
Bull. Nov. Comp.Center, Comp. Science, 23 (2005), 57–70
c© 2005 NCC Publisher

OS-independent detection of thread switches on
uniprocessor

A.V. Mogilev

Abstract. Parallel programs often are non-deterministic in their nature, what
greatly complicates testing, debugging, verifying and analyzing such programs. On
a uniprocessor, interleaving actions of the system scheduler (thread switches) can
be thought of as source of nondeterminism. The precise detection of these actions
helps many tasks, especially the schedule-based execution replay — the technique
for robust debugging of non-deterministic programs. Known solutions to detection
of thread switches are either specific to system schedulers providing this informa-
tion, or require modification of the scheduler. For the system scheduler in the OS
Windows, all these solutions are inapplicable.

The paper presents an OS-independent algorithm for detection of thread switches
in a multithreaded program running on a uniprocessor based on the primitive thread
operations such as suspending a thread, accessing its context, etc. The correctness
of the algorithm is proven on the low-level abstract model of multithreaded pro-
grams that is also presented in the article.

1. Introduction

The most common definition of program determinism is as follows: a pro-
gram is deterministic iff its result depends only on its input data, otherwise
the program is non-deterministic. However, this definition does not deter-
mine what is the program result and input data, as well as what is the
program itself. So, the exact definition is only possible when the exact
model of the program execution is specified. For real-world programs there
are several interpretations of this definition, including internal and external
non-determinism [10], etc.

No matter which definition is used, the problem of debugging is much
harder for non-deterministic programs than for deterministic ones.

The problem of debugging of sequential deterministic programs is well
studied — there are several scientific debugging methodologies [1], including
cyclic debugging, reverse execution, etc.

However, adopting these techniques to concurrent non-deterministic pro-
grams is a big challenge. One of the problems is the requirement for a simple
model of execution of a concurrent program that should be close to the real
execution of the program on a real computer. Another major problem is
instability of execution of non-deterministic programs: a repeated execution
with the same input data can differ from the first one, so all information

58 A.V. Mogilev

collected during previous program executions becomes unreliable after the
program restart.

As a solution to the problem, the technique of execution replay was pro-
posed [5]. The first execution of a program is traced, and the collected
information is reused during subsequent program runs to enforce exactly
the same executions. In other words, a new deterministic version of a pro-
gram is created that always repeats the traced execution, so called replaying
version. Therefore, all techniques for debugging of deterministic programs
can be applied to the replaying version of the program. Indeed, if a bug
manifested itself in the traced execution, it will do so in all executions of
the replaying version of the program, and all information collected during
one of its executions remains valid in all subsequent executions.

The main problem why this technique is not widely used yet is that the
amount of the information that should be traced is excessively huge in the
common case. Collecting this information during the program execution
may significantly affect this execution, so the behaviors of the traced and
original programs can differ significantly.

However, for multithreaded programs executed on a uniprocessor the
amount of the required information is small enough — it is sufficient to
trace only the thread switches. This technique is used in so-called schedule-
based replay systems [11].

Note that the problem of detection of thread switches should be solved
for such systems. There are several different solutions known, but all of
them utilize specific features of particular operating systems. Russinovich
and Cogswell modified the kernel of Mach 3.0 operating system [11], adding
the tracing code to the system scheduler. As a result, the system scheduler
invokes user-defined callbacks whenever the switch occurred. In the same
way, in the DejaVu replay system [3] for Jalapeño [2] Java virtual machine,
the scheduler of the virtual machine is modified. The replay system de-
scribed in [13] uses existing switch detection functionality provided by the
kernel of VxWorks operating system.

As a result, these solutions can not be reused for other OSes, for ex-
ample for OS Windows. Windows 2000 contained undocumented functions
(KeSetThreadSelectNotifyRoutine, KeSetSwapContextNotifyRoutine)
providing similar functionality for code of kernel-mode drivers, but they
were removed from the later Windows versions.

