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Chapter 1

The constant geomagnetic field

Introduction

Recently, the theory and practice of geoelectromagnetism have been en-
riched with the new theoretical and experimental results that appeared in
many publications. However, there are still unsolved problems in geoelec-
tromagnetism that arose as far back as in the time of Gauss, who laid the
groundwork for the physico-mathematical modeling of magnetic fields ob-
served on the Earth [9].

The first and principal problem is that it was generally accepted to con-
sider the supposition about potentiality of the Main Geomagnetic Field
(MGF) and its variations in the Earth’s atmosphere due to the absence
in the air of detectable electric currents to be justified. It has appeared that
in practice, when interpreting the MGF and fields of its variations, there
arise non-potential fields in the air suggesting that their appearance should
be investigated.

The second and no less principal problem concerns the source of the
MGF. There are many hypotheses about the source of the MGF. However,
most of them do not match the results obtained in the theory of electromag-
netic field, on the one hand. And on the other hand, there have appeared
experimental data casting some doubt on theoretical results substantiating
the nature of the Earth’s electromagnetic field [7, 20, 28].

The third problem deals with the interpolation of data about the elec-
tromagnetic fields observed on the Earth’s surface by the world network
of electromagnetic observatories as well as of the satellites data. Although
with supercomputers the possibility to interpolate algorithms has sharply
increased, the accuracy of the interpolation with the use of the Gauss–
Schmidt decompositions does not still satisfy the researchers of the Earth’s
electromagnetic fields.

All these, at first glance, solvable problems inspired the author to be
deeply involved in updated physico-mathematical grounds of theory of the
Earth’s electromagnetic field. This resulted in its revision from the new
standpoints that deal not only with physical problems of description and
interpretation of the Earth’s electromagnetic field, but has also formulated a
number of new mathematical tasks. In particular, there has arisen a problem
of reconstruction of poloidal and toroidal vector fields on the sphere surface
with the help of one scalar function and some other problems, whose solution
is the subject of this study.
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1.1. On reconstruction of the main geomagnetic field on
the Earth’s surface with allowance of its toroidal part

In the last few decades, a new direction in the Earth’s EMF theory
relating to a possible source of the MGF has been intensively developed.
We mean the so-called dynamo-excitation of the MGF, where a toroidal
magnetic field has a significant place. The interaction between the toroidal
magnetic field that has no normal magnetic component on the Earth’s sur-
face and the poloidal field that does have such a normal magnetic component
permits the generation of a magnetic field with rather an intensive toroidal
magnetic field of 100 up to 500 Hz in the Earth’s interior [6; 15, p. 166; 22].
The demand for a significant in intensity toroidal magnetic field inside the
Earth has generated a myth of a possible existence of such a toroidal mag-
netic field in the Earth’s interior. But such a field does not reach the Earth’s
surface and is not observed in the EMF measurents.

The fact is that the boundary conditions for the magnetic field indicate to
its continuous transition through the Earth’s surface because this surface is
non-magnetic and no intensive electric currents are observed on it. Therefore
the Earth’s surface is not a screen for the MGF and EF as a whole.

In this connection there arises a basically new mathematical problem of
a unique reconstruction of a solenoidal vector field in a sphere (a solenoidal
magnetic field) with allowance for a vector field presence in the sphere but
without normal component on its surface (a toroidal vector field). In our
opinion, the solution to this problem should be sought for with a particular
emphasis on the Helmholtz theorem “On finding a vector field from its rotor
and divergence”. In [12], the following definition is given: let V be a finite
open spatial domain bounded by a regular surface S, whose positive normal
is uniquely defined and continuous at each point of the surface.

The Helmholtz theorem. If the divergence and rotor of the field F (r)
are defined at each point (r) of the domain V , then everywhere in V the
function F (r) can be presented as a sum of the conservative field F1(r) and
the solenoidal field F2(r):

F (r) = F1(r) + F2(r), (1.1)

where
∇× F1(r) = 0, ∇ · F2(r) = 0 (1.2)

(the Helmholz decomposition theorem).
The function F (r) is uniquely defined under an additional condition of

setting a normal component F (r) · dS|dS| of the function F (r) at each point

of the surface S (theorem of uniqueness).
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The effective detection of the function F (r) from these data reduces to
solving partial differential equations under certain boundary conditions.

When solving the problem of reconstructing the MGF on the Earth’s sur-
face, the initial conditions of the Helmholtz theorem are essentially reduced,
because an intensive potential magnetic field inside the Earth, for which
∇×H = 0, is not observed due to the presence of a non-potential toroidal
part. Moreover, when reconstructing a solenoidal magnetic field, observed
on the Earth’s surface, it is necessary to take into account its toroidal part.
In other words, in this case it is assumed that on the Earth’s surface only a
soledoidal magnetic field is observed, whose tangential to the Earth’s surface
components contain a toroidal part. The normal component of the field ex-
ists, is continuous and assigned at each point of the Earth’s surface. In this
case, it is possible to reformulate the Helmholtz theorem for this problem
and to seek for a proof of the new theorem without solving the respective
differential equations and without new boundary conditions in addition to
proving the existence of the normal component HN (r) at each point of the
Earth’s surface.

Thus, according to the condition of solenoidality (without divergence) of
the magnetic field

∇ ·H = 0, (1.3)

the source of the magnetic field is usually a vector potential A, given by the
expression:

H = ∇×A. (1.4)

Therefore it becomes possible to divide the vector potential into two
parts using the following orthogonal decomposition:

A = (Qr) +∇× (Qr), (1.5)

whereQ(r, θ, φ) is a scalar function of the class C∞, and (r, θ, φ) are spherical
coordinates with the center in the Earth’s center. The orthogonality of
decomposition (1.5) is evident:(

0, 0, (Qr)
)
·
(
∇θ(Qr),∇φ(Qr), 0

)
≡ 0. (1.6)

However, in this case there arises a mathematical problem of reconstruct-
ing a solenoidal vector field H in a sphere using one scalar function. In this
case it is required to prove that it is possible to uniquely recover in the
sphere not only the vector field having an external normal component, but
also to prove the fact that there is no such normal component (a toroidal
vector field). Such a generalized theorem should be proved in order that
toroidal and poloidal magnetic fields be introduced that are interconnected
by the known relation [13]:
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∇×HT = HP , (1.7)

where HT is a toroidal magnetic field, HP is a poloidal magnetic field. The
validity of formula (1.7) follows from the definitions:

HT = ∇× (Qr), HP = ∇×∇× (Qr),
∇×HT = ∇×∇× (Qr) = HP .

