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Relationships between the characteristics of
mutually orthogonal families of

curves and surfaces

A.G. Megrabov

Abstract. In the Euclidean space E3, we consider the family {Lτ} of the curves Lτ

with the tangent unit vector τ = τ (x, y, z) and the family {Sτ} of the surfaces Sτ

with the unit normal τ which are orthogonal to the curves Lτ , i.e., to the field τ .
Each of these families continuously fills in a domain D in E3. We have obtained
formulas which express the classical characteristics of the surfaces Sτ : the principal
directions, the principal curvatures, the mean curvature, and the Gaussian curva-
ture in terms of the classical characteristics of the curves Lτ , i.e., their Frenet basis,
the first curvature, and the second curvature. A new proof for the equality of the
non-holonomicity values of the fields of principal directions has been obtained. The
proofs are based on the fact that the principal curvatures are stationary values of
the normal curvature at each point of the surface Sτ .

The vector lines Lτ of the physical vector fields corresponding to the
solutions of the equations of mathematical physics (curves Lτ have the unit
tangent vector τ = τ (x, y, z)) form the family of curves {Lτ} and continu-
ously fill in the domain considered. For example, for the solutions τ of the
eikonal equation τ2x + τ2y + τ2z = n2(x, y, z) (here τ = τ(x, y, z) is the scalar
time field and n is the refractive index), which is the basic mathematical
model of kinematic seismics (geometric optics), the role of the curves Lτ
being played by the rays, i.e., the vector lines of the field v = grad τ = nτ .
For the Euler hydrodynamic equations, the role of the curves Lτ is played
by streamlines.

In mathematical physics, there often occur situations where, along with
the family of curves {Lτ}, the family {Sτ} of surfaces Sτ with the unit
normal τ which are orthogonal to the curves Lτ (the field τ ) exists and is
studied. For example, for the eikonal equation, the role of the surfaces Sτ
is played by the wavefronts τ(x, y, z) = const orthogonal to the family of
rays {Lτ}. Therefore, in this paper, we study the properties of the families
of curves {Lτ} and surfaces {Sτ} which are mutually orthogonal and are
considered simultaneously, rather than the properties of fixed curves and
surfaces.

The basic characteristics of the curves Lτ of classical differential geome-
try [2–4] are the Frenet basis (τ , ν, β), where τ is the unit tangent vector,
ν is the principal normal, and β is the binormal, the first curvature k, and
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the second curvature κ, which are defined at each point of a given curve. The
most important classical characteristics of the surface are its unit normal τ ,
the principal directions l1 and l2, the principal curvatures k1 and k2, the

mean curvature H
def
= (k1 + k2)/2, and the Gaussian curvature K

def
= k1k2,

which are defined at each point of a given surface. For the families {Lτ}
and {Sτ}, all the quantities τ , ν, β, k, κ and l1, l2, k1, k2, H, and K are
the vector and the scalar fields in the domain D continuously filled with the
curves Lτ and the surfaces Sτ . The symbols a ·b and a×b denote the scalar
and vector products of the vectors a and b, ∇ is the Hamiltonian operator,
(v · ∇)a is the derivative of the vector a in the direction of the vector v.

In this paper, we prove the formulas which express the characteristics l1,
l2, k1, k2, H, and K of the surfaces Sτ ∈ {Sτ} in terms of the characteris-
tics τ , ν, β, and κ of the curves Lτ ∈ {Lτ} orthogonal to the surfaces Sτ .
In addition, a new proof for the following property of the family of surfaces
stated in [1] is obtained: the non-holonomicity values of the fields of the
principal directions l1 and l2 are equal. (The non-holonomicity value of the
unit vector field τ is the quantity τ · rot τ . The condition τ · rot τ = 0 is
the necessary and sufficient condition for holonomicity of the field τ , i.e.,
for the existence of a family of surfaces orthogonal to the field τ , i.e., to its
vector lines Lτ [5, Ch. 1, § 1].) In addition, another proof of the formula
K = τ · (rotν × rotβ)− κ2 derived in [1] is given.