An OS-independent algorithm presented in this paper does not modify
the system scheduler, nor it relies that the scheduler provides such func-
tionality. The algorithm detects the thread switches on a uniprocessor with
the help of only the commonly available thread operations: suspending and
restoring a thread, accessing thread contexts, synchronizing with critical
sections.

OS-independent detection of thread switches on uniprocessor 59

The rest of the paper is organized as follows. Section 2 presents a model
of a multithreaded program used in the algorithm description and in correct-
ness theorems. Section 3 defines the notions of program instrumentations
used later to describe the algorithm in Section 4. Next, Section 5 contains
the correctness theorems and their proofs. Section 6 describes the imple-
mentation of this algorithm for OS Windows and some practical results,
and, finally, Section 7 concludes the paper.

2. Abstract model of a multithreaded program

This section presents a low-level abstract model of execution of a shared-
code shared-memory parallel program in a well-known form of a transition
system. It is designed close to the real execution of the program on a
computer, so representation of the real program in this abstract form is quite
straightforward. Unlike many popular models of parallel computing like
Petri nets [9], CCS [6], timed automata [4] etc., this model does not require
a program to be described in a specific model language. Representation of
an existing multithreaded program written in a C-like imperative language
is straightforward.

Let us define a memory M of a program P to be a finite set of cells whose
values are from some common domain D, and registers R to be a finite set
of cells, also each within the domain. The memory is shared between all NT

threads (referred below by thread indexes: t ∈ Threads = [1, NT]), while
the values of registers are local to threads. Let us define the states of the
memory and registers σM and σR as interpretations that give values for each
cell in the memory and registers, correspondingly: σM (mi) ∈ D, σR(ri) ∈ D.
ΣM and ΣR denote the sets of all possible states of memory and registers:
ΣM = {σM} = DNM and ΣR = {σR} = DNR .

The program code consists of atomic instructions placed at locations
from the set LOC = {l1, ..., lNL

}. For the sake of simplicity, we define a
special location lfinish common for all programs and suppose that a thread
is finished when it reaches this location.

An activity state at ∈ B of a thread t determines whether instructions can
be executed in the context of the thread. An activity state of the program
ā ∈ ΣA = BNT is formed from activity states of each thread. We define a
context ci of the thread Ti as a union of states of the registers and current
location of the thread: ci ∈ C = ΣR × LOC. The activity state, memory
state, and contexts of each thread forms the global state of the program:

σ ∈ Σ = ΣA × ΣM × CNT .

In general, each instruction is a function on states of a program that
represents one transition of the system. Each instruction may be executed
in any thread. We denote the thread, where an instruction was executed, and

60 A.V. Mogilev

the context of this thread as current thread and current context, respectively.
It is convenient to separate instructions into 3 kinds:

1) computational instructions α : ΣM × C → ΣM × C that, given the
current context and the state of the memory, produces new values for
them;

2) synchronizing instructions β : ΣM × ΣA × C → ΣM × ΣA × C that
additionally may change the activity states of all threads; and

3) special instructions γ : Σ → Σ - all other instructions (with no restric-
tions)

Below we suppose that an original program does not contain instructions
of the third kind. However, such instructions are needed to represent our
algorithm. Note that the execution of each instruction is deterministic and
depends only on the preceding state; the only source of non-determinism is
the order of execution.

At last we can define a transition system as a triple Trans(P) =< Σ,
P→,

Θ >, where Σ is a set of states defined above, Θ ⊂ Σ is a subset of initial
states, and P→ is a relation on states, constructed as follows: let σ =<
ā, σM , c̄ > and σ1 =< ā1, σM1, c̄1 >. Then,

σ
P→ σ1 (1)

iff
∃i ai = True, instr(li)(σ) = σ1, (2)

where li = loci(σ) is the current location of the thread i in the state σ, and
instr(li) denotes an instruction in that location.

An execution e of the transition system is a sequence σ0σ1...σN , where
σ0 ∈ Θ, ∀i σi

P→ σi+1 and σN is terminating, i.e. current locations of all
threads are lfinish for this state. Never-terminating executions are not con-
sidered in this paper for the sake of simplicity.

