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Genetic and heuristic algorithms
of synthesis of optimal multidimensional
circulant networks*

E.A. Monakhova and E.V. Mukhoed

A solution to combinatorial optimization problem of constructing optimal cir-
culant networks with the minimum diameter under given degree and number of
graph nodes is considered. The circulant networks and their different applications
are the object of intense investigations. Under degree of a graph 4 > 4 and large
number of nodes it is necessary to develop new effective methods of the optimal
circulant designs synthesis. The application to decision of given problem a heuristic
algorithm and a genetic algorithm based on simulation of natural evolution pro-
cess is considered. The comparison of the algorithms and their different versions
of realization is obtained. The results of computer experiments and catalogues of
optimal circulants with N > 1000 and é > 4 are presented.

Introduction

In this work we consider fundamental optimization problem of the design
of efficient interconnection networks for parallel computer systems - the
construction of optimal networks having the minimum diameter for a given
number of nodes (order) N and the degree 4 of a regular graph. The choice of
optimal graphs as interconnection networks allows to optimization such pa-
rameters of functioning as transmission delays, reliability and connectivity,
speed of routing algorithms and etc. under given equipment expenditures.
The circulant graphs [1-12] are characterized by high scalability, survival
and modularity and realized as interconnection networks in multimodule
supercomputer systems (MPP, Intel Paragon, Cray T3D etc.). For degree
of a graph é§ = 4 the problem of synthesis of optimal graphs has an analytical
solution [3-5]. But under § > 4 and any N it is known as N P-hard and an
analytical approach to its solution meets some difficulties so for its decision
it is necessary to develop new effective algorithms. We consider a heuris-
tic algorithm using the reduced search and a genetic algorithm based on
simulation of evolutionary process of development of living organisms. The
genetic algorithms were successfully used [13, 18] for decision the number of
problems in combinatorial optimization, artificial neural network learning,
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graph theory and the Cayley graphs degree/diameter problem [14]. With
development of genetic algorithms in conformity to the synthesis of optimal
circulants considerable advance can be obtained in decision of the problem
for the degrees § > 4 and large orders (N > 1000).

1. Optimal circulants

Definition 1. A circulant network is the graph G(N; sy, 82,...,8,) with N
nodes, labeled as 0,1,2,...,N — 1, having i + sy, i+ 5y,...,0 % 5, (mod N)
nodes adjacent to each node i.

The numbers S = (s;) (0 < sy < 83 < ... < s, < (N + 1)/2) are
the generator set of the finite Abelian automorphism group associated to a
graph. The degree of a node in an undirected graph G is 8 = 2n, where n
is the dimension of a graph. The graph G(N;s1,82,...,8,), when s; = 1
is known as loop network [2, 6-9, 12, 15]. The optimization problem is
in a search for a graph with the minimum diameter and minimum mean
distance among all circulants (C(N, n)) having N nodes and the dimension
n. The diameter of G is defined by d = max;; d;;, where d;; is the length
of shortest path from a node i to a node j. The average distance of G is
d = WNL:TTE‘? dij. Let d(N) = mings {d(G(N;S))}. Let for any graph
G € C(N,n), Kpm denote the number of nodes to be attained from the
node 0 by using at most m steps along generators, and K3, . be the upper
bound for K, ,,,. Denote Lpm = Knm — Knm-1, L7, ., be the upper bound
for L,m. The values of K}, ., L% . for any n, m were determined in (6, 16].

Note that a term “optimal” is used in the literature in different senses.
For example, in [2, 7-9] a graph is optimal if d(G) = d(N) and tight optimal
if d(G) = ulb(N) (exact lower bound of d(N)). We will use the following

terminology.

Definition 2. A graph G € C(N,n) is extremely optimal, if Lom = L},
for any 0 < m < d* -1 and Lygx = N — K3 ;*—1, where a diameter
d* = ulb(N) is given from the correlation K3 ge_y <N <K} x.

An extremely optimal graph achieves the lower bounds of a diameter and
an average distance, has a maximum of reliability and connectivity among
all graphs from C(N,n) [16], requires a minimum number of rounds for
realization of broadcast and gossiping [17].

Definition 3. A graph G is optimal if d(G) = ulb(N).

Definition 4. A graph G is suboptimal if d(G) = ulb(N) + 1.
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Figure 1. The circulant graph G(12;2, 3) shown as a lattice

The diameters of optimal circulants are computed from the expression
for K ,,. In the case when n = 2 [3-5] the exact lower bound for d(N)
should be ulb(N) = [(v/2N —T1 - 1)/2], where [z] denotes the smallest
integer number which is not less then z. It is shown in [3-5] that, for any
N > 4, the optimal graph G(N; s, s7) exists for the values of s, = ulb(N)
and s3 = ulb(N)+1. The example of two-dimensional circulant with a given
description is shown in Figure 1.

The necessary and sufficient conditions of existence of extremely optimal
double-loop networks [15] and of optimal ones [7, 9, 10] are pointed, and
dense infinite families of values of N for them are determined.

