Bull. Nov. Comp. Center, Comp. Science, 10 (1999), 47-56
© 1999 NCC Publisher

Program system environment
for visual developing and mapping
of parallel programs*

0.G. Monakhov and QO.J. Chunikhin

A model of parallel program called program skeleton and a program system
for manipulating and translating the program skeletons into parallel programs on
various high-performance computing systems are considered. The main goal of
this system is to make it easier to create and execute parallel programs on various
parallel computing systems.

1. Introduction

The evolution of computing systems and a big number of supercomputers of
MIMD architecture connected to Internet give new horizons in many fields of
science. On the other hand, the use of these resources is restricted with the
lack of common software and convenient interface to the computing systems.
An end user has to work with a programmer (or programmers) of the given
specific computing system or even study the methods of programming the
system, that is obviously very uncomfortable.

There are many works in the world on creating interfaces and interface
specifications, that make work with parallel systems (including distributed
ones) easier. These are mostly programming interfaces like, for example,
MPI and CORBA. The project TOPAS [1, 2] may be mentioned as a pro-
gramming system providing the visual user interface. Unfortunately, all
mentioned systems do not solve the problem of access to the parallel com-
puting system in a whole. MPI and CORBA are the program interfaces
and do not effect the end user. TOPAS is a visual program system on Java,
but it is useful only for the particular class of algorithms (algorithms of
automatic mapping parallel programs onto parallel computing systems).

In this article, the programming project SIESTA (Skeleton vIsual Envi-
ronment for Specification and Test of Algorithms) is presented. It combines
the interfaces of programer and user, allows to write parallel programs in
the abstract mode without connection with particular computing system
or programming language. The system also allows using multimedia to
make projects and libraries created with it more clear and understandable.

*Supported by the Russian Foundation for Basic Research under Grant 99-07-80422.

48 0.G. Monakhov and O.J. Chunikhin

SIESTA itself may be a WWW-interface to the parallel (and/or distributed)
computing system.

The system is based on the idea of program skeletons. A program skele-
ton is a hierarchical, tree-like representation of parallel program. This con-
cept is developed from the algorithmic skeletons, but was made more exact
to make it possible to create the program code from it. It is also possible to
include into the program skeletons the multimedia information (sound, text,
animation, video) based on HTML and WWW. To manipulate the skeletons
the following parts of SIESTA were implemented: skeleton editor, skeleton
interpreter (it interprets skeleton before translating into program code), in-
terface that allows to plug in translators (modules translating skeletons into
programs for particular computing systems). There were alsc implemented
two translators: the first one translates skeleton into multithread program

for Windows 95/NT, the second one translates skeleton into program in
ANSI C with using MPI library.

2. Skeletons

2.1. Skeleton’s structure
Skeleton represents runnable module and has the following properties:

e Exact hierarchical, tree-like structure - each element (tree node) of a
skeleton has descendants, who are also skeleton’s elements.

e Universality — any skeleton may be translated into a program, ready
for executing on any computing system for which a translator is im-
plemented.

e Simplicity of presentation and documentation — each element may be
~provided with HTML link to www resource.

e Modularity — any subtree of a skeleton may be replaced with another
tree if their roots are of the same type and have the same data interface.

Skeleton’s elements may be of the following types:

Project is a root element of a skeleton presenting the whole parallel pro-
gram (not its part). Any skeleton ready for compilation has the
root element of this type. This element provides reading of input
data and saving results. Its descendants may be the elements of
TypeLibrary and Node type.

TypeLibrary is an element, whose descendants are Types. This node
groups users types (arrays and structures).

Type is just a type. There are several base predefined types (char, short,
int, long, float, double) and methods of creating more complicated

Program system for visual developing . . . 49

structures (structure and array). Any runnable element of skeleton
may have a descendant of the type TypeLibrary, who would con-
tain types used by its descendants. Types are identified by their
names (ids) and may be reloaded, i.e., when we see a type in the
skeleton description of this type would be got from TypeLibrary of
the nearest ancestor. If the type is simple, then it does not have
descendants else (if it is structure or array) it has descendants of
type Field, array has one and only one descendant of this type.