In the rest of the paper, the term ’state σ’ is used to denote not only
a tuple of the values of memory, activity state and contexts, but also a
position in an execution e. The only exception is comparison of two states
for equality — in this case only the values are compared.

Given a transition in (1) constructed with i from (2), we denote CT (σ)
def
=

i and CL(σ)
def
= li for the current thread and location of the instruction

whose execution corresponds to the transition. Note, that theoretically it is
possible that several appropriate i values exist, but in this case σ = σ1 and
such transitions can be safely removed from the execution e.

OS-independent detection of thread switches on uniprocessor 61

A transition system may have many possible executions starting from
the same state, because one of NA transitions can be chosen from a state
σ, where NA is the number of currently active threads. A program is deter-
ministic if ∀σ0 ∈ Θ there is at most one execution starting with σ0 state.

The set of all possible executions e forms the language of the given pro-
gram L(P).

Given an execution e we may determine the points of thread switches: a
switch to a thread t is occurred at the i-th step (0<i<N) iff CT (σi−1) 6= t
and CT (σi) = t.

3. Instrumentation of a program

Instrumentation of a program is its modification that adds new functionality.
Formally, let us call a program P ′ to be an instrumentation of a pro-

gram P , if its memory, code and set of threads are the extensions of the
entities of the original program: M ′ = M ∪∆M , LOC ′ = LOC ∪∆LOC,
Threads′ = Threads∪∆Threads. It is supposed that no instructions of the
original program (l ∈ LOC−−−{lfinish}) can be executed in new threads.
Below we refer to newly added entities as instrumentation locations and
instructions, instrumentation memory and instrumentation threads, in con-
trast to original locations, memory, etc.

Consider an execution e′ of an instrumented program and a single state

σ′ =<< a1, ..., aN ′
T

>, σM ′ , < c′1, ..., c
′
N ′

T
>>

in this execution. A truncation of the execution of the instrumented program
Trunc(e′) is the corresponding execution of the original program that is
constructed in 3 steps.

1. All instrumentation threads are removed from the activity state and
from the set of contexts, instrumentation variables are removed from
the memory states:

Tr1(σ)
def
= << a1, ..., aNT

>, σM , < c′1, ..., c
′
NT

>>,

where NT is the number of threads and M is the memory in the original
program P .

2. If, in the state σ′, the current location of a thread i is the instrumenta-
tion location, then the context c′i is replaced by the context ci(σ′1) of the
nearest next (in the execution e′) state σ′1 such that loci(σ′1) ∈ LOC,

62 A.V. Mogilev

i.e. the next original instruction executed in the thread i is used1. Let
us denote the found context ci:

Tr2(σ)
def
= < ..., < c1, ..., cNT

>> .

3. If, in the sequence of the states resulting from step 2, a state is equal
to the preceding one, then it is removed:

Trunc(σ0σ1...σN)
def
= Tr2(σi0)Tr2(σi1)...T r2(σiK).

An instrumentation is correct, if the language formed by truncations of
all possible executions of the instrumented program is equal to the language
of the original program: Trunc(L(P ′)) = L(P). In other words, all possible
executions are still possible after the instrumentation, and no new original
executions become possible.

Note, however, that the model does not determine the probability of
choosing a given execution e among other possible executions starting from
the same initial state. So, the correctness of the instrumentation does not
imply its accuracy that can be defined as the approximate equality of prob-
abilities for choosing the execution e in the original program and any of
{e′ | Trunc(e′) = e} in the instrumented program. Suppose that in a real
program there are two possible executions and the first one is almost al-
ways taken. If, after the instrumentation, this execution will almost never
be taken, then this instrumentation is definitely inaccurate and useless, al-
though it may be correct.

4. Algorithm

The basic idea of the algorithm is the use of the induction principle for the
detection.

Consider an imaginary instruction guard that registers a thread switch
(from a known previous thread to the current one), inserts another guard
instruction just prior to the current location of the previous thread and
changes the current location of the previous thread to point to that guard.
Let us define that a thread is in the detection-aware state if its current
location points to the guard instruction. This means that the switch to this
thread will be registered.

