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A noise-reducing algorithm for Particle-in-Cell
plasma simulation∗

E.A. Mesyats

Abstract. In this paper a new algorithm to reduce the noise effects in the Particle-
in-Cell method for the Vlasov–Poisson system is proposed. The method is demon-
strated on an example of a one-dimensional Riemann problem of plasma physics.
Collisionless completely ionized non-isothermic plasma is considered. The model
calculates only the ion movement (the electron density is described by the Boltz-
mann distribution).

1. Introduction

The Particle-in-Cell method (PIC) is widely used to solve plasma problems.
It is a Lagrangian method. The positions of a large number of model parti-
cles follows the Vlasov kinetic equation characteristics. A particle movement
is subject to the law of classical mechanics in the self-consistent electromag-
netic field defined from the Maxwell equations [1].

Alternative to the PIC method are grid Vlasov methods. But the lat-
ter require large memory and time, especially for three-dimensional prob-
lems. Finite difference methods poorly deal with great gradient areas. The
Particle-in-Cell method is more efficient, physically intuitive. It is simple
and convenient for simulation on parallel computers.

But discreteness of model particles brings about the energy loss, self-
force occurrence and other non-physical effects called noise. The reasons for
noise occurrence are various [2,3]. Often it is difficult to define the influence
of various non-physical factors on the solution as they interact and cooperate
with each other.

At the present time, there is no uniform approach to solving the noise
problem. More often, the number of particles is increased (that is not al-
ways possible because of limitation of computer resources) or the form and
distribution of density in a particle are modified [4], or an optimal time and
spatial steps are selected. Also, a “quite start” algorithm, Fourier filtering
and smoothing algorithms are used (see, e.g., [5, 6]). But such algorithms
do not eliminate noise and cut or damp physical effects.

The aim of this work is to develop a noise reducing algorithm, which
would not affect a solution (as smoothing algorithms do). At least the
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algorithm is expected only slightly to affect the solution. The algorithm
should be general enough for a wide range of problems. The method is
demonstrated on an example of one-dimensional Rieman problem of plasma
physics.

2. Equations

Collisionless completely ionized non-isothermic plasma was considered, the
temperature of electrons greatly exceeding the temperature of ions(Te � Ti).

The chosen model calculates only the ion movement [7] (without mag-
netic induction). Electron density is described by the Boltzmann distribu-
tion

ρ(x) = n0 exp
(eϕ
Te

)
. (1)

Only one-dimensional equations are considered. Our system consists of
the Vlasov kinetic equation

∂f

∂t
+ u

∂f

∂x
+ E

∂f

∂u
= 0, E = −∂ϕ

∂x
, (2)

and the equation for the electric field potential

β
∂2ϕ

∂x2
= expϕ− n, (3)

where u is the ion velocity, f(t, x, u) is an ion distribution function,
E(t, x) is the electric field intensity, ϕ(t, x) is the potential, and n(t, x) =∫
f(t, x, u) du is the ion density. The potential is measured in Te/e, the ve-

locity u is measured in cs =
√
Te/mi, β = (D/L)2, D =

√
Te/4πn0e2 is the

Debye radius, and L is the computation domain length.

3. The Particle-in-Cell scheme

The model particle movement equations are derived from the Vlasov equa-
tion by choosing a distribution function in the form [8]:

f(t, x, u) =
m∑

j=1

R(x− xj(t)) δ(u− uj(t)) (4)

where R is a form factor, δ is a delta-function, m is the number of particles,

dxj(t)
dt

= uj(t),
duj(t)
dt

= E(xj), j = 1, . . . ,m, (5)

are the particles movement equations (characteristics of the Vlasov equa-
tion).
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In the interval [0, L], the grid with a step h is established, τ is a time
step. The time changes from 0 up to tmax.

The index i indicates a grid point (i = 1, . . . , n), j is a particle number
(j = 1, . . . ,m), xi is coordinate of the ith grid point, xk

j is the coordinate of
the particle j at the time kτ .