Let us assume that {Lτ} is a family of curves Lτ which continuously fill
in the domain D, and

(A) one and only one curve Lτ ∈ {Lτ} passes through each point (x, y, z) ∈
D;

(B) at each point (x, y, z) of any curve Lτ ∈ {Lτ}, the right-hand Frenet
basis (τ ,ν,β) exists, so that the three mutually orthogonal vector
fields τ , ν, and β are defined in D, and τ = ν × β, ν = β × τ ,
β = τ × ν;

(C) τ ∈ C2(D).

In D, let there exist a family of surfaces Sτ orthogonal to the family of
curves {Lτ}, i.e., to the field τ , which, according to the Jacobi theorem [1,
Ch. 1, § 1], is equivalent to the identity τ · rot τ = 0 in D. Therefore, {Lτ}
is the family of vector lines of the field of normals τ to the surfaces Sτ . Let
{Sτ} be the family of surfaces Sτ with the unit normal τ = τ (x, y, z), which
continuously fill in the domain D in the space x, y, z. The principal direction
will be represented by the unit vector li (i = 1, 2) with the corresponding
direction; the vector li is the tangent unit vector of the curvature line Li
on Sτ , and at the point (x, y, z) ∈ Sτ , it is equal to the derivative of the
radius vector r = r(x, y, z) of the point of the surface Sτ in the principal
direction at the point (x, y, z). Let us assume that
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(D) one and only one surface Sτ ∈ {Sτ} passes through each point
(x, y, z) ∈ D;

(E) at each point (x, y, z) ∈ D, there exists a right-hand system of mutu-
ally orthogonal unit vectors τ , l1, and l2, where τ is the unit normal
and l1 and l2 are the principal directions at the surface Sτ passing
through this point. For this, it is sufficient that each surface Sτ ∈ {Sτ}
be C2-regular [3]. Thus, in D, we have defined three mutually orthog-
onal unit vector fields τ (x, y, z), l1(x, y, z), l2(x, y, z); l1 = l2 × τ ,
l2 = τ × l1, τ = l1 × l2;

(F) τ ∈ C2(D), l1, l2 ∈ C1(D).

Theorem 1. Suppose that, for the family {Lτ} of curves Lτ with the unit
tangent vector τ = τ (x, y, z), conditions (A)–(C) are satisfied in the do-
main D and that {Sτ} is the family of surfaces Sτ with unit normal τ which
are orthogonal to the family {Lτ}. Let the family {Sτ} satisfy conditions
(D)–(F) in the domain D. Then, at each point (x, y, z) ∈ D, the prin-
cipal directions l1 and l2 of the surface Sτ passing through this point are
expressed in terms of the Frenet unit vectors τ , ν, and β of the curves Lτ
by the formulas

l1 = ν cosω + β sinω, l2 = −ν sinω + β cosω, (1)

where ω = ω(x, y, z) is a scalar function (ω is the angle between the vec-
tors l1 and ν or between l2 and β). In addition, the fields of the principal
directions l1 and l2 in the domain D satisfy the identity

l1 · rot l1 = l2 · rot l2. (2)

In terms of the geometry of vector fields [5, Ch. 1, § 1], identity (2) implies
that the non-holonomicity values of the vector fields of the principal direc-
tions l1 and l2 are equal in D. Identity (2) is equivalent to the condition

tg 2ω = −A
B
, (3)

in D, which defines the function ω in terms of ν and β. Here A
def
= ν ·

rotν − β · rotβ, B
def
= β · rotν + ν · rotβ. For the principal curvatures k1

and k2 of the surfaces Sτ , the following formulas are valid :

k1 = − rot l1 · l2, k2 = rot l2 · l1. (4)

Proof. Let M(x, y, z) be an arbitrary point of the domain D, and let Lτ
and Sτ be the curve of the family {Lτ} and the surface of the family {Sτ},
respectively, that pass through this point. The principal normal ν and the
binormal β of the curve Lτ are in a plane normal to the curve Lτ passing
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through the point M , and the principal directions l1 and l2 are in a plane
tangent to the surface Sτ . Because the families {Lτ} and {Sτ} are mutually
orthogonal, these planes coincide and the unit vectors ν, β, l1, and l2 are in
the same plane. In addition, the vectors l1 and l2 are mutually orthogonal.
Therefore, at each point M ∈ D, the vectors l1 and l2 can be represented
in the form of (1). Because li is the unit tangent vector of the curvature
line Li at the surface S passing through the point M , it follows that the
curvature vector Ki of the curve Li equals Ki = rot li × li and the normal
(principal) curvature of the curve Li is ki = τ ·Ki = τ · (rot li × li). This
implies formulas (4): k1 = τ · (rot l1 × l1) = − rot l1 · (τ × l1) = −l2 · rot l1,
k2 = τ · (rot l2 × l2) = − rot l2 · (τ × l2) = l1 · rot l2. We make use of the
well-known formula a · (b× c) = −b · (a× c) and the equalities τ × l1 = l2,
τ × l2 = −l1 [2].