If the starting locations of all threads except the first one point to guard
instructions, then the problem of detection is solved. Indeed, consider a pair
of thread switches occurred:

1Note that such a context always exists, because all threads finish at the predefined
location lfinish ∈ LOC.

OS-independent detection of thread switches on uniprocessor 63

//without guard instructions:
thread 1: i1 i4

| |
thread 2: i2 - ... - i3

//with guard instructions:
thread 1: i1 guard - i4

| |
thread 2: guard - i2 - ... - i3

In this case, at each moment of execution, all threads except the current
one point to guard instructions, so all switches are detected. As can be
easily proven, such instrumentation is correct, since the execution of the
original instructions is affected in no way.

Of course, the problem is that there is no such a useful instruction in
real instruction sets. Its functionality can be implemented by a sequence
of real instructions, but such implementation is not easy, because this code
sequence itself can be interrupted by the thread switches. Therefore, some
non-trivial synchronization is required to keep the correctness. The pro-
posed code sequence is presented below in the form of a C-like function
with macros that can be implemented in the assembly language. Also
some system functions common to most OSes are used, their exact names
vary in different operating systems. We suppose that the readers of this
paper are familiar with the concepts of critical sections and basic oper-
ations on threads, so no additional comments for the calls of functions
enter critical section, leave critical section, suspend thread and
resume thread are required.

Below we refer to curThread as to the number of the current thread, to
prevThread as to the value of the variable prevThread defined below, and
to EIP (i) as to the current location of the thread i.

const int MAX_THREADS = ...; //some constant that limits the
//number of threads

int prevThread; //contains the number of the ’previous’ thread
int storedEip[MAX_THREADS]; //array contains per-thread data

// starting point for all threads, also set as current EIP after
// processed thread switches
void onSwitch() {

L0: //next location is the address of the function
//no code is executed before saving all registers
//registers are saved to the stack
MACRO_save_registers;
//the number of the current thread is obtained in
//the implementation-defined manner

64 A.V. Mogilev

i = MACRO_current_thread_num;
enter_critical_section(critSection);
L1:
suspend_thread(prevThread);
L2:
//next call obtains the EIP(prevThread)
storedEip[prevThread] = get_thread_eip(prevThread);
//the value of EIP in context changed, so the previous thread
//will continue execution from the onSwitch function
set_thread_eip(prevThread, &onSwitch);
resume_thread(prevThread);
L3:
//registers the switch to this thread in user-defined way
registerSwitchTo(i);
prevThread = i;
//prepares the jump to the original EIP
MACRO_prepare_jump(storedEip[i]);

leave_critical_section(critSection);
L4:
//restore all registers from the stack
MACRO_restore_registers;
//jumps to the prepared address, uses no registers
MACRO_jump;
L5:

}

In terms of this algorithm, a thread i is in a detection-aware state iff
EIP (i) ∈ [L0, L2).

The instrumentation required by the algorithm is described below:

• The cells corresponding to global variables prevThread and storedEip
are added to the memory;

• The function onSwitch() is added to the code;

• The initialization code for new variables is added to the starting code
of the first thread:

void init() {
int i;
for(i = 0; i < MAX_THREADS; i++) {

//in our model, the starting locations of all threads
//are known. In real implementation it may be obtained
//dynamically at the moment of the thread creation.
storedEip[i] = MACRO_start_of_thread_i;

}
prevThread = 0;

}

OS-independent detection of thread switches on uniprocessor 65

• The starting locations of all threads except the initial one are changed
to &onSwitch().

Informally, the synchronization can be explained as follows. The critical
section critSection helps if execution of the onSwitch() code is inter-
rupted by the switch to any thread in the detection-aware state. But the
critical section cannot help if the switch to the previous thread happens
before its context is modified. That is why additional synchronization with
the suspend/resume functions is needed.

5. Correctness theorems

The section contains the proofs of two theorems that the instrumentation
is correct and that all required switches are detected. The proofs use the
following lemmas.