Variables ϕi and ni are set at grid points, Ei is set in the cells centers.
The density and mean velocity are calculated with a distribution function

as follows:

n(t, x) =
∫
f(t, x, u) du, v(t, x) =

1
n(t, x)

∫
uf(t, x, u) du. (6)

For grid functions, this equation is

ni =
m∑

j=1

R(xi − xj), vi =
1
ni

m∑
j=1

ujR(xi − xj). (7)

Calculations were conducted with the CIC form factor

R(xi − xj) =
1
h

max
{

1− |xi − xj |
h

, 0
}
. (8)

One time step of the PIC method consists of the two parts:

Lagrangian step. At this step, from movement equations (5), uk+1
j and

xk+1
j at the time tk+1 = (k + 1)τ for every particle j are calculated (on the

Lagrangian grid):

uk+1
j − uk

j

τ
= Ek

j ,
xk+1

j − xk
j

τ
= uk+1

j .

Here Ek
j is the electric field intensity at the point xk

j where the particle is
placed. It is calculated through Ei at grid points.

To pass to the Euler step, the density nk+1
i and mean velocity vk+1

i at
the grid points (the Euler grid) xi are calculated:

nk+1
i =

m∑
j=1

R(xi − xk+1
j ), vk+1

i =
1

nk+1
i

m∑
j=1

R(xi − xk+1
j ). (9)

Euler step. At this step, the nonlinear equation (3) is solved and an electric
field is calculated. In this paper, solution to this equation is calculated as
follows:

β
∂2ϕk+1

∂x2
= exp(ϕk+1)− nk+1, (10)
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where ϕk+1 is iteratively found from the linear equation

β
∂2ϕk+1,s+1

∂x2
= exp(ϕk+1,s) · (1 + ϕk+1,s+1 − ϕk+1,s)− nk+1(x). (11)

In [9], the monotonic convergence of the sequence ϕk+1,s to solution of
equation (10) is shown when ϕk+1,1 > ϕk+1 and, in [10], it is shown that
ϕk+1,1 > ϕk+1 with any initial ϕk+1,0.

To pass to the Lagrangian step for the next k, we calculate Ek+1
i :

Ek+1
i =

ϕk+1
i−1 − ϕ

k+1
i

h
, i = 2, . . . , n.

4. Schema of a common noise reducing algorithm

A non-physical fluctuation in velocity leads to discontinuity of a derivative.
Although the oscillation amplitude decreases with increasing of the number
of particles, these fluctuations bring about electric field fluctuation.

The main idea of the new algorithm is the following:

1. Let us assume the average velocity vk at time step k to be without
noise (without non-physical fluctuations). At the initial moment of
time this condition is satisfied because v|t=0 = 0.

2. The step τ without electric field intensity is done (E = 0). Particles,
having different velocities, move to new places. The average velocity
then appears to have fluctuations, no matter that there was no fields.

3. Denote the noise term by ∆V (it will be defined later). Let us subtract
∆V from velocity of every Particle-in-Cell on time step k, then we have
the corrected particles velocity.

4. Now, if the average velocity is calculated again at the step k with
formulas (9), it will contain noise. But then, after passing of the
step τ , we obtain the average velocity already “without noise” (more
correctly, the noise level in the average velocity will be less).

5. The noise term definition

It is known that the Vlasov equation solution is equivalent to that of an
infinite system of its moments. In a model of non-isothermic low-density
plasma with the Boltzman electron distribution, the ion-sound waves with
amplitudes of potential ϕ smaller than a critical amplitude ϕ∗ (ϕ < ϕ∗ =
1.26 T/e) can be described [7, 11] by a system consisting of the two first
moments of a distribution function and the nonlinear Poisson equation
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∂n

∂t
+

∂

∂x
(nu) = 0,

∂u

∂t
+

∂

∂x

(1
2
u2 + ϕ

)
= 0, (12)

β
∂2u

∂t2
= 4πe

[
n0 exp

(eϕ
Te

)
− n

]
. (13)

Let us call v̂k+1 and n̂k+1 obtained from any finite difference scheme for
(12) (v̂k := vk, n̂k := nk) the “desired” velocity and density. Let us define a
noise addition as ∆Vi = ṽk+1

i − v̂k+1
i . It is a difference between the velocity

at the time step k+ 1 (at this time step, external field is equal to zero) and
the “desired” velocity.