(1.8)

The mathematical proof of the problem of reconstructing the vector field
H in the sphere using one scalar function is formulated as the following
theorem.

Theorem 1. The solenoidal vector field H in the spherical domain V (with
the surface V and radius R in the sphere) is uniquely restored by the formula

H = HT + HP = ∇× (Qr) +∇×∇× (Qr), (1.9)

if the normal component HN (r) on S is known, and the function Q(r, θ, φ) ∈
C∞, whose mean 〈Q〉 = 0 on S, and H,HT ,HP 6= 0 and ∇ ×HT = HP

everywhere.

Here:

〈Q〉 =
∫ 2π

0

∫ π

0
Q sin θ dθ dφ = 0.

Really, if the vector field H corresponds to (1.9), then to prove the
uniqueness of decomposition (1.9) it is needed to express the function Q
via the original normal component of the vector field HP or ∇×HT . For
example,

(r ·HP ) = r · ∇ ×∇× (Qr) = r ·
{
∇∇ · (Qr)−∇2(Qr)

}
= r ·

{
∇[r · ∇Q+ 3Q]− 2∇Q− r∇2Q

}
= −r2∇2Q+ r · ∇(r · ∇Q) + r · ∇Q

= −r2∇2Q+
∂

∂r

(
r2∂Q

∂r

)
= −DQ, (1.10)

(r · ∇ ×HT ) = r · ∇ ×∇× (Qr) = −DQ.

Here D is a direct operator (the Beltrami operator) to be defined from (1.10),
that is,

D =
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
, (1.11)

and is a part of the Laplace operator without derivatives. From (1.10) it
follows that
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Q = −D−1(r ·HP ) = −D−1(r · ∇ ×HT ), (1.12)

whereD−1 is an operator inverse to the operatorD subject to determination.
Taking formulas (1.10) into account, it is possible to show that if in the

formula for A(r) two arbitrary scalar functions of the form A(r) = (Pr) +
∇× (Qr) are used, then because of the fact that the vector field HT does
not contain a normal component to the surface of the sphere S and cannot
be uniquely defined according to the above-mentioned Helmholtz theorem,
it is required to make use of the condition of Theorem 1 (∇×HT = HP ).
In this case the direct operators −DQ = (r ·HP ) and −DP = (r ·∇×HT )
will lead to the following coinciding inverse operators: −D−1(r ·HP ) and
−D−1(r · ∇ × HT ) = −D−1(r · HP ). This means that P = Q and in
the expression for A(r) it is sufficient without loss of generality to use one
arbitrary scalar function, for example, the function Q.

Thus, in order to find Q, it is necessary to define the direct D and the
inverse D−1 operators. The inverse operator D−1 is defined as follows. Let
ψ(r, θ, φ) and f(r, θ, φ) be arbitrary scalar functions related by

Dψ(r, θ, φ) = f(r, θ, φ). (1.13)

In this case the functions ψ(r, θ, φ) and f(r, θ, φ) belong to C∞ with mean
on the surface S equal to zero: 〈ψ〉 = 0, 〈f〉 = 0.

Based on [12, p. 675], let us denote

Sn(θ, φ) =
n∑

m=0

Amn P
m
n (cos θ)eimφ, (1.14)

where Pmn (cos θ) are spherical functions, Amn are complex constants, Sn(θ, φ) ∈
C∞.

Now let us represent auxiliary functions ψ and f by their standard de-
compositions in spherical functions [12]:

ψ =
∞∑
n=1

ψn(r)Sn(θ, φ) =
∞∑
n=1

n∑
m=0

ψn(r)Amn P
m
n (cos θ)eimφ,

f =
∞∑
n=1

fn(r)S̄mn (θ, φ).

(1.15)

Summation over n begins with unit, a free term is absent due to the imposed
condition of zero means for the functions Q, ψ, f on the sphere S. In this
case the functions Q, ψ, f for r ≤ R are proportional to rn, and for r ≥ R,
respectively, to 1

rn+1 .
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We apply the direct operator D to the function Sn(θ, φ) using (1.10):

DSn(θ, φ) = −n(n+ 1)Sn(θ, φ). (1.16)

Really, with allowance for (1.10) and conditions for the functions ψn(r) and
fn(r) (1.15), we can write down

−r2
( ∂2

∂r2
rnSn(θ, φ) +

2
r

∂

∂r
rnSn(θ, φ)

)
= DrnSn(θ, φ),

hence −n(n+ 1)Sn(θ, φ) = DSn(θ, φ),

−r2
( ∂2

∂r2

1
rn+1

Sn(θ, φ) +
2
r

∂

∂r

1
rn+1

Sn(θ, φ)
)

= D
1

rn+1
Sn(θ, φ),

−n(n+ 1)Sn(θ, φ) = DSn(θ, φ).

Such a representation seems to be most convenient, as, according to (1.10),
the functions are differentiated only with respect to the angular coordinates
in the operator D.