Lemma 1. At any moment of execution either of these four conditions is
true:

1) curThread=prevThread; EIP (curThread) /∈ [L0, L4); all other non-
finished threads have EIP ∈ [L0, L1);

2) curThread6=prevThread; EIP [prevThread] /∈ [L0, L4); among all
other non-finished threads, one has EIP ∈ [L0, L2) and others have
EIP ∈ [L0, L1);

3) EIP (prevThread) /∈ [L0, L4); EIP (curThread) ∈ [L2, L3); the thread
prevThread is inactive (suspended); all other non-finished threads have
EIP ∈ [L0, L1);

4) EIP (curThread) ∈ [L3, L4); all other non-finished threads have
EIP ∈ [L0, L1).

Proof. Proof of the statement by induction is quite obvious: at the very
beginning of the program, condition 1 is true, prevThread = 0.

The only way for condition 1 to become false is the thread switch, so
condition 2 becomes true. The conditions may be thought of as the states
of the finite automata representing the actions performed for a thread switch:

1 ¿ 2 → 3 → 4 → 1... .

It is easy to see that no other transitions can occur.
There are two major corollaries of this lemma:

Lemma 2. At any moment of execution, exactly one active thread have
EIP /∈ [L0, L2).

Proof. Direct corollary of Lemma 1.

66 A.V. Mogilev

Lemma 3. The context of a thread i can not be changed, and the value
of storedEip[i] cannot be modified from other threads while EIP (i) ∈
[L0, L4).

Proof. One of the presumed restrictions to the original program is the
absence of instructions modifying the contexts of other threads (instructions
of the third kind), so the context and storedEip value can be changed only
by the instrumentation instructions (locations in the range [L2, L3)). As can
be seen from the code of onSwitch() function, only the context of the thread
prevThread and the storedEip[prevThread] value can be modified. So, we
should check the case of EIP (prevThread) ∈ [L0, L4)∧EIP (curThread) ∈
[L2, L3). Due to Lemma 1, such a case is impossible. Indeed, if either of
conditions 1-3 is true, then EIP (prevThread) /∈ [L0, L4). If condition 4 is
true, then EIP (curThread) /∈ [L2, L3).

Theorem 1. The instrumentation defined in the previous section is correct.

Proof. Note that the original memory is not affected by the instrumenta-
tion instructions, only the registers can be modified.

Part 1. Given an execution e ∈ L(P), let us construct the execution
(e′ |Trunc(e′) = e) and show that e′ ∈ L(P ′). The simplest one can be
constructed by, first, expanding the memory states to hold the values of
instrumentation variables, and, second, adding the state transitions, cor-
responding to the straightforward execution of the initialization code, to
the very beginning of the execution, and of the onSwitch function code to
all states where thread switches are occurred. It is easy to check that the
constructed execution satisfies the requirements.

Part 2. Given an execution e′ ∈ L(P ′), we show that Trunc(e′) ∈ L(P).

Let us prove that, for any two subsequent states σi
P ′→ σi+1 in e′, either

Tr2(σi) = Tr2(σi+1), or Tr2(σi)
P→ Tr2(σi+1). Denote CT (σi) by t.

Consider two cases: CL(σi) ∈ LOC and CL(σi) /∈ LOC.
Let CL(σi) ∈ LOC. In this case loct(σi+1) ∈ LOC, since the original in-

structions in our algorithm can transfer control only to original locations. By
construction of Tr2, the context of the thread t is the only context changed
between Tr2(σi) and Tr2(σi+1), therefore execution of the instruction at
the location CL(σi) in the original program P would have the same results:
Tr2(σi)

P→ Tr2(σi+1).
Now, let CL(σi) /∈ LOC, i.e. one of the instrumentation instruction is ex-

ecuted. The contexts of the thread t found in the truncation step 2 for states
σi and σi+1 are equal, so the only non-trivial case is the execution of a spe-
cial set thread eip instruction, which changes the EIP (prevThread) to L0
(=&onSwitch()), while storing the original value in storedEip[prevThread].
Denote prevThread by p. Let us prove that further execution in the thread