The principal curvatures k1 and k2 are the stationary values of the normal
curvature at the point of the surface [3, Ch. 2, § 4; 4, Ch. 2, § 3]. At a surface
Sτ we will consider the curves L1ε and L2ε which pass through the point M ,
are mutually orthogonal at this point, and are close to the curvature lines L1

and L2, respectively. We denote the normal curvature of the curve Liε by kiε,
and its unit tangent vector and the curvature vector by liε and by Kiε,
respectively. The formulas for liε are obtained from formula (1) replacing li
by liε and replacing ω by ω̃ = ω+ εη, where ε is a small parameter and η is
a fixed arbitrary smooth function. We seek stationary values of the normal
curvatures k1ε and k2ε of the curves L1ε and L2ε by varying ω̃ due to a
variation in the parameter ε in the neighborhood of the point ε = 0. We

have
∂l1ε
∂ε

= ηl2ε,
∂l1ε
∂ε

∣∣∣
ε=0

= ηl2,
∂l2ε
∂ε

= −ηl1ε,
∂l2ε
∂ε

∣∣∣
ε=0

= −ηl1,
∂ rot l1ε

∂ε
=

rot
∂l1ε
∂ε

= rot (ηl2ε),
∂ rot l1ε

∂ε

∣∣∣
ε=0

= rot (ηl2) = η rot l2+grad η×l2,
∂ rot l2ε

∂ε
=

rot
∂l2ε
∂ε

= − rot (ηl1ε),
∂ rot l2ε

∂ε

∣∣∣
ε=0

= − rot (ηl1) = −η rot l1 − grad η × l1.
Hence, the normal curvature k1ε of the curves L1ε is expressed as k1ε =

τ ·K1ε = τ ·(rot l1ε×l1ε),
∂k1ε
∂ε

=
∂

∂ε
[τ ·(rot l1ε×l1ε)] = τ · ∂

∂ε
(rot l1ε×l1ε) =

τ ·
(

∂

∂ε
rot l1ε × l1ε + rot l1ε ×

∂l1ε
∂ε

)
⇒ ∂k1ε

∂ε

∣∣∣
ε=0

= τ · [(η rot l2 + grad η ×
l2) × l1 + rot l1 × ηl2] = η[τ · (rot l1 × l2 + rot l2 × l1)]. Here we used the
well-known formula a× (b× c) = b(a · c)− c(b · a) [2], which implies that
(grad η×l2)×l1 = −l1×(grad η×l2) = l2(grad η ·l1)−grad η(l1 ·l2), and the
equalities l1 · l2 = 0 and τ · l2 = 0. Using the same well-known formula and
the equalities l2 = τ × l1 and l1 = l2×τ , we obtain rot l1× l2 + rot l2× l1 =
τ (rot l1 · l1) − l1(rot l1 · τ ) + l2(rot l2 · τ ) − τ (rot l2 · l2). It follows that
∂k1ε
∂ε

∣∣∣
ε=0

= η(l1 · rot l1− l2 · rot l2). Consequently, the stationarity condition

∂k1ε
∂ε

∣∣∣
ε=0

= 0 is equivalent to the equality l1 · rot l1 − l2 · rot l2 = 0 in D,

which leads to identity (2) of the theorem.
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The stationarity condition
∂k2ε
∂ε

∣∣∣
ε=0

= 0 results in the same identity (2).

