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Numerical modeling of seismic waves for
the radial-heterogeneous spherical Earth

B.G. Mikhailenko, O.N. Soboleva

The paper presents an efficient algorithm based on the combination of the inte-
gral Laguerre transforms for the temporal derivatives with the Legendre transforms
and finite difference method for the spatial variables. Several examples of synthetic
seismograms computed for the SH waves propagating in the radial- heterogeneous
spherical Earth are presented.

1. Introduction

Generally speaking, there are two main approaches to the numerical sim-
ulation of seismic waves propagating in the heterogeneous spherical Earth.
The first approach is the numerical simulation of seismic fields in the time
domain. Such methods are based on a finite difference scheme of the second
order approximation for temporal derivatives and spectral or finite difference
methods for spatial variables.The second approach employs the frequency
domain simulation for the laterally heterogeneous media. The Fourier in-
tegral transforms are used for approximation of the temporal derivatives.
The space frequency domain simulation does not have any stability prob-
lem, while the accuracy of the simulation based on the space-time domains
is determined by a stability limit dependent on the greatest velocity in the
model. Also, it is possible to employ a function of frequency as the damp-
ing coefficient, therefore the simulation of the damping effects appears more
flexible. Discretization of the frequency domain equations leads to the large
matrix equations and their solution for many temporal frequencies due to
the enormous computational costs. A brief reviews of these methods are
presented in papers (1, 2]. In this paper, we present an approach which
allows us to reduce such enormous computational costs. This algorithm em-
ploys the integral Laguerre transform with respect to the time coordinate
instead of the integral Fourier transform with the Legendre transforms and
the finite difference method for the spatial variables [3). The obtained alge-
braic equations have a matrix independent of number n — the degree of the
Laguerre polynomials. Only the right-hand side of the system has the recur-
rent dependence on the parameter n. As this takes place, the matrix is only
once transformed as compared to the frequency-domain forward modeling.
For solving the obtained system we use a sweep method. In this paper, for
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briefness and simplicity, the algorithm is illustrated only for the SH waves
propagation, although it has been developed for simulation of P and SV
waves propagation as well.

2. Statement of the problem

Let us consider a spherical layer with the coordinates R, 8, ¢ (ro < R < Ry,
0<@<m,0< < 2r). The displacement vector is the following:

U = Uy(r,8,t)é,. (1)

The SH wave propagation in the radial-heterogeneous spherical Earth may
be described by the following equation
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where the function F(#,t) is given by the impulse SH-torque:

(9)
F = ————f(t).
6.9 = 5rprsm’ ¥ (6)
The Lame parameter u(r) and the density p(r) are piecewise continuous
functions of the coordinate r.

3. Theory

The method is based on the Legendre transform with respect to the coor-
dinate 8 and the expansion of the coordinate ¢ in series with respect to the
basic functions
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where n =0,..., N and L%(y) are the Laguerre polynomials. The solution

to equation (2) is given by
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where Pi(cos(f)) are the Legendre polynomials, and the functions Si(r,n)
are equal to:
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After applying transform (9) the subject to the boundary conditions ( 5),
we arrive at the following equation:
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where fy, are coefficients of the expansion of the function f (t) in the Laguerre
polynomials series. The coefficients of equation (10) are independent of the
number n, and the right-hand side ®;(r, n) has the recurrent dependence on
the parameter n. For solving equations (10) we use a standard conservative
difference scheme of the second order accuracy

Si(rr41,n)—Si(re, n Si(re,n)—S)(re_1,m
#lresd)rigs 1(re41 ;2 1T )—#(Tk_y"k_% 1(rx )Azt( k-1,7)
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2 = QnSi(rim) = Bi(re,n), (1)
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where r = ro + kA, Dg, = (1 + 22)Fi(n) - $®i(Ro,n),
p(re) h2rip(r)(re)
Q= (T(zz —2)+ —4——). (13)

The scalar sweep method is used for solving system (11), (12). The forward
coefficients of the sweep method are independent of n. A stability criterion
restricts the parameter h:

h2 >8 ""(rk) .
re2p(Tk)

By choosing the parameter a we satisfy the initial conditions.

4. Some examples of computation

The accuracy of the numerical solutions in question is involved in the follow-
ing testing. We use an exact solution for the homogeneous sphere
(0 € R < Ry). After applying the Legendre transform and replacing
U =r~3U in (3), (5) for the constant s, p we make use of the finite Hankel
transform of order v =1 + :

Ry
x(ki, v, t) = ery,(k,-r)[}(r, v, t)dr, (14)
0
where Y . 12 (ker)
_VR[L () R N Juller)
Ku(kir) = 7 [433 +(o k,?R%;)] Ty (keRo)’ (18)
and k; are the positive roots of the equation
1
Ty (ksRo) = 5p-J(kiRo) =0. (16)
The inverse transform is defined as
. [+ o]
U('f', Vht) = ZKw(kiT)X(k",Vht), (17)
i=1

where
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The solution obtained with the proposed algorithm is compared with the

solution by formula (17). The time dependence of the source pulse used is
given by '

@

f(t) = exp[_(gﬂw(%@_)_

where w is the predominant frequency, v is the damping factor (y = 4),
and tg is chosen such that f(t) = 0 or, equivalently, ¢, is the half-width
of the pulse. The source is located at r = Ry, # = 0. The same number
of the Legendre polynomials are used for both solutions. A comparative
error for our algorithm is about one percent. Figure 1 shows the synthetic
seismograms for both solutions: the upper graph is the solution obtained
by formula (17) and the lower graph is the solution computed using the
proposed algorithm, tp = 1.75 s. _

The Earth’s model used is the PREM [4]. Figure 2 shows synthetic
seismograms of the SH-waves for the PREM and for the above presented
source pulse. The synthetic seismograms are computed up to the epicentral
distance of 70°, the predominant period Ty = 30 s. The time is measured in
terms of the predominant period.

)2] sin(2rw(t — to)), (19)
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Figure 1. Synthetic seismograms for the homogeneous sphere, § = 5
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Figure 2. Synthetic seismograms for the PREM.
The maximum epicentral distance is 70°
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