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Modeling of seismic wave propagation during
an earthquake in complex heterogeneous media
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Abstract. The direct dynamic problem of elasticity theory is solved numerically
taking into account the energy dissipation caused by viscous (internal) friction,
which models the formation and propagation of seismic waves from earthquakes.
The problem is written in the form of dynamic equations of elasticity theory in terms
of components of displacement and stress velocities for a two-dimensional Cartesian
coordinate system. An effective algorithm for solving this direct dynamic problem
of seismics is proposed. The numerical solution of the problem is based on the
method of combining the analytical Laguerre transform and the finite-difference
method. Numerical results of modeling seismic wave fields for a realistic model of
the Baikal rift zone media are presented.
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Introduction

The seismic waves recorded characterize not only the earthquake source but
also the medium through which they propagate, so they are the main carrier
of information in seismology. The most destructive waves in earthquakes
are surface waves, as they have a low frequency, high amplitude and an
impressive duration of action. Direct longitudinal seismic waves generated
by the shift of tectonic plates of the earth’s crust over large spatial areas also
have a great destructive force. As a result of this type of earthquake source,
an extended plane longitudinal wave with a large amplitude is generated.
The amplitude of these waves is affected not only by the geological structure
in the earthquake source, but also by the structure and physical properties
of the overlying layers of the medium.

Mathematical methods based on the propagation of seismic waves in
an acoustic or ideally elastic medium are successfully applied to various
geophysical problems for the identification of geological structures [1].

In this paper, a direct dynamic problem, written as a hyperbolic system
in terms of displacement velocities and stress tensor, is numerically solved
for modeling the process of seismic wave propagation in an elastic medium.
The problem is solved numerically by combining the analytical Laguerre
transform with respect to time and the finite-difference method with respect
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to space. This method for solving dynamic problems of elasticity theory
was first considered in [2, 3] and then developed for viscoelasticity problems
[4, 5]. The proposed solution method can be considered as an analogue of the
well-known spectral method based on the Fourier transform, but instead of
frequency we have the parameter m, the degree of the Laguerre polynomials.
However, unlike Fourier, the use of the integral Laguerre transform with
respect to time allows us to reduce the original problem to solving a system
of equations in which the separation parameter is present only on the right-
hand side of the equations and has a recurrent dependence. Unlike the
finite-difference method, the spectral-difference method, using an analytical
transformation, can reduce the original problem to solving a differential
system of equations in which there are derivatives only with respect to spatial
coordinates. This allows the use of known stable difference schemes for
the subsequent solution of such systems [6]. The works [3, 5] consider the
distinctive features of this method from the accepted approaches and discuss
the advantages of using the Laguerre transformation.

1. Problem statement

The propagation of seismic waves in an elastic medium in the case of energy
dissipation due to viscous (internal) friction is recorded by the well-known
system of first-order equations of elasticity theory [7] through the relation-
ship between the components of the displacement velocity vector and the
components of the stress tensor in a Cartesian coordinate system (x1, z2):
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Here d;, is the Kronecker symbol, A(x1,x2), u(z1, z2) are the elastic param-
eters of the medium, p(x1,x2) is the density of the medium, 5 is the coeffi-
cient of viscous friction, @ = (u1,u2) is the displacement velocity vector, o;;
components of the symmetric stress tensor, f(t) is the specified time signal
in the source, F1, F» are the components of the force ﬁ(x, z) = F1é,; + F»é,
describing the distribution of the source localized in space. Depending on the
type of the source being modeled, F;, F» will have the following values [8]:

1. For a source of the “vertical force” type
Fi =0, Fy=0(x—x0)0(z— 20).

2. For a source of the “center of pressure” type
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3. For a source of the “dipole without moment” type

Fr=0, F,=6(x— xo)f%(zagzo)'
The problem is solved with zero initial data
Uili=0 = 0jlt=0 = 0 (3)
and boundary conditions on the free surface
012]2y=0 = 022[zy=0 = 0. (4)

2. Solution algorithm

To solve problem (1)—(4), we use the integral Laguerre transformation in
time of the form [2, 3]:

W (21, 29) = / W (1, 29, t) (ht) =21 (ht) d(ht),
0

with the inverse formula
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where [, () are the orthogonal Laguerre functions.