Field is a field of complex type. Field of structure has two properties:
type and name, field of array - only one, type.

Node represents sequentially executed minimal module. Its main prop-
erty is executable code written in Java-like language. Shot and
TypeLibrary may be descendants of this element. Shots-descen-
dants are called from code of the ancestor by their names like func-
tions.

Shot represents module that groups several concurrently executing mod-

ules. Its descendants may be Graph, CommonGraph and (or) Type-
Library.

Graph groups and defines links among several nodes (statically defined).
Descendants are Node and TypeLibrary.

CommonGraph defines dynamical structures and links among nodes.
CommonGraph can not be of arbitrary structure, its structure is
statically chosen from finite set (set, line, ring, grid, etc.), but
this structure may have dynamical size. The only descendant of
CommonGraph is the element of type Node and represents all con-
currently running descendants of CommonGraph.

All skeleton elements are divided into two classes: auxiliary and runnable
ones. TypeLibrary, Type, Field are auxiliary elements; Project, Node, Shot,
Graph and CommonGraph are runnable ones.

Common properties of all skeleton elements are name and commentary.
Only array field does not have any name (that means it has an empty name),
for all other elements the name is necessary. Comment is a structure that
allows to explain destination of the element.

Also any runnable element contains a set of local variables of four classes:
special, input, output and inner.

e The set of special locals is constant: they describe location of the
element among their “brothers” (the coordinates of the node in a grid
or a number of the shot in a skeleton). More exactly these are two
variables of long type: n_gid is a number of the group in which the
thread located, n_pid is a number of the thread in its group.

50 0.G. Monakhov and O.J. Chunikhin

e The inner variables are the local variables of the given element; they
are available in its code only and therefore have sense for elements of
type Node only.

e The input variables have all the same characteristics as the inner vari-
ables but in addition when the element is run they are initialized with
values of some expressions, calculated in united context of this element
and element-ancestor. A set of such expression is denoted as “a set of
input links”.

e The output variables may also work as the inner locals, but in addition
they take part in a “set of output expressions”, a set of expressions
that transfer data to elements-descendants.

A set of links (input and output) thus allows transferring data up and
down the tree of skeleton. But it is obvious that we need also a method of
transferring data between “brothers” (concurrently working blocks of pro-
gram). Such an ability exists and is provided with a set of special functions
of the language.

2.2. Skeleton execution semantics

Execution of a skeleton is simply a walk through runnable elements of skele-
ton tree. A skeleton element execution semantics depends on its type, the
first executed node is always root element of type project.

Project. The only (and also root) element of this type is the first executed
one, its functions are as follows:

1. To read from file initial values of input locals of the only descendant
of the type Node (it is recommended to read data from standard input
stream in concrete realizations).

2. To run its descendant of type Node.

3. To write output locals into file (standard output stream).

Node. A minimal runnable block of the skeleton. A node is executed only
after all instructions of its code are executed. Execution of the next level
elements (of type Shot) is initiated by call of a function from nodes code.
So, if the node has a descendant of type Shot with name “shot_descendant”
then it may be executed by the following instruction “shot_descendant();”.
Before the call of the function all input links would be calculated and after
the call the output links would be activated.

Program system for visvel deveioping . . . 51

Shot, Graph, CommonGraph. Shot is a tree element grouping several
concurrently running threads. Shot’s descendants may be elements of types
Graph and CommonGraph, that in their turn necessarily have descendant(s)
of type Node. Shot execution includes the following steps:

1. To calculate input links for all descendants of type CommonGraph. It
would define the sizes of all dynamic structures (for example, Common-
Graph of type “2Dgrid” has two (and only two) input variables with
the names “Nx” and “Ny”, and calculation of input links completely
defines the structure of the graph and number of threads-descendants
equal in this case to NxxNy).