Now apply the operator D to (1.12) and using the above-obtained de-
compositions of the functions ψ and f we obtain

Dψ = −
∞∑
n=1

ψn(r)n(n+ 1)Sn(θ, φ) =
∞∑
n=1

fn(r)S̄n(θ, φ). (1.17)

The functions Sn(θ, φ) and S̄n(θ, φ) differ only in complex coefficients.
Let us equate the common terms in (1.17) keeping in mind the absolute

and uniform convergence of the expansions series of the functions ψ, f to
spherical functions [12, 18]. Then divide the right-hand and the left-hand
sides by the factor n(n+ 1). As a result we obtain

ψn(r)Sn(θ, φ) = −fn(r)
S̄n(θ, φ)
n(n+ 1)

. (1.18)

Summing up all the harmonics in (1.17), we derive

ψ = −D−1f = −
∞∑
n=1

fn(r)
Sn(θ, φ)
n(n+ 1)

. (1.19)

Formula (1.19) determines the inverse operator D−1. The inverse opera-
tor in (1.19), in our opinion, is more appropriate for the problem in question
than the integral inverse Beltrami operator containing the Green function
[18]. Applying it to formulas (1.12), we have:
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Q = −
∞∑
n=1

rHPrn(r)
S̃n(θ, φ)
n(n+ 1)

= −
∞∑
n=1

r(∇×HT )rn(r)
S′n(θ, φ)
n(n+ 1)

. (1.20)

If r = R is taken into consideration, then we have HPrn(R) = HNn(R),

HN (r) =
∞∑
n=1

HNn(R)S′′n(θ, φ),

∇×HT = ∇×∇× (Qr) = HP ,

(1.21)

hence

Q = −
∞∑
n=1

RHNn(R)
S̃n(θ, φ)
n(n+ 1)

, (1.22)

where R is a radius of the sphere.
Thus, formula (1.22) defines the function Q on the surface of the sphere.

At any point inside the sphere and at any point outside it, this function
depends on the coordinate r by the known way (1.15). So, Theorem 1
extends the impact of the Helmholtz theorem by including into the unique
definition on the sphere surface not only the poloidal magnetic field but also
the toroidal magnetic field related to the poloidal field by (1.7). Moreover,
for Theorem 1, as well as for the Gauss theorem [9], it is required to define
one scalar function on the surface of the sphere. In the Gauss theorem,
the potentiality of the magnetic field in the air ∇ ×H = 0, H = −∇V
is used, therefore the scalar function V ∈ C∞ reconstructs on the sphere
surface only a poloidal magnetic field that is potential in the air.The toroidal
magnetic field is not potential everywhere where it is observed according
to definition (1.7). Nevertheless, with Theorem 1 it appears possible to
reconstruct, also, the toroidal magnetic field on the sphere surface which
is the generalization of the Gauss theorem although in this case a scalar
function remains alone. This circumstance has important consequences for
interpreting electromagnetic fields observed on the Earth [6].

1.2. Boundary conditions for the main geomagnetic field
and conditions of existence of its toroidal and poloidal parts

Based on Theorem 1 and physical data for the properties of the Earth’s
surface which is not a screen for the MGF due to the absence on its surface of
intensive surface currents and magnetic masses with a significant magnetic
permeability, the boundary conditions for the MGF on the Earth’s surface
will take the form:

(H1
P −H2

P )|r=R = 0, (H1
T −H2

T )|r=R = 0. (1.23)

Here indices 1 and 2 mean the Earth and the air, respectively.
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Boundary conditions (1.23) allow the toroidal field (if it is present) to
freely penetrate into the Earth’s atmosphere and be measured there by mag-
nitometers both over the world network of magnetic observatories and at
separate points of the Earth’s surface for regional investigations.

Theorem 2. A toroidal magnetic field presents in the location where a
normal component of the poloidal magnetic field HPN exists.

Really,∮
L

(HT · dl) =
∫
W

(∇×HT · ds) =
∫
S

HPNds
∣∣∣
HPN 6=0

6= 0. (1.24)

Theorem 2 essentially extends the domain of existence of the toroidal
magnetic field as compared to the results obtained in [13, 15], where the
proof of the absence of the toroidal magnetic field in the Earth’s atmosphere
is based on the well-known formula resulting from the standard Maxwell
equations: ∮

L

(H · dl) =
∫
W

(∇×H · ds) =
∫
S

jnds|jn=0 = 0. (1.25)

In the Earth’s atmosphere, the air conductivity is quite insignificant,
therefore the density of the current can be considered to be close to zero
(10−12 ÷ 10−14 A/m2), and the magnetic field in (1.25) –– to be potential.
However, Theorem 1 and result (1.24) indicate to the fact that a non-
potential toroidal magnetic field can exist and be measured along with a
poloidal potential field in the Earth’s atmosphere. In this case, the refining
theorems are formulated as follows.

Theorem 3. The vortices of a toroidal magnetic field generate a poloidal
magnetic field in any medium.

Actually, according to (1.8)

∇×HT = ∇×∇× (Qr) = HP . (1.26)

Theorem 4. The vortices of a poloidal magnetic field generate a toroidal
magnetic field only in a conducting medium.

Really, according to (1.8)

∇×HP = ∇×∇×∇× (Qr) = −∇× (∆Qr) = χHT . (1.27)

Here it is considered that

∆Q = −χQ = −γ
η
Q, t = 0. (1.28)
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In this case γ (m/s) is the diffusion rate in a medium, η = 1/(σµ) is magnetic
viscosity with the magnetic permeability µ (gn/m) and the conductivity
(Om ·m)−1 of a medium σ.

Theorems 3 and 4 uniquely answer the question about the kind of nature
in the non-potential part found in [7, 28]. This is a toroidal magnetic field.
According to Theorems 3 and 4, the poloidal field vortices generate a toroidal
field in a conducting medium, while the vortices of a toroidal magnetic field,
which according to (1.8) is not potential everywhere, generate a poloidal
magnetic field but not the electric current. That is why a non-potential
toroidal field can exist in the atmosphere, while there may be no electric
current in the Earth’s atmosphere. This fact is substantiated by Theorems 1
and 2.

