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Two problems of the Monte Carlo
method theory

G.A.Mikhailov

In this paper two nonsolved problems of the Monte Carlo theory are presented. The
first of them concernes the uniform boundedness of the “walk on spheres” estimates for
the Helmgoltz equation. Another problem is the important example from the minimax
Monte Carlo theory for evaluating of many integrals.

1. “Walk on spheres” algorithms for solving
Helmholtz equation

Let us consider a three-dimensional Dirichlet problem for the Helmholtz
equation

Autecu=0, ur=V (1)

as a main problem in a domain D C X3 with the boundary I", where ¢ < ¢*
and —c* is the first eigenvalue of the Laplacian operator for the domain D,
r=(z,y,2) € D.

The conditions for the function ¥, and I' to be regular are assumed
to be fulfilled. These conditions guarantee the existence and uniqueness of
the solution of problem (1), as well as its probabilistic representation and
an integral representation with making use of the Green’s function for a
ball (see, e.g., [1]).

Estimates to be considered below are associated with the so-called
“walk on spheres” process within the domain D [2]. To describe the pro-
cess, let introduce the following notation: D is a closure of domain D; d(P)
is a distance from the point P to the boundary I'; I, is an e-neighbourhood
of the boundary I', i.e.,

I={PeD: d(P)<e};

5(P) is the largest sphere of those centred at the point P and entirely lying
in D, ie.,
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S(P)={Q € D: |Q - P|=d(P)}.

In the “walk on spheres” process, every next point ri4; is chosen uni-
formly over the surface of the sphere S(r.); the process terminates when a
point finds itself inside I.

For ¢ = const < c., the probabilistic representation of the solution of
problem (1) has the form [3]

EleU((r))]

where £(t) is the diffusion process originating at the point rg and corre-
sponding to the Laplacian operator, 7 is the instant the process leaves the
domain D for the first time. Proceeding from the process being ‘strictly
Markovian, we have

u(rg) = E [‘I’(f(r)) H ec(ﬂ'+1—1‘i)} ,
=0 '

where 7; is the instant the process £(t) for the first time arrives at the
surface of the i-th sphere of the corresponding “walk on the sprheres”
{rn}yn=0,1,...,N,and ry € I.

Let us denote by P the point of the boundary I" closest to rn. Using
the repeated averaging procedure and the integral representation of problem
(1) at the ball centre, we can easily obtain [1] that

u(ro) = Us(To) = E"?io),

where
N-1

O = [ 11 ste.dy)|¥(P).

j=0
Here d; = d(r;) and

0= dv/¢/sit(dv/c), ¢>0,
D=\ 4/e/sh(dve), e<o.

If the first derivatives of the solution are bounded in D, then
Ju(r) — ue(r)| < Ce, re€ D.

Now let us consider the question of uniform in £ boundedness of the
variance D7.. The variance determines the mean-square error of the re-
sultant Monte Carlo estimate obtained by averaging the realizations of 7,.
This question will be considered here for ¢ > 0, as it is quite easy to solve
for ¢ < 0 with the integral representation method [1].
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In this case -
Ne <= Cg[HS(C,dj)]
§=0
and En < +oo for ¢ < c¢* by virtue of the probabilistic representation

of the solution of problem (1), by analogy with the transition from this

representation to réﬁ).

Hence
o0

En: < C}E [ H sz(cadj)] .

J=0
For ¢ > 0 the following inequality holds [4]:

s*(c/2,d) < s(c,d)

with d/c < w. Hence the uniform in ¢ boundedness of the variance Dn.
has been proved for ¢ < ¢*/2 at ¢ = 0.

On the other hand, the quantity Dn. should as a rule be unbounded
for ¢ > ¢p/2, where cg is a solution to equation

32(60/2v dmax) = S(C*s dmax),
since in this case ¢ > ¢*, and
s*(e,d) > s(c*, d).

Moreover, here D7, = 400 for sufficiently small ¢ due to the above corre-
spondence between the “walk on spheres” estimates, the diffusion-process
estimates and the relation

(D —-1TI.)~ (D), e—0.

Problem: is it possible that Dy, < +o00 fore =0 ifc*/2 < c< co/2°?

