where τs = (τ ·∇)τ = rot τ×τ is the derivative of the vector τ along the ray
(in the direction τ ); τ = dr/ds, r = x(s)i + y(s)j; x = x(s), y = y(s) are
parametric ray equations with the parameter s (the curve length).

At the point M∗, the value α(x, y) is not defined, and it is possible to
show that lim(x,y)→M∗ τ(∆τ/n2) = 1. From Theorem 4 with u = τ according
to (4) follows

Theorem 5 (The basic identity for the eikonal equation). Let τ(x, y) ∈
C2(D) be the solution to equation (4) in some domain D with the parame-
ter n(x, y) ∈ C1(D). Then the following identity holds:

Q
def=

∆τ
n2

grad τ =
∆τ
n
τ = grad lnn+ rot(αk) ⇔ (46)

R
def=

∆τ
n2

rot(τk) = −∆τ
n
ν = − gradα+ rot(lnnk), (47)

which is equivalent to a system of the scalar identities

(lnn)x = −αy + (∆τ/n2) τx, (lnn)y = αx + (∆τ/n2) τy

or a system
∂ lnn
∂ν

=
∂α

∂s
,

∂ lnn
∂s

= −∂α
∂ν

+
∆τ
n
,

where ∂/∂s = (τx/n) ∂/∂x+(τy/n) ∂/∂y = (τ ·∇), ∂/∂ν = −(τy/n) ∂/∂x+
(τx/n) ∂/∂y = (ν ·∇) are operators of differentiation of a scalar function in
the direction of the vector τ and ν, respectively.

The basic identity (46) or (47) has the following physical and geomet-
ric meaning. To any smooth refractive index n(x, y) and to any smooth
time field τ(x, y) there correspond vector fields Q and R, explicitly defined
by (46), (47) with the following properties. A potential vector component of
the vector Q is determined only by the index refractive n(x, y) and coincides
with the vector field grad lnn, while the rotational (solenoidal) component
of the vector Q is determined only by the angular characteristic α(x, y) and
coincides with rot(αk). The potential and the rotational components of the
vector R are equal to (− gradα) and rot(lnnk), respectively. As discussed
below, the fields Q and R are related to a well-known medium charac-
teristic such as the geometric divergence of rays. Since ∆τ = div grad τ ,
grad τ = nτ , τ = τ (α), ν = ν(α), the basic identity (46) or (47) can also
be treated as a relation only between the refraction index n(x, y) and the
ray angle slope α(x, y).
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5. Conservation laws for a time field τ (x, y, t)
(for the eikonal equation solutions)

From Theorem 5 follows

Corollary 7. Identity (46) can be represented as

T = S∗, (48)

where
T

def= grad lnn− ∆τ
n2

grad τ (49)

= − rot(αk) = −αyi+ αxj (50)

= −(τ div τ + τ × rot τ ) (51)

= {(τyτxy − τxτyy)i+ (τxτxy − τyτxx)j}/n2, (52)

S∗ = kν + kνη, (53)

which gives an explicit expression for the vector field S∗ (and T ), whose
vector lines coincide with the lines of the level of the function α(x, y). We
also have S∗ = (S∗ · τ )τ + τs, so that ray equation (45) can be represented
as rot(αk) = (rot(αk) ·τ )τ −τs, i.e., grad lnn in (45) can be replaced by S∗

or by (− rot(αk)).

Corollary 8. For any refractive index n(x, y) ∈ C2(D) and any solution
(the time field) τ(x, y) ∈ C3(D) of equation (4), identities are valid:

divS = 0, rotS∗ = (∆α)k ⇒ (54)

∆ lnn =
(
τx

∆τ
n2

)
x

+
(
τy

∆τ
n2

)
y

= divQ = −(rotR · k), (55)

∆α = −
{(
τy

∆τ
n2

)
x
−
(
τx

∆τ
n2

)
y

}
= −(rotQ · k) = −divR, (56)

∆ Ln(τx ± iτy) = divQ∓ i(rotQ · k),

which give the explicit formulas for ∆ lnn, ∆α in terms of divergence and
rotor of the same vector field Q or R, defined in (46), (47).

Identities (55), (56) mean that the field source intensity Q is determined
only by the refractive index n(x, y) and is equal to ∆ lnn, while the field
vortex intensity Q is determined only by the ray slope angle α(x, y) and is
equal to (−∆α). For the field R the source and the vortex intensities are
(−∆α) and (−∆ lnn), respectively.

In [4, 5], the following conservation laws for the non-force time field
τ = τ(x, y, t) in the two-dimensional kinematic seismics (geometric optics)
are obtained. They follow from formulas (48)–(56).
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Theorem 6 (Conservation laws for the eikonal equation solutions). Let
n(x, y) ∈ C2(D), τ(x, y, t) ∈ C3(D) for any t = const be a solution to the
eikonal equation (4). Then in the domain D, the following conservation
laws take place:

(I) divT = 0 at any t = const;

(II) ∂

∂t
divQ = 0 ⇔ div

∂Q

∂t
= 0 ⇔ div

∂T

∂t
= 0.

Here the vector field T is determined by any of formulas (49)–(52),

Q =
∆τ
n2

grad τ, divQ = ∆ lnn, rotQ = −(∆α)k = − rotT .