2. To create needed number of suspended threads, in which Nodes-descen-
dants of Graphs and CommonGraphs would be executed. Hereinafter
we will equate Nodes and threads in which they are executed. All
created nodes run concurrently and can exchange information with
message-passing provided by several functions of the language. In this
article, such Nodes are denoted as “brothers”.

3. To initiate special variables of created nodes. Here we mean initial-
ization of variables “n_gid” and “n_pid” (n_gid is a number of group,
n_pid is a number of Node in a group). The number of the group
in this case is simply a number in order of Graph or CommonGraph
among descendants of the shot.

To caiculate the sets of input links of the created Nodes.
To run all nodes.

To wait for finishing of node execution.

NS o

To calculate the sets of output links of the created Nodes.

CommonGraph’s types:

Set — Just a set of the unconnected Nodes. The number of the nodes is
defined by a special variable of a CommonGraph “N Set”.

Ring - “N_Ring” Nodes connected to form a ring. Each node has two
neighbors.

Line — “N_Line” Nodes connected to form a line. Each node has two neigh-
bors except two end nodes.

2Dgrid - “Nx*Ny” Nodes connected to form a grid. Each node has four
neighbors except end and corner nodes.

3Dgrid - “Nx*Ny*Nz” Nodes connected to form a grid. Each node has six
neighbors except end and corner nodes.

Binary tree — Binary tree with “NI” layers, consisting of 2Nl-1 Nodes.
Each element has three neighbors. .

Tree — “Nd”-ary tree with “NI” layers, consisting of NANI-1 Nodes. Each
element has Nd+1 neighbors.

52 0.G. Monakhov and O.J. Chunikhin

3. SIESTA system language

This is a Java-like language. Here is a short specification of the language.

3.1. Specification

statement ::= ; || {statement statement ...} ||
if (expression) statement ||
if (expression) statement else statement ||
while (expression) statement ||
do statement while (expression); ||
for (statement; expression; statement) statement }|
expression;

expression ::= expression 7 expression : expression ||
expression, expression ||
expression binary_operator expression || simple_expr

binary operator i= <<= || >>= Il =1l /=1l o= Il + = || —= ||
=llI"=lll=ll=ll<=ll>=ll==Il!=1l < Il
SH&E& U NE&ENTH+W=Hx1/1<<II
>>
simple_expr ::= +simple_expr || —simple_expr || !simple_expr 1
~simple_expr || ::simple_expr || simple_expr++ ||
simple_expr—— || (exprassion) ||
identifier [expression) [expression] ... ||
identifier (expression, expression, ...) ||

identifier || constant

identifier ::= C (or Java) identifier. I: consists of latin letters, numbers and
underline sign; it can not begin with a number; letter’s case
has sense.

constant ::= numeric constant.

3.2. Language functions

The language does not contain the methods of functions, types and vari-
ables definition. All this is a part of the skeleton structure (and editor).
A set of variables and types available in the program is defined when the
skeleton is created, a set of functions available in a Node equals a set of

Program system for visual developing . . . 53

shots-descendants of this node. Several standard functions are also avail-
able (screen output, transferring data between brothers, allocating memory
for arrays):

print prints arguments.
For example: print(x1,x2,‘‘Hello!",x3[12]);

println prints arguments with CRLF at the end.
For example: println(‘‘Hello world!");

send sends data to any brother (blocking).
For example: send(group_num,thread_num,array [10,120]);

sendn sends data to any neighbor (blocking).
For example: sendn(neighbour_number,array[10, 120]);

recv receives data from any brother (blocking).
For example: recv (group num, thread num,array[10, 120]);

recvn receives data from any neighbor (blocking).
For example: recvn(neighbour number ,array[10,120]);

malloc allocates memory for an array.
For example: malloc(array,12,10,3):

free frees memory. For example: free(array);

3.3. Transferring data between neighbors (brothers)

Data transfer is provided by the functions send, sendn, recv and recvn.