2. Minimax estimates of the Monte Carlo
method for evaluating many integrals

Monte Carlo estimates for integrals are constructed on the basis of the
relations

I = /fk(-%‘)dz‘ =EG, G =fi(&)/p(€), k=1,2,...,m,
J _

where p(z) is the distribution density for £, and
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fE(z)dx
p(z)

- I2,

D(i(p) =
X

Let
Fe(p) = m§X{DCk(p)}-

We consider the following problems: find density p = p*(z) such that
min, Fe(p) = F¢(p*) is attained. We formulate the known [5] relation
between the minimax and the Bayes solutions in the form of the following
statement.

Lemma 1. Let &(p) be random variables in a probabilistic model P of a
class of admissible models, and let Py be a model such that the minimum

m;n?\kﬂek(p) = G(A), 0< <400, A=Ay hn),

is attained, where G(A) < 0o and DEx(Py) is differentiable with respect to
\i (i,k=1,...,n) for all A. Then min F¢(p) is attained in Py, where Ap
is the solution to the problem

max { STARDE(PA): Y A= 1}.
k=1 k=1

The proof of the lemma consists in justifying the fact that the variances
are equal on the support of the measure of Ag and that the others do not
exceed the value [6]. Then, the standard inequality [5] is applied.

Note that Lemma 1 cannot be directly derived from [5], where the set of
solutions {P} was assumed to be compact. Formally, it can be considered
as a special case of the minimax theorem [5] because

n
max D& = max { g A D& ZR: Ar=1, A 2 0}.
To obtain the required result, it is sufficient to invert the order of min
and max. However, in the standard minimax theorem the set {P} is also
assumed to be compact; therefore, a simple proof of Lemma 1 is reasonable.

Note that the solution to the problem of optimization of estimates for
integrals according to the criterion based on the weighted sum of variance
is well-known and is given by the relatiens

min )" ADE(p) = 3 ADE(Fn) = Gn(A),
k=1

k=1

where
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1/2 1/2

PA(w)=c[§Akf§(x)] L= [gAkfﬁ(w)] dz,
1/2

Gn(A) = {/ [g)\kff(m)] dm}z - é,\kf,f.

Here the nature of the space X and of the integration measure is not
important. However, we assume for simplicity that X is a finite-dimensional
Euclidean space, and the integrals are taken with respect to the Lebesgue
measure in X. Below, we consider the statements concerning the minimax.
of the variances of estimates of n integrals (see [6]).

Lemma 2. Let

Py = /sgp | f(z)ldz < +o00.
Then the optimal density is given by
p(z) = pa(),
where A* is @ mazimum point for G, (A).
Consider also the case, where f, = f(z,0) depends continuously on

o, 0 € [6W, ¢?]. Introduce the following notation: A is a probabilistic
measure on [0, 0@, ¢, (p) = ((p,)

po= [ [swp S0l ds, ) =it [ Fa,00ni(do),

where A = (A],...,Af,,) is the optimal (in the sense of Lemma 2) discrete
measure for the set of values of o coinciding with the k£ + 1 nodes of the
uniform network of [o(1), 5(?)].

Lemma 3. Let Py < 400, |f(z,0)fi(z,0)| < h(z),

——f2(w’0)w c 00 h(z) c 00
/ p(e) TSt /‘P(w)dm< 2 < oo

Then,
v(e) = plen) =] fz(w,o)A“(dﬂ)]l/z,

where A* is a mazimum point for
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G(A) = { / [ fz(x,a)A(do)]”tzt.r}z— / (0)A(dor).

Proof see in [6].
Consider a case [6] important for the minimax theory of the weight
Monte Carlo algorithms

f(z,0) = gexp(—oz), X =[0,+00), 0< o1 <oz <00

Calculations carried out for a large set of values of oy and o, show that the
optimal density p* coincides in this case with the density p}, obtained by
changing the segment [01,0;] with the two-element set {01,032}, and has
the form

pia(2) = c[Aotexp(—2012) + (1 - Ao? exp(-2crga:)]1/2,

where )\ is determined from tfle condition
D((piy, 01) = D((p1a, 02) = Dip(01,02), 0 A<
Calculations were used to verify the inequality
D((pia,0) < Dig(01,02), 01 <0< 0a

According to the reamak to Lemma 1 this Lemma makes it possible for pj,
to solve the minimax problem on the segment [0y,0;]. However, we have
no strict proof of the sought inequality.
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