OS-independent detection of thread switches on uniprocessor 67

p results in changing the location to the stored EIP value prior to execu-
tion of any original instructions in that thread. That would mean that the
contexts of the thread p found in the truncation step 2 for states σi and σi+1

are also equal, so Tr2(σi) = Tr2(σi+1).
Due to Lemma 3, the context of the thread p and the value of storedEip[p]

can not be changed from other threads until the execution proceeds to the
location L4. To this moment, the correct EIP value would be set for use
by the corresponding MACRO jump instruction. Even if the thread switches
would occur before MACRO jump is executed, the value used by MACRO jump
is not overwritten, as it is stored on the stack. The onSwitch can be treated
as the implicitly recursive function — an implicit recursive call potentially
can occur prior to execution of any instruction in the range [L4, L5). As
we consider only terminated executions, the call chain is finite, so the last
MACRO jump from the chain results in the transfer of control to the initially
stored EIP.

Theorem 2. All original thread switches are detected by the algorithm.
Formally, given an execution e′ of the instrumented program P ′, for any
two consecutive executions of the original instructions occurred in different
threads that are (optionally) separated only by the instrumentation instruc-
tions

∀i, j : CL(σi) ∈ LOC ∧ CL(σj) ∈ LOC ∧ CT (σi) = t ∧ CT (σj) 6= t ∧
(∀i<k<j CL(σj) /∈ LOC)),

there is at least one execution of the instruction registerSwitchTo(t) be-
tween them, where t = CT (σj), and if there are several registerSwitchTo()
executed, then the last executed registers switch to the thread t

∃i<d<j (CL(σd) = ldetect ∧ CT (σd) = t ∧ (∀d<g<j CL(σg) 6= ldetect)),

where ldetect stands for the location of the instruction registerSwitchTo().

Proof. Due to Lemma 2, at each moment of execution, all threads except
one are in the detection-aware state, which means that a switch to thread
t will cause execution of onSwitch() from some point in the range [L0,
L2). Before execution of any original instruction in the context of these
threads, all instructions in the range [L2, L5) should be executed, including
registerSwitchTo(t). From the conditions of the theorem, CT (σi) 6=
CT (σj), therefore at least one registerSwitchTo(t) is executed. All that
should be proven is that, if there are several registerSwitchTo() executed,
then the last registered switch is the switch to t. Suppose the contrary,
i.e. that the last ’registerSwitchTo()’ is executed in a thread differing
from t. Then, another thread switch to t shall occur. Due to Lemma 2, the
thread t is in the detection-aware state at that moment, therefore another
registerSwitchTo() is executed as well, which is impossible.

68 A.V. Mogilev

6. Implementation notes and practical results

The proposed algorithm was successfully implemented for the Windows op-
erating system family. The main implementation notes follow.

The first implementation used the functions GetThreadContext and
SetThreadContext from Windows API [8] for implementing get thread eip
and set thread eip, respectively. While the implementation was correct in
terms of the algorithm and instrumentation, it was not accurate, as these
API functions imply additional thread switches, because they use the mech-
anism of asynchronous procedure calls (APC) [12]. As a result, the set of
thread switches occurred in the instrumented programs differed very much
from the one in the original program. However, due to these additional
thread switches, this implementation was a good test for correctness of syn-
chronization in the algorithm.

Later, the kernel-mode driver providing get thread eip and
set thread eip functionality was implemented [7]. It has not only fixed
the problem with additional thread switches, but also reduced the time of
execution of onSwitch thanks to combining get/set functions into a single
function change thread eip (which reduces the number of required user-
mode ↔ kernel-mode switches).

As a result, the execution of onSwitch function (measured on several
typical multithreaded programs) takes < 0.1% of the total execution time.
The faster onSwitch is executed, the lesser is the probability of the thread
switch during its execution, and the more accurate the algorithm is. Cur-
rently, this probability is so small that turning off the synchronization does
not result in the algorithm failure, as no thread switches actually occurred
inside onSwitch for real programs. However, theoretically it is unsafe, as
there is no minimal time in Windows that a thread is guaranteed to work
without being interrupted by a thread switch.