The functions of sending and receiving data (the pairs send-recv and
sendn-recvn) are blocking, i.e., program execution is suspended until trans-
fer ends. System behavior is not defined when non-coordinated transfer
occurs, i.e., the use of pair send-recv in the following examples would be
incorrect:

send(integer variable) - recv(double_variable)
send(integer_array [0,10]) - recv(integer_array[0,8])

3.4. Working with arrays and subarrays. Memory allocation

One more important difference between this language and C is the absence
of necessity to look strictly after memory allocation and deallocation and
the existence of such objects as subarrays.

If memory is allocated in a node, we do rot need to deallocate it patently,
translator must generate code looking after it automatically.

Let an n-ary array arr of size {; * I3 % ...% [, be allocated. We can access
its elements like elements of C-arrays: the element with the index (21y- « +yin)
may be obtained with the construction “arr[iy][is]. . .[¢:]”. There is also a

54 0.G. Monakhov and O.J. Chunikhin

possibility to assume subarrays in one expression not using cycles, it is very
useful in the sets of input and output links.
We define subarray as follows: let n pairs of integers be defined as (a4, b;),
oy (Anybg), 0 <4 <m0 < a; <b; <I;, then the subarray is a set of ele-
ments arr {arr(iy]...[in] : ax < ik < bi, 1 < k < n}, and this object is de-
noted in the program with the following expression “array, b1]...[an, bs]".
When a node is created no variables-arrays are initialized, they may be
initialized in two ways:

1. Using the function malloc. For example, “malloc(arr,ly,ly,. .., 1,);"

2. Assigning already initialized array or subarray to the variable. For
example, let arrl be not initialized array and arr2 be array of the size
4x5x3. Then the expression “arrl = arr2;” would create in arrl a
copy of arr2, and the expression “arrl = arr2[1, 2][1, 3][2];” would ini-
tialize arrl with array of the size 2x3x1 and would fill it with elements
of subarray arr2(1, 2](1, 3][2)].

Assigning arrays and subarray has sense for already initialized array and
subarrays too and it is possible to assign arrays of different dimensionality,
the main idea is to keep structures of left and right parts of assignment
the same. For example, the following operator “arr1[2][1,4] = arr2[2,5] =
arr3[8]{10,13][2]” is valid, but this one “arrl[2][1,5] = arrd[1,2][1,2]” is
not..

3.5. Particularities of expressions in sets of input
and output links, operator “::”

The input or output link (hereinafter in this paragraph simply link) is just
the expression connecting variables of skeleton elements of two adjacent
levels. Usually they are Shot and Node or Shot and CommonGraph. Here
we consider two skeleton levels connected with links and say “top element”
and “bottom element”.

Top and bottom elements may have variables with same names so we
need to differentiate their contexts. This is implemented by unary operator
“:”. Expression of the link is calculated in context of the bottom element,
but operator “::” allows to change context and so we can obtain top element
variables. Double use of the operator returns the calculation to bottom
element context.

This operator and subarrays allow to send different data to different de-

scendants with same expressions (using local variable of descendant
Hn_pid”)'

Program system for visual developing . .. ' 55

4. SIESTA structure

SIESTA is a system that manipulates skeletons. The system is written on

Java because this language is platform-independent and generically oriented
to Internet.
The system consists of several modules:

Skeleton editor: creation, editing and saving skeletons.
Syntax analyzer: processing the internal language of the system.

Skeleton interpreter: executing skeletons before their compiling into
code of particular computing system. Syntax analyzer and skele-
ton interpreter allow to find out most of bugs in a skeleton before
it is translated into real program.