1.3. On the main geomagnetic field generation

According to the well-known Kauling “anti-dynamo theorem” [11], the
cylindrical symmetry of the Earth’s magnetic field observed in the first ap-
proximation in the MGF, inhibits its dynamo-generation due to occurrence
of the reflexive (reflecting) symmetry. The results obtained in [10, 11, 22]
concerning the impossibility of dynamo-excitation of magnetic fields in a
one-disk generator HT (Bullard) as well as in turbulent planar fluxes (Zel-
dovich) and in the fields and fluxes with cylindrical symmetry (Kauling),
were called “anti-dynamo theorems” [14]. In order to overcome the effect
of the recurrent symmetry, Braginsky [8] has introduced small supplements
into the induction equation with the Larmor dynamo term [24]. Then with
a strong toroidal field in the Earth’s interior there could occur a poloidal
magnetic field by way of “drawing off” one from another.

For revising these well-known results related to the MGF generation,
it is necessary to present two important theorems, essentially refining the
possibilities of generation of HP and HT in the Earth’s interior for H, HT ,
HP 6= 0.

Theorem 5. A non-vortex vector field ∇×H = 0 provided that ∇·H = ρ
when ρ = const does not admit the generation of the vector field HT =
∇× (Qr).

Really, the helicity H · ∇×H of the non-vortex vector field ∇×H = 0
equals zero, while by definition, the helicity of the vector field HT is not
equal to zero: HT ·∇×HT = HT ·HP 6= 0. The absence of coincidence of
helicities due to the reflexive symmetry effect excludes the mutual generation
of the vector fields HT and HP [13].

Theorem 6. In the solenoidal vector field ∇ ·H = 0, ∇×H = P (P is a
vector field) the vector field HT = ∇× (Qr) can be generated.
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The proof is apparent from the fact that the helicities of the vector fields
H and HT are not equal to zero: H · ∇×H 6= 0 due to ∇×H = P , while
HT · ∇ ×HT 6= 0 due to ∇×HT = HP . The presence of helicities in both
vector fields is favorable to their mutual generation at the expense of the
relations:

∇×HT = HP ,

∇×HP = ∇×∇×∇× (Qr) = −∇× (∆Qr) = χ∇× (Qr) = χHT ,

where ∆Q = −χQ, χ = const [11, 13].
The physical interpretation of Theorem 5 is in that with magnetic masses

as sources of the magnetic field, a toroidal magnetic field cannot occur. On
the other hand, if along with a poloidal field a toroidal magnetic field is
measured on the Earth’s surface, then the source of such a magnetic field
is electric current that according to Theorem 6 possess the possibility of a
simultaneous generation of HP and HT . This fact will be considered in
greater detail in the next section.

1.3.1. On a toroidal electric current in the Earth’s interior

The next theoretical and practical problem that arises under the assump-
tion that a source of the MGF is toroidal electric currents in the Earth’s
interior is the elucidation of whether the Earth’s toroidal currents are able
to cause tangential components of a toroidal magnetic field and whether in
this case toroidal fluxes and magnetic fields are stable. The answer to the
first one of these principal questions is given by the following theorem.

Theorem 7. The source of a toroidal magnetic field on the Earth’s surface
is toroidal components of the electric current, flowing in the spherical layers
or on the spherical surfaces inside and outside of the Earth.

The proof of this theorem goes back to the two circumstances. The first
is in applying the operator of the total current jΠ = (∇∇ · −∇ × ∇×)A
in a source, and the second –– in mapping this operator onto the axis of
the spherical coordinate system (r, θ, φ) fixed in the Earth’s center. Such a
mapping brings about two toroidal components of the electric current of the
form

−jΠ
θ =

∂2Aθ
∂r2

+
2∂Aθ
r∂r

+
1

r2 sin2 θ

∂2Aθ
∂φ2

+
1
r2

∂2Aθ
∂θ2

− cos θ
r2 sin θ

∂Aθ
∂θ
−

Aθ

r2 sin2 θ
− 2

cos θ
r2 sin2 θ

∂Aφ
∂φ

+
2∂Ar
r2∂θ

, (1.29)

−jΠ
φ =

1
r sin θ

∂

∂θ
sin θ

∂Aφ
∂φ

+
1

r2 sin θ
∂2Aφ
∂φ2

+
1
r

∂2rAφ
∂r2

+
cos θ

r2 sin2 θ

∂Aθ
∂φ
−
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cos θ
r2 sin θ

∂Aφ
∂φ

+
1
r2

∂

∂θ

1
sin θ

∂

∂θ
sin θAφ −

1
r

∂2Aφ
∂θ∂φ

+
2

r2 sin θ
∂Ar
∂φ

.

If we turn to formula (1.5), it appears possible to express spherical com-
ponents of the vector potential via the scalar function Q in the following
manner:

Aθ =
1

sin θ
∂Q

∂φ
, Aφ = −∂Q

∂θ
, Ar = rQ. (1.30)

By definition (1.8) the toroidal field components are of the form

HTθ =
1

sin θ
∂Q

∂φ
, HTφ = −∂Q

∂θ
, HTr ≡ 0. (1.31)

An analysis of formula (1.29) shows that projections of the equation for
the total current on the axis of the spherical coordinate system fixed in the
Earth’s center have the following terms:

2∂Ar
r2 sin θ∂φ

=
2

r sin θ
∂Q

∂φ
=

2
r
HTθ,

2∂Ar
r2∂θ

=
2
r

∂Q

∂θ
= −2

r
HTφ. (1.32)

With allowance for formulas (1.31) and equation (1.32) they are just
the doubled components of the toroidal magnetic field referred to a current
radius, which gives them dimensionality of the current density.

Thus, the toroidal electric current with its spherical components always
generates a toroidal magnetic field that occurs on the Earth’s surface accord-
ing to boundary conditions (1.23) and is measured on the world network of
magnetic observatories by magnitometers, immediately fixing the observed
intensity of the MGF. In [6], the presence both of a toroidal and a poloidal
magnetic fields in the MGF is proved for the period of 1965. Hence it fol-
lows that the MGF is excited by the toroidal electric current. The poloidal
and toroidal magnetic fields in the MGF are generated by this current, are
present in the atmosphere and are contained in its measured values includ-
ing the data received by the world network of magnetic observatories and
other magnetometric measurements except for magnetometric prospecting,
in which magnetic masses are a source of a magnetic field.