Let us show that identity (2) is equivalent to identity (3). Using the
well-known formula [2] rot (ϕa) = ϕ rota + gradϕ × a, from (1) it follows
that rot l1 = cosω rotν+sinω rotβ+gradω× l2 and rot l2 = − sinω rotν+
cosω rotβ−gradω×l1. From this, after lengthy but simple calculations, we
obtain l1 · rot l1− l2 · rot l2 = A cos 2ω+B sin 2ω and, in view of identity (2),
we arrive at formula (3).

Corollary 1. Let the family {Sτ} of the surfaces Sτ satisfy conditions (D)–
(F) in the domain D. Then, the Gaussian curvature K of the surfaces Sτ
is expressed in terms of the principal directions l1 and l2 by the formulas

K
def
= k1k2 = −(rot l1 · l2)(rot l2 · l1) = τ · (rot l1 × rot l2)− (rot li · li)2, (5)

where i = 1 or 2 and for the mean curvature H, the formula H = −div τ/2
from [5, § 5] holds.

Proof. From (4) we obtain K = k1k2 = −(rot l1 · l2)(rot l2 · l1) =
(l1 · rot l1)(l2 · rot l2) − (l1 · rot l2)(l2 · rot l1) − (l1 · rot l1)(l2 · rot l2). Us-
ing the well-known formula (a · c)(b ·d)− (b · c)(a ·d) = (a× b) · (c×d) for
a = l1, b = l2, c = rot l1, and d = rot l2 [2, § 7] and equality (2), we obtain

formula (5). From (4) it follows that k1+k2
def
= 2H = − rot l1 ·l2+rot l2 ·l1 =

−div(l1 × l2) = −div τ , which should be proved. Here we used the well-
known formula div(a × b) = rota · b − rot b · a for a = l1, b = l2 [2, § 17].

Theorem 2. Let {Lτ} and {Sτ} be mutually orthogonal families of the
curves Lτ and the surfaces Sτ in the domain D, so that the field of the
unit tangent vectors τ of the curves Lτ and the field of the normals τ of the
surfaces Sτ coincide. Let for the families {Lτ} and {Sτ}, conditions (A)–(C)
and (D)–(F), respectively, be satisfied. Then at each point (x, y, z) ∈ D, the
principal curvatures k1 and k2, the mean curvature H, and the Gaussian
curvature K of the surface Sτ passing through this point are expressed in
terms of the Frenet unit vectors τ , ν, and β of the curves Lτ by the formulas

k1 =
1

2

(
−div τ ±

√
A2 +B2

)
= −l2 · rot l1,

k2 =
1

2

(
−div τ ∓

√
A2 +B2

)
= l1 · rot l2,

(6)

⇒ K
def
= k1k2 =

1

4

[
(div τ )2 − (A2 +B2)

]
, (7)

H
def
=

k1 + k2
2

= −1

2
(rotν · β − rotβ · ν) = −1

2
div τ , (8)
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where the quantities A and B are defined by the formulas from Theorem 1.
The upper sign in front of the radical is taken for k1 > k2 and the lower
sign –– for k1 < k2.

Proof. Substitution of the expressions for rot l1 and rot l2 contained in the
proof of Theorem 1 into equalities (4) yields k1 = − rot l1·l2 = A sinω cosω−
(rotν · β) cos2 ω + (rotβ · ν) sin2 ω, k2 = rot l2 · l1 = −A sinω cosω −
(rotν ·β) sin2 ω+(rotβ ·ν) cos2 ω = −k1−(rotν ·β−rotβ ·ν) = −k1−div τ .
Here we used the well-known formula div(a × b) = rota · b − rot b · a [2]
for the vector τ = ν × β. Combining and subtracting the equalities for k1

and k2, we obtain formula (8): k1 +k2
def
= 2H = −div τ = rotν ·β− rotβ ·ν

and the equality k1−k2 = A sin 2ω−B cos 2ω. Again, we have obtained the
proof of the formula H = −div τ/2 from [5, § 5].

Combining the latter formula and equality (3) brings about A sin 2ω −
B cos 2ω = k1 − k2 and A cos 2ω +B sin 2ω = 0. Taking the square of these
two equalities and combining the results, we obtain (k1−k2)2 = A2 +B2 ⇒
k1 − k2 = ±

√
A2 +B2, where the upper sign in front of the radical is taken

for k1 > k2 and the lower sign–– for k1 < k2. Combining and subtracting the
latter equality and the formula k1 + k2 = −div τ , we obtain equalities (6),
which immediately resulted in expression (7) for the Gaussian curvature K.