Compiler interface: Java-interface providing simple plugging in modules
that translate skeleton into program. These modules (hereinafter
translators) may create both binary files ready to run and source
code in some high-level language (C, Fortran etc.). Now the
system contains two generic translators: the first one creates C
project for Windows 95/NT, the second one does the same but
using only functions of ANSI C and MPI library. In the first
case the resulting program is multithread console Windows ap-
plication, in the second case the result is C project that may
be compiled on any system providing functions of MPI library
and standard C. These two translators does not make any opti-
mization but it is just because they are samples made for better
understanding of skeleton translating methods.

5. Conclusion

The main goal of this work is making it easier to create and adapt parallel
programs on different computing systems. Skeletons should be intermediate
between end user (who wishes to run his algorithm on high-performance
system but does not feel good in working with it) and the computing system.

The on-going project SIESTA is presented and the following results are
achieved:

e A model of parallel program called program skeleton is proposed. A
part of this model is its inner language.

e A program system SIESTA intended for creating, editing and trans-
lating skeletons into programs for particular computing systems is de-
veloped.

e Two translators are developed: for translating skeleton into Windows
multithread application and for creating MPI-application.

56

0.G. Monakhov and O.J. Chunikhin

References

[1]

[2]

[3]

[4]

[5]

(6]

Monakhov O.G., Chunikhin O.J. WWW-based system for visualization, ani-
mation and investigation of mapping algorithms // Proc. Inter. Symposium on
Parallel Architectures. Algorithms and Networks (I-SPAN’97), Taiwan, 18-20
Dec. - 1997. — P. 207-210.

Mirenkov N.N., Monakhov O.G., Chunikhin O.J. A multimedia system for
the investigation of mapping algorithms // Proc. Inter. Confer. HPCN’98.
Amsterdam, 20-23 Apr. - 1998. — P. 738-7486.

Monakhov O.G., Chunikhin O.J. Parallel mapping of program graphs into par-
allel computers by self-organization algorithm // Applied Parallel Computing.
Industrial Computation and Optimization. Proceedings of Third International
Workshop. PARA’96. Lyngby, Denmark, August 1996. — Springer, 1996. —
P. 525-528.

Mirenkov N. VIM language paradigm // Parallel Processing: CONPAR’94-
VAPP’IV. Lecture Notes in Computer Science / Eds.: B. Buchberger, J. Volk-
ert. — Springer-Verlag, 1994. — Vol. 854. - P. 569-580.

Mirenkov N. Visualization and sonification of methods // Proc. of The 1st
Aizu Int. Symposium on Parallel Algorithms. Architecture Synthesis. — Aizu-
Wakamatsu, Japan: IEEE Press, 1995. - P. 63-72.

Monakhov O.G., Chunikhin 0.J., Grosbein E.B. TOPAS: a Web-based tool for

- the visualization of mapping algorithms // Proc. 8-th Inter. Conf. on Computer

(8]

[9]

(10]

Graphics and Visualization. GraphiCon’98. - Moscow, 1998. — P. 295-299.

Monakhov O.G., Chunikhin O.J. WWW-oriented system for visualization, an-
imation and investigation of mapping algorithms // Proc. of International
Student Forum-Contest on Multimedia. University of Aizu, Aizu-Wakamatsu,
Japan, July 20-24. - 1998. - P. 129-137.

Cole M. Algorithmic skeletons: structured management of parallel computa-
tion. — The MIT Press, 1989.

Mirenkov N., Mirenkova T. Multimedia skeletons and “filmification” of meth-

ods // Proc. of 1st Int. Conf. of Visual Information System Melbourne, Aus-
tralia, 1996. — P. 58-67.

Monakhov O.G., Chunikhin O.J., Grosbein E.B. Environment for automatic
mapping of parallel algorithms using soft computing // International Conf. on
Soft Computations and Measurement. SCM‘99. May 25-28. - St. Petersburg,
1999. - Vol. 1. - P. 236-239.