Formulas (1.32) also contain the proof of dimension of the toroidal mag-
netic field HT , which according to (1.32) is given in A/m, Gauss, or (?).
The left-hand side of (1.32) automatically arises when projecting the Laplace
operator onto the axis of the spherical coordinate system. That is why it
is contained in the operator (∇∇ · −∇ × ∇×) independent of definition of
the toroidal magnetic field from formulas (1.8). This is just the proof of the
dimension HT in A/m, as multiplication of the magnetic field by 2

r aligns
dimensionalities of the right- and left-hand sides of (1.32) in its dimension
in A/m2 and are among the density terms of the total electric current.

The stability of the toroidal current and its total magnetic field is solved
by the following theorem.
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Theorem 8. Toroidal electric currents (fluxes) are stable as related to
external and internal actions on their magnetic field.

The proof of the theorem goes back to studying a pair of equations: the
Navier–Stokes and the induction equations, in which it appeared possible to
take into account the new properties of a medium, for example, magnetic and
kinematic viscosities, density as well as forces whose influence on velocity
components is essential, such as the Lorentz force, the Coriolis force, the
Archimedes force, the pressure force, etc. If one tries to describe complicated
processes in the Earth’s liquid core, which result in the MGF generation,
it becomes possible to write down a more general system of equations for a
totality of forces causing the fluxes of a substance inside the liquid core to
move or affecting this movement:

ρ
[ ∂
∂t

U + (U ·∇)U + 2[ω ×U ]
]
= νρ∆U +∇P ′ + [j ×B] + f ,

∂

∂t
B = (B · ∇)U − (U · ∇)B − η∆B.

(1.33)

Equations (1.33) are written for 1 m2 of a medium. Here:

ρ — density of a medium,

µ — magnetic permeability,

ν, η — kinematic and magnetic viscosities, respectively,

P ′ = P − ρgh — pressure, where ρgh is a hydrostatic pressure,

U — a vector of the velocity flux,

B — a vector of magnetic induction,

j — a vector of the current density,

ω — a vector of the angular rotation velocity,

f — a vector of other potential forces,

[j ×B] = 1
µ(B · ∇)B −∇

(
B2

2µ

)
— the Lorentz force,

νρ∆U — viscosity force,

ρ
∂U

∂t
— centrifugal force,

ρ(U · ∇)U — a force of viscous impulse transfer,

2ρ[ω ×U ] — the Coriolis force.
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System (1.33) represents a balanced system of forces, affecting fluxes and
fields in the Earth’s liquid core. The first is the Navier–Stokes equation. The
second one is the equation of induction for incompressible fluid in the mag-
netic field. The joint solution to system (1.33) for unknown functions of the
velocity U and the induction B with a priori known all other parameters of
the system could allow answering the principal question of the generation
theory: what fluxed support the current strength of the Earth’s MGF. The
fluxes for the equation of induction that are calculated or a priori assigned
in different publications essentially vary, thus not allowing the creation of
their complete picture. The theory of kinematic dynamo-excitation of the
MGF contains, in addition, a number of contradicting estimations of the
parameters from system (1.33), whose refinement presents certain difficul-
ties. As was noted above, the main unsolved issues when constructing flows
and fields in the dynamo-theory still remain: unknown values of strength
of the toroidal magnetic field in the vicinity of a source, unknown values of
viscosity of a medium in a source, an unstudied possibility of a turbulent
current in the vicinity of the source, its size.

Answers to some of these questions can be found in the generation the-
ory if, of course, system (1.33) would be solved. Constructing the general
solution to system (1.33) or deriving from it partial or similar or asymp-
totic solutions could be helpful in the creation of the verifiable theory of
the MGF generation. The presence in system (1.33) of completely unknown
terms such as forces f , that is, all the other a priori unknown forces not
contained in system (1.33), can be compensated by their estimations when
studying the closeness of the generation process. It is also possible to make
use of the fact that the strength of the MGF is currently weakly varying
from year to year.

In order to investigate the solvability of system (1.33) for the vector of the
magnetic induction B from specified velocities of the flow U and vice versa,
let us employ equivalent estimations of differential operators by introducing
the notations:

∆B ∼ B

L2
, (B · ∇)U ∼

(
B · 1

L

)
U ,

∂

∂t
B ∼ 2π

B

T
, (U · ∇)B ∼

(
U · 1

L

)
B,

F = ρ
[2π
T

U +
(
U

1
L

)
U + 2[ω ×U ]

]
− νρ

L2
U − eP ′

L
− f ,

(1.34)

where L is a characteristic size of the domain with a source, T is a period
of inversion (changes in polarity) of the MGF, e is a unit vector along the
pressure gradient.
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Then system (1.33) can be rewritten in an equivalent form
1
µ

(
B

1
L

)
B − n

2Lµ
B2 = F ,(2π

T
− η

L2

)
B =

(
B

1
L

)
U −

(
U

1
L

)
B,

(1.35)

where n is a unit vector along the magnetic field.
If we rewrite system (1.35) in the component-by-component manner in a

spherical coordinate system, we will obtain the sought for system of equiv-
alent equations that are linear with respect to the square of the induction
vector B2:[2πL2−ηT

µL2TUr

(
1 +

LT (Uθ + Uφ)
2πL2 − ηT

)
+

1
2Lµ

]
B2
r −

1
2µL

B2
θ −

1
2µL

B2
φ = Fr,

− 1
2µL

B2
r +

[2πL2 − ηT
µL2TUθ

(
1 +

LT (Ur + Uφ)
2πL2 − ηT

)
+

1
2µL

]
B2
θ −

1
2µL

B2
φ = Fθ,

− 1
2µL

B2
r −

1
2µL

B2
θ +

[2πL2 − ηT
µL2TUφ

(
1 +

LT (Ur + Uθ)
2πL2 − ηT

)
+

1
2µL

]
B2
φ = Fφ.