Lemma. Let the family of curves {Lτ} with the Frenet unit vectors τ , ν,
and β and second curvature κ satisfy conditions (A)–(C) in a domain D.

Then, in D, we have the identity A2 +B2 = (div τ )2 +4
[(

κ− 1

2
τ · rot τ

)2
−

τ ·(rotν×rotβ)
]
, where the quantities A and B are defined by the formulas

from Theorem 1.

Proof. From the definition A and the formula κ = (τ · rot τ −ν · rotν−β ·
rotβ)/2 [5, Ch. 1, § 15], we obtain A2 = (rotν ·ν)2−2(rotν ·ν)(rotβ ·β) +
(rotβ·β)2 and (2κ−τ ·rot τ )2 = (rotν ·ν)2+2(rotν ·ν)(rotβ·β)+(rotβ·β)2,
whence A2 = (2κ − τ · rot τ )2 − 4(rotν · ν)(rotβ · β). From the definition
of B and the formula div τ = div(ν × β) = rotν · β − rotβ · ν, we obtain
B2 = (rotν·β)2+2(rotν·β)(rotβ·ν)+(rotβ·ν)2 and (div τ )2 = (rotν·β)2−
2(rotν ·β)(rotβ·ν)+(rotβ·ν)2, whence B2 = (div τ )2+4(rotν ·β)(rotβ·ν).
Combining the expressions obtained for A2 and B2 leads to A2 + B2 =

(div τ )2 + 4
(
κ− 1

2
τ · rot τ

)2
+ 4
[
(rotν ·β)(rotβ ·ν)− (rotν ·ν)(rotβ ·β)

]
.

Using the well-known formula (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)
[2, § 7] for a = ν, b = β, c = rotν, and d = rotβ and the equality τ = ν×β,
we obtain the lemma.
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Theorem 3. Let {Lτ} and {Sτ} be the mutually orthogonal families of
curves Lτ and surfaces Sτ in a domain D and let the conditions of Theorem 2
be satisfied. Then, at each point M(x, y, z) ∈ D, the Gaussian curvature of
the surface Sτ passing through this point is expressed in terms of the Frenet
unit vectors τ , ν, and β and the second curvature κ of the curves Lτ –– by
any of the formulas

K = τ · (rotν × rotβ)− κ2 (9)

⇔ K = −
[
(ν · rotβ)(β · rotν) +

1

4
A2
]
. (10)

Proof. Since the field τ is holonomic, i.e., there exists a family of sur-
faces Sτ orthogonal to the field τ , it follows from the Jacobi theorem
that the identity τ · rot τ = 0 holds in the domain D. Using this identity
and substituting the formula for A2 +B2 from the lemma into equality (7),
we come to (9). From the latter, using the expressions for A2 in terms
of κ, τ , ν, and β contained in the proof of the lemma, we obtain (10).
In [1, Sec. 3.2], formula (9) was derived using a different proof.

Remark 1. In [1, Sec. 2.3], the following formula was derived for the unit

vector field τ :
1

2
divS(τ ) = κ(κ − τ · rot τ ) − τ · (rotν × rotβ), where

S(τ ) = rot τ × τ − τ div τ = Kτ + 2Hτ , Kτ = kν = rot τ × τ is the
curvature vector of the vector lines Lτ of the field τ and H is the mean
curvature. Comparing this formula for the case τ · rot τ = 0 (i.e., for the

holonomic field τ ) with formula (9), we obtain K = −1

2
divS(τ ), i.e., the

second divergent representation of the Gaussian curvature [5, Ch. 1, § 8]
using the new proof.

Remark 2. The Frenet unit vectors ν and β and the curvature k of the
curves Lτ can be expressed in terms of τ : ν = (rot τ ×τ )/k, β = τ ×ν, and
k = | rot τ ×τ |, respectively. Therefore, all formulas for the quantities l1, l2,
ω, k1, k2, and K in Theorems 1–3 and the lemma can be expressed in terms
of only the field τ (the unit tangent vectors of the curves Lτ or normals
to Sτ ).
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