After applying the integral Laguerre transformation in time, the original
problem (1)—(4) is reduced to solving a system of differential equations only
in spatial coordinates (x1,x2):
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For further solution of the problem, a finite-difference approximation of
derivatives on shifted grids [9] with the fourth order of accuracy is used. Let
us determine the desired components of the solution vector at the following
grid nodes:
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As a result of finite-difference approximation of problem (5)—(6), we ob-
tain a system of linear algebraic equations. Let us represent the desired
solution vector in the following form [7]:

W (m) = (Vo(m), Vi(m), ..., Vicrn (m))",
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Then, the system of linear algebraic equations obtained as a result of
transformations in vector form can be written down as:

(AA + (g + 19R>E)I/T/(m) = Fa(m —1).

To solve this system of linear algebraic equations, the iterative method of
conjugate gradients is used. The advantage of this method is rapid conver-
gence to the solution of the problem, provided that the matrix of the system
is well conditioned. The matrix of the system obtained as a result of the
Laguerre transformation has this property due to the introduced Laguerre
parameter h, located on the main diagonal.

3. Numerical simulation

For numerical calculations when modeling the propagation of seismic waves
generated as a result of the earthquake, a model of the medium was speci-
fied that describes the Baikal rift zone, which is characterized by increased
seismic activity and has a complex geological structure. The model of the
medium is shown in Figure 1. The generation of seismic waves in the epi-
center of the earthquake as a result of tectonic shift of the lower layers of
the earth’s crust located near the Mohorovicic boundary was specified as
a dipole-type source without a moment in equations (1) located at a point
with coordinates xp = 50 km, zgp = 45 km [10]. The coefficient of viscous
friction in the equations of system (1), (2) Yr = 0,001. Figures 2-4 show
instantaneous snapshots of the wave field for the displacement velocity com-
ponent at times t = 4 and 8 seconds. The time signal in the sources was
specified as a Puzyrev pulse:

- PRY)
1) = exp (-2 ZODY suon ot - ),

where v =4, fo =2 Hz, tg = 0.75 s.
For the numerical solution of the stated problem of seismic wave prop-
agation in an elastic medium, it is necessary to introduce a limited spatial
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region of the medium model. The main problem in this case is the reduction
to an acceptable level of the intensity of reflected waves generated by the
introduced fictitious lateral boundaries. Currently, one of the methods for
solving this problem is to border the computational domain with an absorb-
ing layer with specially selected parameters, the introduction of which does
not lead to the occurrence of reflections (PML — perfectly matched layer)
[11-13]. This approach is effective for numerical modeling in complex elastic
media, especially when using high-precision finite-difference schemes, since
it does not lead to numerical instability of the solution. This approach was
initially proposed for the numerical modeling of electromagnetic waves, and
then used to calculate elastic wave fields. The main advantage of this ap-
proach is the fact that the attenuation of waves inside the PML layer occurs
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Figure 2. Snapshot of the uy wavefield — components for ¢t = 4 seconds.
Source of the “dipole without moment” type
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Figure 3. Snapshot of the uy wavefield — components for t = 8 seconds
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Figure 4. Snapshot of the uy wavefield — components with absorption
at t = 8 seconds

regardless of the direction of their propagation. Numerical experiments us-
ing this approach have shown its high efficiency with a thickness of these
layers of 2-3 wavelengths.

The snapshots of wave fields presented in Figures 3 and 4 show the forma-
tion of a complex interference pattern due to the reflection of various seismic
waves from the free surface and the boundaries of the medium layers. From
examining these images of the wave field, it is evident that, depending on
the location of the layer boundaries, focusing of various waves on individual
sections of the medium can be formed, leading to an increase in the ampli-
tude of elastic oscillations in these places. It should be noted that the total
amplitude of the waves in these focusing places decreases due to a decrease
in the amplitude of the waves repeatedly reflected from the boundaries.
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Conclusion

The results of numerical calculations show the efficiency of the algorithm
used for solving the problem of modeling seismic wave propagation in com-
plex heterogeneous media. Analysis of the obtained calculations of the visual
picture of the wave field as a result of seismic wave propagation in such me-
dia shows the possibility of focusing the energy of seismic oscillations on
certain sections of the medium in the area of the earthquake, which leads to
a significant increase in the amplitude of these oscillations. This effect, as
can be seen from the presented modeling results, depends on the geometry
of the medium structure and the frequency of oscillations propagating in
it. The results of modeling the emerging wave pattern depending on the
frequency of seismic oscillations are given in [10, 14]. This fact should be
taken into account when constructing technical structures on the surface,
as well as inside the medium, and performing this kind of numerical model-
ing. In further studies, it is proposed to study the effect of the occurrence
of resonance of natural oscillations in these structures and external seismic
oscillations excited by earthquakes.
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