6. A noise subtraction algorithm

1. At the step k, the mean velocity is assumed to be without non-physical
fluctuations. At the initial moment of time, this condition is satisfied be-
cause v|t=0 = 0.

2.1. The mean velocity (when E = 0) has to satisfy the equation of trans-
port

∂v

∂t
+

∂

∂x

(1
2
v2
)

= 0, (14)

and the density has to satisfy the continuity equation

∂n

∂t
+

∂

∂x
(nv) = 0. (15)

Obtain ñk+1 and ṽk+1.

2.2. Particle position is adjusted at the time step k in order to ñk+1 and
n̂k+1 be equal (see below for details).

2.3. The time step τ is done without external fields (electric field intensity
in our case). Let us calculate the mean velocity ṽk+1 and the density ñk+1.
If max

i
|ṽk+1

i − v̂k+1
i | < ε, then go to Step 4.

3. Define the noise term ∆Vi = ṽk+1
i − v̂k+1

i . Subtracting ∆Vi from every
particle velocity in the mesh interval i at the time step k, obtain the adjusted
particle velocity:

uk
j := uk

j −∆Vi, xj ∈ [(i− 3/2)h, (i− 1/2)h].

Go to Step 2.3.

4. Now the step τ is done with E; obtain vk+1.
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7. Particle coordinates adjustment

Figure 1. A particle x̂ in the cell ai+1

Let ith mesh interval be denoted
as ai = [xi−1, xi]; Ni be the number
of particles in the mesh interval ai;
di be the shift for particles in the
mesh interval ai; and x̂ := xj be a
particle (Figure 1).

Particles from the mesh interval ai+1 make such a deposition to the
density at the ith mesh point

n′i =
m

h

∑
x̂∈ai+1

(xi+1 − x̂),

where m is the mass of one particle.
The density after the shift is

n′′i =
m

h

∑
x̂∈ai+1

(xi+1 − x̂− di+1).

For all particles from the left interval ai, the density is as follows:

n′i−1 =
m

h

∑
x̂∈ai

(x̂− xi−1), n′′i−1 =
m

h

∑
x̂∈ai

(x̂+ di − xi−1).

The coordinate of a particle x̂ ∈ ai after the shift is x̂′ = x̂+ di.
Then the density at the ith mesh point before the shift is

ni = n′i−1 + n′i =
m

h

(∑
x̂∈ai

(x̂− xi−1) +
∑

x̂∈ai+1

(xi+1 − x̂)
)

and, after the shift, it is

n∗i = n′′i−1 + n′′i =
m

h

(∑
x̂∈ai

(x̂− xi−1 + di) +
∑

x̂∈ai+1

(xi+1 − x̂− di+1)
)
,

∆ni = n∗i − ni =
m

h

(∑
x̂∈ai

di +
∑

x̂∈ai+1

(−di+1)
)

=
m

h
(Nidi −Ni+1di+1).

Let us take n∗i = n̂i. Then the system of the algebraic equations with
unknown quantities di is derived:

∆ni =
m

h
(Nidi −Ni+1di+1), i = 2, . . . , n− 1. (16)

The matrix of the system is two-diagonal and the system is incomplete. Let
us include one more equation into this system
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n∑
i=2

Nidi = 0. (17)

This means that the mean shift of all particles is equal to zero.

The particle coordinates adjustment algorithm

1. Having xk
j , ñk+1

i , n̂k+1
i , define di (i = 2, . . . , n) from equations (16),

(17) with ∆ni = n̂i − ñi.