In [12], for undirected loop networks of degree 6, the intervals of existence
of optimal graphs with N < 1237 and their description are obtained.

2. Heuristic algorithms of the synthesis

The heuristic algorithms of getting the optimal (suboptimal) circulant
graphs (loop networks) with any order and degree which use different meth-
ods of determining an optimality of a graph on its description are considered.
The following heuristics are used under the synthesis of graphs to reduce an
exhaustion of generators S = (sy,...,s,):

e the values of s are removed from a set of possible generators for which
N/GCD(N, s) < 2(d - 1) at a synthesis of any circulants (GCD is the
greatest common devisor of given integers);
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e the values of generators are taken with 2(d — 1) < s for an exhaustion
and test at a synthesis of loop networks.

The basic part of computations is required for finding a diameter of a graph.
Two different algorithms of finding a diameter and some their technical mod-
ifications were performed in the complex of heuristic and genetic algorithms
programs.

2.1. The first algorithm. Let N nodes of a tested graph G with numbers
0,1,...,N — 1 be cycling in a loop. An entry h[:] of the array h contains
a distance from 0-th node to i-th one. At the beginning of computations,
h[0] = 0 and A[i] = -1 for all others i. Then the loop follows in which the
paths are formed from 0 node to all nodes, the lengths of these paths and
the number of nodes which may be attained from the node 0 at given loop
step are computed. The loop is executed until there are the nodes in which
a path can be built. In addition, it is defined is the graph G connected or
not. In the last case a diameter of G' gets the infinity value. As soon as
the loop step exceeds the value d* for optimal (or ¢* + 1 for suboptimal)
circulants search, the loop is finished.

2.2. The second algorithm is based on the constructive method of syn-
thesis of circulants [3, 8, 15], using the geometrical visualization and gen-
erating the constructions of optimal circulants. It is a generalization of
the algorithm proposed in [8] for two-dimensional circulants. Consider,
for example, three-dimensional circulants. A circulant G(N; sy, 82, 53) may
be constructed as an octahedron-similar frame of lattice unit squares in
Z? in the following way. Label each lattice point (3,7, k) by the number
m = 811 + 82 + s3k (mod N), m is a graph node number. As a result,
every label m belongs to {0,1,...,N — 1} and is repeated infinitely many
times in Z3, resulting in a tessellation of octahedron-similar constructions
of Z3. All N node labels of optimal graphs with d = d* must lay inside
an octahedron with semidiagonals equal to d* (for suboptimal graphs, d is
incremented by one). So, we scan all cubes in octahedron exchanging coordi-
nates of lattice points in the following way: ¢ € [-d, d], and, correspondingly,
j € [-(d—li]),d~ i}, and k € [-(d - |i| = |5]),d - [¢] — |5]], and label given
numbers of nodes. If the number of labelled (distinct) nodes equals to N,
then the optimal description is found. For n > 3, The generahzatlon of the
algorithm is evident for n > 3.

2.3. The results of comparison and execution. As it was shown by
a computer realization, the first algorithm to obtain a diameter demands
more memory capacity than the second one but is better on execution time
on the average in 2-2.7 times. The results of work of heuristic and genetic
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algorithms presented in the tables below were given under the realization of
the first version of obtaining a diameter. :

By means of heuristic algorithm, for every tested N, the generator set
was found out for optimal description of a graph G and the cases when
it coincides with extremely optimal one were identified. Simultaneously,
suboptimal description of the graph G has been defined.

3. Genetic algorithms of the synthesis

The genetic algorithms are based on a simulation of the survival of the fittest
in the population of entities each of which presents the point in a space of
solutions of the optimization graph problem. The entities are presented by
strings of genes (generator sets). The function F named fitness function
evaluates the degree of an approximation of a graph diameter to its exact
lower bound.

The purpose of the genetic algorithm is to search a global minimum of
the fitness function, when the initial structure of the population is given,
through applying generic operators (selection, crossover, and mutation) to
it.

3.1. The data structure. We use two populations while searching the
optimum, an old and a new one. The old population is produced on previous
iteration (for the first iteration it is filled with randomly chosen generator
sets) and is used for filling a new population. Under the synthesis of the
optimal descriptions for N, changing in some range, the generator sets that
were the best ones given for the value N are used as the first population for
the value N + 1.

The parameters of genetic algorithm are: N is a graph order, n is a graph
dimension, M is a number of graphs in the population, ijs is the number
of iterations, p,, is the probability of a mutation, p. is the probability of
applying the crossover to pair of entities.

Each population is the set of generator sets for a given N. Each generator
set is represented with the vector of the length n+ 1. The genes contain the
integers from 1 to [N/2]. The {n+ 1]-term describes the diameter of a graph
G. The minimization F is done by the diameter. Iterations are finished
if the best value of fitness function has not changed during certain time or
after a given number of steps,

3.2. The mutation. The mutation is applied to randomly chosen genera-
tors in all sets of generators of the current population (their number is equal
to the parameter of mutation) and produces new ones. The content of each
chosen generator is replaced with randomly chosen number from 1 to [N/2].
The mutations of two types are applied:
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e a replacement of a generator with a random number,

e a replacement of a generator with a random number from some neigh-
borhood of the replaced generator.