(1.36)

System (1.36) can be resolved algebraically with respect to the squares of
the magnetic induction components B2

r , B2
θ , B2

φ.
If we introduce the notations

Ũr =
4πL2 − 2ηT + L(TUr + 2Uθ + 2Uφ)

2µL2TUr
,

Ũθ =
4πL2 − 2ηT + L(2Ur + 2Uφ + TUθ)

2µL2TUθ
,

Ũφ =
4πL2 − 2ηT + L(TUφ + 2Ur + 2Uθ)

2µL2TUφ
,

(1.37)

then the determinant of system (1.36) can be written down as follows:

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣

Ũr − 1
2µL

− 1
2µL

− 1
2µL

Ũθ − 1
2µL

− 1
2µL

− 1
2µL

Ũφ

∣∣∣∣∣∣∣∣∣∣∣∣
= ŨrŨθŨφ −

Ũr + Ũθ + Ũφ
4µ2L2

− 1
4µ3L3

. (1.38)

Determinant (1.38) is not equal to zero even if all the components of the
function Ũ equal zero. This means that a solution to system (1.35) exists,
is unique and can be obtained for the squares of magnetic induction with
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known right-hand sides including the velocities U and some other unknown
values.

Thus, with flows of a conducting fluid in the Earth’s core, there always
occurs a magnetic field whose values are assigned just by these flows as well
as by some other parameters of a medium and forces in the liquid core.

In this case, the internal symmetry of the induction equations with re-
spect to coordinate systems is of no importance. Therefore when solving
the complete system of equations (system (1.33)), i.e., the Navier–Stokes
and the induction equations simultaneously, the symmetry of flows does
not affect the generation of the field components. This fact makes possible
to formulate the generation theory not basing on the self-generation of a
poloidal field by a toroidal field. The latter, as in the case of a poloidal field,
arises in the liquid core at the expense of properties of a medium, flows in
it and, basically, due to spherical features of a source of the magnetic field.

Spherical features of a source underlies the occurrence of a toroidal field
both in the liquid core and outside of it, for example, in the Earth’s atmo-
sphere. Spherical features of a source facilitate the initiation of a toroidal
part of the MGF from components of the toroidal current density, which are
tangential to the spherical surface of the liquid core. Radial flows are not
needed for the generation of a toroidal part of a magnetic field. Thus, it is
impossible to prove its solvability in terms of the dynamo kinematic theory.
It is necessary to change the induction equation by introducing small supple-
ments to violate the inner symmetry of the equation. In this case, however,
there will be an ambiguity of the results due to violation of the induction
law. To overcome this difficulty, it is necessary to add to the induction
equation an essentially more complicated Navier–Stokes equation for forces
affecting these flows and, in essence, initiating these flows due to the Earth’s
rotation. The system of the Navier–Stokes and the induction equations is
solvable with respect to components of the magnetic field B2. Existence and
uniqueness of this solution that result from non-equality to zero of the basic
determinator of the equivalent system of linear algebraic equations to which
the Navier–Stokes and the induction equations are simultaneously reduced.

Moreover, let us prove the solvability of the inverse problem, which is in
that it is possible to define velocity components of the flows U or to assess
them from the assigned components of the observed magnetic field H with
known or assessed other parameters.

In order to prove the solvability of system (1.33) for U with known
components of the vector B we proceed in a similar manner. Let us make
use of estimations (1.34) and the notations

f b =
( η
L2
− 2π
T

)
B,

F b =
1
µL

(Br +Bθ +Bφ)B − n

2µL
B2 +

eP ′

L
+ f .

(1.39)
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With allowance for (1.39), system (1.33) can be reduced to the following
similar form in the spherical coordinate system:

2πρ
T
Ur + (Ur + Uθ + Uφ)

ρ

L
Ur − ωφUθ2ρ−

νρ

L2
Ur = F br ,

(Br +Bθ +Bφ)
1
L
Ur − (Ur + Uθ + Uφ)

1
L
Br = f br ,

2πρ
T
Uθ + (Ur + Uθ + Uφ)

ρ

L
Uθ + ωφUr2ρ−

νρ

L2
Uθ = F bθ ,

(Br +Bθ +Bφ)
1
L
Uθ − (Ur + Uθ + Uφ)

1
L
Bθ = f bθ , (1.40)

2πρ
T
Uφ + (Ur + Uθ + Uφ)

ρ

L
Uφ −

νρ

L2
Uφ = F bφ,

(Br +Bθ +Bφ)
1
L
Uφ − (Ur + Uθ + Uφ)

1
L
Bφ = f bφ.

In (1.40), it is convenient to solve the second relations as related to the sums
of velocity components:

(Ur + Uθ + Uφ) =
Br +Bθ +Bφ

Br
− Lf br

Br
,

(Ur + Uθ + Uφ) =
Br +Bθ +Bφ

Bθ
−
Lf bθ
Bθ

,

(Ur + Uθ + Uφ) =
Br +Bθ +Bφ

Bφ
−
Lf bφ
Bφ

.