2. The particle coordinates are adjusted x′j
k = xk

j + di, xj ∈ ai, then it
follows the velocity adjustment.

8. Numerical experiments

The noise reducing algorithm has been tested on the Riemann problem for
the ion density.

The initial density is a smooth function:

n(0, x) =


C, x ∈ [0, x0 − b],
C + 1

2
+
C − 1

2
cos

π

2b
(x− (x0 − b)), x ∈ (x0 − b, x0 + b),

1, x ∈ [x0 + b, L].

Here C is the density on the left boundary, b is a smoothing factor, x0 = L/2.
The initial condition for the potential is

ϕ(x, 0) = lnn(x). (18)

The boundary conditions are chosen equal to the initial condition because
the basic movement occurs far sufficiently from the boundaries of the domain

ϕ(0, t) = lnC, ϕ(L, t) = 0. (19)

The particle distribution function is a Maxwell one. The mean velocity
equals to 0 and the dispersion (temperature) equals to 0.05. In all the tests,
the “quite start” algorithm was used.

The following parameter values are used in the experiments: L = 4,
b = 0.1, C = 2. The time interval is tmax = 0.3 and the time step is
τ = 0.001. The Particle-in-Cell method parameters: the number of particles
is m = 6000 and the number of grid points is n = 101.

A usual Particle-in-Cell solution method without reducing a noise using
the predictor-corrector scheme for (14), (15) was compared with the Lax–
Vendroff solution of the Vlasov equation.

A selected scheme for calculation v̂ and n̂ affects the solution. Three
schemes for solving (14), (15) were tested –– the upwind difference scheme,
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Figure 2. Comparison of density and mean velocity

the Lax–Vendroff, and the predictor-corrector. Finally, the predictor-cor-
rector scheme was chosen.

In Figure 2, a density and a mean velocity for the usual Particle-in-
Cell method (PIC, black markers in the figures above) and for the modified
Particle-in-Cell method (PICmod predictor-corrector, black markers in the
figures below) are compared with the Lax–Vendroff solution (the gray line).
The last two figures on the right represent a detailed view of the mean
velocity function.

In this figure, the presence of noise is evident in the average velocity and
density evaluated by the PIC method. The modified PIC algorithm allows
us to reduce a noise level in the areas A := [0, 1] and B := [3, 4].

The disturbance has not reached the regions A and B yet, so the mean
velocity is equal to zero here; the density is equal to 2 on the left and to 1 on
the right. Thus, the noise rate can be numerically estimated. We introduce
the noise magnitudes for the density and the mean velocity in the areas A
and B:

∆v =
∑

ih∈A∪B

|vi|, ∆n =
∑
ih∈A

|2− ni|+
∑
ih∈B

|1− ni|.

In the table, the noise magnitudes for the usual and modified Particle-
in-Cell methods are compared. The number of grid points is 101, time is
0.1, time step is 0.001.

It is evident that the modified Particle-in-Cell method noise magnitude
is lower than the usual one.
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The dependence of the noise magnitude for PIC and PICmod methods

Noise
magnitude

Number of particles

5000 10000 40000 60000

∆n, PIC 4.99 · 105 2.28 · 105 1.74 · 105 1.51 · 105

∆n, PICmod 1.37 · 102 7.88 · 103 4.57 · 103 3.01 · 103

∆v, PIC 1.82 · 105 5.86 · 106 3.16 · 106 2.71 · 106

∆v, PICmod 2.27 · 103 7.88 · 103 1.06 · 103 5.18 · 104

9. Conclusion

A new noise reducing algorithm for the Particle-in-Cell method is presented.
The conducted testing of this algorithm has shown its availability. The given
algorithm really allows one to reduce noise in the mean velocity and density
in the particles-in-cell method for foregoing problem. The solution quality
depends on a choice of scheme choice at Step 2.1 of the noise subtraction
algorithm.
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