The determination of the current thread number in onSwitch is imple-
mented with the use of dynamically created per-thread functions
onSwitch<i>:

// void onSwitch<i>():
push i; //i is a constant here
jmp onSwitch; //common onSwitch will take ’i’ as a parameter

To adopt the algorithm for this implementation, the address of the cor-
responding onSwitch<i> should be used on EIP substitution for the thread
i, all other argumentations remain valid.

Since, in contrast to our simplified model, the threads in real programs
are created dynamically, the Windows API CreateThread function is inter-
cepted, and the real starting address of the thread i is replaced with the
address of onSwitch<i> on the fly.

OS-independent detection of thread switches on uniprocessor 69

7. Conclusion and future work

The paper presented the following results:

• A simple low-level formal model of multithreaded programs that is
close to a real model of programs executed on a uniprocessor is pre-
sented;

• In terms of this model, the formal definition of arbitrary program in-
strumentation is given, along with the definition of the instrumentation
correctness;

• An OS-independent algorithm for detection of thread switches on a
uniprocessor is described in a form of the instrumentation of a pro-
gram;

• The formal proof of the algorithm correctness is given;

• The implementation of the algorithm for OS Windows is briefly de-
scribed.

Future work will be an extension of the presented model with calls to
external functions whose code is not known and can not be instrumented,
such as the system functions.

References

[1] Agrawal H. Towards Automatic Debugging of Computer Programs. — PhD
thes., Purdue University, SERC, August 1991.

[2] Alpern B. et al. The Jalapeño virtual machine // IBM Systems J. — 2000.
— Vol. 39, N 1. — P. 211–238.

[3] Alpern B. et al. A perturbation-free replay platform for cross-optimized mul-
tithreaded applications // Proc. of the 15th Internat. Parallel & Distributed
Processing Sympos. (IPDPS-01), Los Alamitos, CA, April 23–27 2001. —
IEEE Computer Society, 2001. — P. 23–23.

[4] Alur R., Dill D. L. A theory of timed automata // Theor. Comput. Sci. —
1994. — Vol. 126, N 2. — P. 183–235.

[5] LeBlanc T., Mellor-Crummey J. Debugging parallel programs with instant
replay // IEEE Trans. on Computers. — 1987. — Vol. 36, N 4. — P. 471–
482.

[6] Milner R. A calculus on communicating systems // Lect. Notes in Comput.
Sci. — 1980. — Vol. 92.

[7] Mogilev A. A functional extension of Windows OS for monitoring streams
switching // Microsoft Technologies in Informatics and Programming. —
Novosibirsk, 2005. — P. 30–31 (In Russian).

70 A.V. Mogilev

[8] The Microsoft Developer Network. — http://msdn.microsoft.com/.

[9] Petri C. A. Kommunikation mit Automaten. — PhD thesis, Univ. Bonn, West
Germany, 1962.

[10] Ronsse M., De Bosschere K., de Kergommeaux J. Ch. Execution replay and
debugging // Proceedings of the Fourth International Workshop on Auto-
mated Debugging (AADEBUG2000) / Ed. by M. Ducasse and M. Brugge. —
Munchen: TUM/IRISA, 2000. — P. 5–18.

[11] Russinovich M., Cogswell B. Replay for concurrent non-deterministic shared-
memory applications // Proc. of the ACM SIGPLAN ’96 Conf. on Program-
ming Language Design and Implementation, Philadelphia, Pennsylvania, 21–
24, May 1996. — P. 258–266.

[12] Solomon D. A., Russinovich M. E. Inside Microsoft Windows 2000. — Third
edition, 2000.

[13] Sundmark D. et al. Replay Debugging of complex real-time systems: experi-
ences from two industrial case studies // Proc. of the Fifth Internat. Workshop
on Automated Debugging (AADEBUG 2003), November, 17, 2003.