(1.41)

Substituting (1.41) into the corresponding equations of (1.40), we obtain
a system of equations for the velocity components:

ρ(Br +Bθ +Bφ)
LBr

U2
r +

(2πρ
T
− νρ

L2
− ρf br
Br

)
Ur − 2ρωφUθ = F br ,

ρ(Br +Bθ +Bφ)
LBθ

U2
θ +

(2πρ
T
− νρ

L2
−
ρf bθ
Bθ

)
Uθ − 2ρωφUr = F bθ , (1.42)

ρ(Br +Bθ +Bφ)
LBφ

U2
φ +

(2πρ
T
− νρ

L2
−
ρf bφ
Bφ

)
Uφ = F bφ,

System of equations (1.42) is solvable as related to the velocity components
Ur, Uθ, Uφ, which appear in it. The third equation (1.42) is quadratic for
components of the velocity Uφ, therefore the solution can be immediately
written down:

U
(1,2)
φ =

LBφ
2ρ(Br +Bθ +Bφ)

{{
−
(2πρ
T
− νρ

L2
−
ρf bφ
Bφ

)}
±√[(2πρ

T
− νρ

L2
−
ρf bφ
Bφ

)2
+

4ρ(Br +Bθ +Bφ)
LBφ

F bφ

]}
. (1.43)
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According to equation (1.43) there may be values of the velocity Uφ for
the positive or zero value of the radicand formula. Only in the case when
the discriminant in the radicant formula is less than zero, there may not be
real velocity values. Each one of the components Ur, Uθ has two solutions.
It is trivial to obtain them by equating successively to zero the needed parts
of components entering the first two equations (1.42):

U (1)
r =

F bθ
2ρωφ

, U (2)
r = − LBr

ρ(Br +Bθ +Bφ)

(2πρ
T
− νρ

L2
− ρf br
Br

)
,

U
(1)
θ =

F br
2ρωφ

, U
(2)
θ = − LBθ

ρ(Br +Bθ +Bφ)

(2πρ
T
− νρ

L2
−
ρf bθ
Bθ

)
.

(1.44)

The solvability of system (1.42) with respect to the velocity components
Ur, Uθ, Uφ allows us to affirm that it is possible to find velocity components
of currents in the liquid core from the current strength of the MGF hav-
ing preliminarily estimated the physical parameters of the liquid core and
certain forces entering the right-hand sides of formulas (1.43) and (1.44).
Moreover, an exact solution to system (1.33) (if, of course, it is possible to
obtain it) will allow the direct simulation of the configuration of flows re-
sulting in the currently observed MGF. Solutions to (1.43) and (1.44) make
possible to numerically assess velocities of a steady-state liquid flow in the
core with two formulas at once, and then to choose the most suitable solu-
tion corresponding to the current status of the Earth’s liquid core and its
properties. In this case, essential “roughening” of differential operators with
the aid of estimations (1.34) allows one to obtain only the assessments of
velocity components but not their accurate values. Nevertheless, in such a
sophisticated situation when a direct experiment that could shed light upon
some physical parameters of the Earth’s liquid core and processes in it is
impossible, these velocity assessments are of importance.

To simplify the estimations of velocity components, let us take into con-
sideration the fact that among all the forces affecting flows, the pressure
forces have a dominant role. On this basis, it appears possible to essentially
simplify the assessments in the following way:

U
(1,2)
φ ≈ ±

[(P
ρ
− gh

) Hφ

|H|

]1/2

∓ 2Lωφ,

U (1)
r ≈ − P ′

2Lρωφ
+ 2Lωφ, U (2)

r ≈
(ν + η

L
− 4πL

T

) Hr

|H|
,

U
(1)
θ ≈ +

P ′

2Lρωφ
− 2Lωφ, U

(2)
θ ≈

(ν + η

L
− 4πL

T

) Hθ

|H|
.

(1.45)

Knowing values of the observed field H on the Earth’s surface, hav-
ing estimated from planetary considerations the pressure, density and some
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other parameters in the upper zone F of the liquid core, using (1.45) we are
able to estimate velocity components of steady-state flows in this part of the
liquid core that result in the generation of the observed MGF. To this end
it is sufficient to select from six solutions to (1.45) the three most adequate
for the modern understanding of the physics of processes in the core. The
major is the first equation from (1.45) because it detects the stability of the
flow with respect to the action (both external and internal) onto a magnetic
field or on the velocity of the flow. Their inversely proportional interaction
under strong external or an internal influence on the magnetic field makes
the velocity of the flow change in the inverse order, then it returns to the
original value at the account of the constant speed of the Earth’s rotation.
A similar situation takes place if the flow velocity is under action. In this
case a magnetic field aligns the flow velocity.

The effect of inverse proportionality between the flow velocity and mag-
netic intensity excludes an infinite increase of the strength of current in a
source (inductive “acceleration” of current). Due to increasing the magnetic
intensity with “acceleration” of current, the velocity of the flow falls thus
preventing an infinite increase in the MGF strength. The effect in question
was not taken into account in the induction hypothesis of the MGF excita-
tion in [19, 23], that is why this, in essence, true hypothesis has been the
subject of much controversy.

In the discussed interaction between the flow velocity and the magnetic
intensity, the stability of the system “a flow –– a magnetic field” is realized,
thus proving Theorem 8.

If we substitute into the first formula from (1.45) the values of known
parameters for the liquid core and for the zone F of the core equal to [6]:

P = 2.445 · 1012 g
cm · sec2

, g = 226
cm
sec2

, ρ = 11.4
g

cm3
,

h = 4.9 · 108 cm, L = 2.9 · 108 cm, ν = 103 m2

sec
,

ωφ = 7.3 · 10−5 1
sec

, T = 1.8 · 1015 sec, η = 2.6
m2

sec
,

Hφ

|H|
= 0.0216,

Hr

|H|
= 0.8,

Hθ

|H|
= 0.5,

then the assessment for components of the absolute linear velocity of the
flow takes the value

Uφ ≈ 50
m
sec

, Ur, Uφ ≈ 10−4 m
sec

. (1.46)

The above values clearly emphasize the movement of the flow tracing the
rotation. All other components in (1.45) are “suppressed” by the rotation.
The angular rotation velocity of the flow is calculated by the known formula
and looks like
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ωUφ =
Uφ
RF

= 3.4 · 10−5 1
sec

. (1.47)

This angular velocity of the flow (1.47) is somewhat less than that of the
Earth’s rotation: ωφ = 7.3 · 10−5 1

sec
. According to the relativity principle,

this important circumstance allows the electric field to exist in the flow. An
observer, inflexibly related with the uniformly rotating Earth, does not “see”
the electric field of a flow if its rotation coincides with that of the Earth.
Either an advance or a delay of a flow is needed. In our example, this is just
a delay that provides the existence of the electric field in the flow. And this
is a direct confirmation of the presence of the toroidal electric current in the
zone F of the Earth’s liquid core, whose electrodynamic characteristics will
be calculated in a sequel.