The identity divT = 0 means the existence of a time field conservation
law in the two-dimensional kinematic seismics (geometric optics) with the
differential form divT = 0 and the integral form

∫
S(T · η) ds = 0 (for

the flux of the vector field T through the boundary S of the domain D
with the normal η). The conservation law (II) means the existence of a
differential wave-propagation invariant I with the following physical mean-
ing. Although the time field function τ depends on the point source param-
eter t (the point source location in a medium): τ = τ(x, y, t), the value
I = div{(∆τ/n2) grad τ} = divQ = −(rotR · k) = ∆ lnn is independent
of t and of τ , i. e., it is invariant with respect to the source location. For the
conservation law (II) the role of “time t” belongs to the point source param-
eter t, determining its location. To differential invariant I = divQ, there
corresponds an integral invariant

∫
S(Q · η) ds, equal to the flux of the vec-

tor Q through the boundary S of an arbitrary domain D with the normal η,
also independent of the source location.

The following geometric interpretation of conservation laws (I) and (II)
of Theorem 6 follows from Theorem 6 and consequences 3 or formulas (48)–
(53).

Corollary 9. The conservation law (I) of Theorem 6 for a time field
τ(x, y, t) for any fixed location of a point source is equivalent to the fol-
lowing geometric property of the ray curves Lτ and the front curves Lν or-
thogonal to them: the vector field S∗ of the form of (53), which is the sum
of curvature vectors of rays and fronts, is a solenoidal field: divS∗ = 0.
The conservation law (II) of Theorem 6 is equivalent to a conservation law
div(∂S∗/∂t) = 0 for the vector field S∗.

5.1. Physical and a geometric meaning of the vector fields P , S, Q,
R and the quantities ∆2τ , αt. The relation with the geometric di-
vergence of rays, the ray transformation, the differential geometry
and the group analysis. In [4, 5] it is obtained
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Theorem 7. Let t be the point source parameter, n(x, y) ∈ C1(D), τ =
τ(x, y, t) ∈ C3(D) be a solution of equation (4), α = α(x, y, t); α0 =
α0(t, x, y) be the value of the direction angle α of the ray (grad τ) at the
source point with the parameter t, passing through the point (x, y); the value
α0(x, y, t) is a constant on any ray; D = D(x, y, t) is the geometric di-
vergence of rays with the vertex (source) at the point with parameter t;
J = J(x, y, t) def= ∂ (x, y)/∂ (τ, α0) is the Jacobian of the (ray) transfor-
mation of the Cartesian coordinates x, y to the coordinates ray τ, α0 (for a
fixed t); we have D2 = n|J |. Then the formulas are valid:

τt = τt(x, y, t)
def= f(t, α0), (gradα0 · τ ) = 0,

αt
def=

∂α

∂t
=
τxτty − τyτtx

n2
=
fα0(t, α0)
nD2

=
fα0(t, α0)
n2J

,

(grad lnαt · τ ) = −(grad ln(nD2) · τ ),

∆2τ
def=

∆τ
n2

= −(grad lnαt · τ )
n

=
(grad ln(nD2) · τ )

n
,

Q = (n∆2τ)τ = (grad ln(nD2) · τ )τ =
(Rt · τ )
αt

τ ,

R = −(n∆2τ)ν = −(grad ln(nD2) · τ )ν = −(Qt · ν)
αt

ν.

Thus, the vector Q is a vector component of the vector grad ln(nD2) in the
tangential direction τ of the ray; while the vector R is perpendicular to
the vector Q and to the ray, and its value equals the modulus of the scalar
component of the vector grad ln(nD2) in the direction τ .

Thus, the vector fields Q, R, P , S, entering into identities (46)–(47) and
constructed from the potential non-force vector field v = grad τ(x, y), where
the potential τ(x, y) is a time field (the solution of eikonal equation (4)), have
quite certain physical and (or) geometric meaning. Namely, the field P is a
gradient of the scalar field lnn(x, y), where n(x, y) is the refractive index of
the medium, while S = rot{α(x, y)k}, where α(x, y) is the ray inclination
angle. The physical and the geometric meaning of the fields Q and R (along
with their interpretation in Subsection 4.1) is described in Theorem 7 and
related to a well-known physical characteristic of the wave kinematics and
the medium, namely, to the geometric divergence of rays D(x, y, t).

According to the differential geometry [15, § 45, § 79–83; 16] and is
explained in [2, 4, 5], expressions ∆1τ (in (4)), ∆2τ are the first and the
second Beltramy differential parameters of the function τ(x, y) for a sur-
face with the Riemannian metric ds2 = n2(x, y)(dx2 + dy2), the quan-
tity K(x, y) = −(∆ lnn2)/(2n2) is its Gaussian curvature, the quantity
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κ = 1/ρg = −∆2τ = −∆τ/n2 is the geodesic curvature of the front curve
τ(x, y) = const on this surface. We have Q = −κ grad τ , K(x, y) = −-
divQ/n2. Moreover, expressions J6 = −αt, J7 = ∆1τ , J4 = ∆2τ , J11 =
K(x, y) are differential invariants of some Lie group, and the identities in
Corollary 8 are the relations between them (for the relation of the expres-
sions J j to the group analysis, see [1, 17, 18]). The determination of integrals
over a curve and over an area and the determination of functionals in the
inverse problem are considered [4, 5].
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