3.3. The crossover. We apply the crossover to two generator sets and
get two new ones. We exchange the contents of corresponding generators
with some probability. Some arbitrary pairs are chosen from the population
consisting of M graphs. In every pair, the graph generators are partitioned
into two parts in randomly chosen place and exchange the parts (Figure 2).

(5, 10, 40, 55) (5, 10, 12, 55) (5, 21, 23, 45)
Mutation > Crossover )
(4, 21, 23, 45) (4, 21, 23, 45) (4, 10, 12, 55)

Figure 2. Example of a mutation and a crossover

3.4. The selection provides the principle of the survival of the fittest. It
is applied to the old population as a whole. The selection consists in sorting
the population on the significance of fitness function (diameter of a graph)
and copying of several best generator sets to the new population which
then is filled up by using of crossovers and mutations. The diameters of all
graphs in population are computed. The graphs with smaller diameters are
remembered separately to don’t lose them under a mutation or a crossover.
The graphs with largest diameters are displaced by the graphs of smaller
diameters.

4. Experimental results

Some results of work of heuristic and genetic algorithms in the form of
optimal descriptions for selected graphs are presented in Tables 1 and 2.
The bound values of N corresponding to diameter alteration are shown. The
following values are used for the genetic algorithm: p,, = 0.18, p. = 0.5,
M = 200, ip; = 3000.

For heuristic (HA) and genetic (GA) algorithms, the measurements t,,
of the average execution time (getting of the first suboptimal description)
in ranges N; < N < N, are shown in Table 3 (in seconds for Pentium-
166 MMX). These times were defined in different ranges of N including a
beginning, a middle and an end of ranges for a given diameter. The choice
of these intervals is explained by the fact that a probability of existence of
optimal (suboptimal) descriptions for circulants are decreased under increase
of N for d given. The minimum probability is observed at the bounds of
transitions from a diameter to another one.- The execution time of the
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Table 1. The fragment of catalogue of optimal (suboptimal) circulants
with n = 3

N d (d‘) 81 $2 83 N d= d‘ 81 82 83

1561 | 11 (10) 43 | 645 | 650 | 1562 11 130 | 301 | 350
2047 | 12 (11) 19 [ 575 | 974 | 2048 12 237 | 464 | 541
2625 | 13 (12) | 1096 | 1244 | 1283 | 2626 13 65 | 239 | 562
3303 | 14 (13) 46 | 238 | 651 | 3304 14 229 | 1047 | 1182
4089 | 15 (14) 133 | 1309 | 1617 | 4090 15 347 | 1130 | 1240

Table 2. The selected suboptimal circulants of different degrees

N n d (d*%) 81 82 83 84 85 86 87
11521 | 3 | 22 (20) 823 | 5135 | 5137
13287 | 3 1 23 (21] 1138 | 1586 | 6042
15225 | 3 | 24 (22) 105 337 | 1247

1024 | 5| 6(5) 49 | 64| 367 | 462 | 476

4096 | 6 7 {G) 321 753 836 | 1380 | 1893 | 1990
16384 | 7 8 (6) 490 | 1277 | 1645 | 2512 | 3832 | 4317 | 5448

Table 3. Comparison of heuristic and genetic algorithms
for synthesis of suboptimal circulants

n N1 — N, d(d') | ta(HA) | tan(GA)
3 | 1562-1571 | 12 (11) 0.6 0.5
1800-1809 | 12 (11) 1.3 2.7
2038-2047 | 12(11) 225.1 54.2
3 | 2048-2057 | 13(12) 1.2 0.8
2332-2341 | 13 (12) 3.2 9.0
2616-2625 | 13 (12) 476.3 198.3
4 682691 7 (6) 0.9 0.3
980989 7 (6) 9.2 0.5
12801289 7 (6) 92.1 14.6
4 | 1290-1299 8 (7) 5.9 0.6
1760 1769 8 (7) 58.0 1.1
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algorithms essentially increases in comparison with the beginning of the
range.

It was shown that graphs of the degree § = 6-10 and the diameter d < 10
have suboptimal descriptions.

The explicit catalogues of optimal and suboptimal three-dimensional
circulants and graphs of larger degrees are represented at Web-page:
http://rav.sscc.ru/"emilia/.

5. Conclusion

The results of research on the development of genetic and heuristic algo-
rithms for optimization graph problem are presented. They show that the
proposed algorithms are able to perform effectively a search for an optimal
(suboptimal) solution to the given problem for circulant graphs of large di-
mensions and numnbers of nodes. The genetic algorithms are good for search
of perspective areas in spaces of solutions but are not so good for exact search
in these areas. Under increasing n dimension the appropriateness of using
genetic algorithm is increased. On the other hand, heuristics are good for
search of tight solutions but have larger run time than genetic algorithms.
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