1.3.2. On a distance from the Earth’s surface to
the toroidal current

The next step in analyzing the MGF generation is detecting the location
of the toroidal electric current in the Earth.

Based on the results of the spherical analysis of the MGF [6], it is possible
to calculate a distance to a source of the MGF assuming this source to be a
toroidal electric current.

The first assumption to be made is in that the magnetic moment of
the internal poloidal magnetic field coincides with that of the ring electric
current locating somewhere in the Earth’s core whose field with its lines of
force is an exact replica of the lines of force of the dipole part of the internal
MGF. In terms of mathematics this looks like

|M | = µ1
14π10−3R3

0 = Iπr2
k A/m2, (1.48)

where µ1
1 is a coefficient of the dipole term of expansion of the Earth’s

internal poloidal field [6], I is the strength of current in the contour with
current, rk is a radius of the contour, R0 is the Earth’s radius, 4π10−3 is a
translating factor from the dimension in the Gauss units to the dimension
in A/m.

The second assumption is that the intensities of fields on the axis of the
contour coinciding with the magnetic axis connecting the Earth’s North and
South Poles are supposed to be equal. In the first approximation this can
be expressed as

H i
Pr(0, R0)4π10−3 =

2πIr2
k

(R2
0 + r2

k)
3/2

A/m. (1.49)
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Excluding the force of current from formulas (1.48) and (1.49) results in

2µ1
1 = H i

Pr(0, R0)
(

1 +
r2
k

R2
0

)3/2
. (1.50)

Expanding in series the formula in brackets in the right-hand side of (1.50)
and restricting ourselves to the first two terms of the expansion, we obtain

2µ1
1 = H i

Pr(0, R0)
(

1 +
3r2
k

2R2
0

)
. (1.51)

According to the calculations made in [6], the values of the internal poloidal
magnetic field on the Pole and the coefficient of its dipole part become
known:

H i
Pr(0, R0) = 0.59473 Gs, µ1

1 = 0.32006 Gs. (1.52)

In this case 1 + 3r2k
R2

0

= 1.07632. Hence,

rk = R0 · 0.22557 = 1437 km. (1.53)

Consequently, the depth to the source is equal to

h = 4934 km. (1.54)

The calculated radius of the source with electric current accurately to
4.6 % coincides with the radius of the zone F of the liquid core, which,
according to the data available, is 1,371 km. The latter value was repeatedly
reported in various geological and geophysical publications [15, 21]. The
layer thickness F , which is equal, approximately, to 100 km is also known
from scientific literature.

In our calculations the layer thickness with electric current will be defined
below with allowance for the Reynolds kinematic number that determines
the boundary between the laminar particles flow in the zone F , the liquid
core and its turbulence. According to [15], the Reynolds kinematic number
in the zone F cannot exceed 100–150.

1.3.3. On calculation of the MGF intensity in the zone F of
the Earth’s liquid core

Based on the calculated value of the radius of the source of current
exciting the MGF equal to 1,437 km, it is possible to calculate the value of
the magnetic moment of the toroidal magnetic field on this radius and on
that of 1,371 km by the formula
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HTF ·R3
F = MTF , (1.55)

where HTF is the toroidal magnetic intensity in the zone F , MTF is a
magnetic moment, RF is a radius of the zone F .

On the Earth’s surface, a magnetic moment of the toroidal field is cal-
culated as

HT ·R3
0 = MT . (1.56)

Since the MGF magnetic moment is constant, then comparing (1.55) and
(1.56) it is possible to define the relation between magnetic fields in the zone
F with respect to the magnetic field on the surface:

|HTF | = |HT |
(R0

RF

)3
= |HT |

(6371
1437

)3
≈ |HT | · 90|r=1437,

|HTF | = |HT |
(6371

1371

)3
= |HT | · 100|r=1371.

(1.57)

Thus, a toroidal field in the zone F of the liquid core with its radius
is 100 times greater than the intensity values on the Earth’s surface and
90 times greater at a depth of the calculated distance to the source. The
cubic degree of the dependence of the relation of the Earth’s radii and the
source enables us to calculate the poloidal field intensity in the vicinity of
the source: ∣∣HP

∣∣|1371 = 0.6 · 100 = 60 Gs,∣∣HP

∣∣|1437 = 0.6 · 90 = 54 Gs,
(1.58)

where the MGF intensity on the Earth’s surface is approximately equal to
|HP |=0.6 Gs. The absolute value of the toroidal field intensity in a source,
1,437 km in radius, is equal to

|HT | = |HP | · 0.06 = 3.2 Gs.

It was obtained from the result in [6] where the relation between the fields
on the Earth’s surface was calculated from their observed maximum values
taken in 1965: |HT |/|HP | = 3345/54886 = 0.06. On a radius of 1,371 km
we obtain the following value

|HT | = |HP | · 0.06 = 3.6 Gs. (1.59)

It is believed that the intensity of the Earth’s toroidal magnetic field in the
zone F of the liquid core does not exceed 4 Gs. Further these values of
HP and HT at a depth will be used in calculation of the electric current
parameters in the MGF source.
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1.3.4. On excitation of electric current in the liquid core

An investigation of the character and intensity of the toroidal magnetic
field in the liquid core, in the zone F to be exact, where in our opinion a
source of the MGF locates, has clearly shown that this field is generated
by spherical features of the source, i.e., the toroidal electric current. There-
fore, the question arises about the way of occurrence of the toroidal electric
current in the zone F of the liquid core. Clearly, this is a flow of charged
particles, most likely, as judged from the direction of the MGF lines of force,
electrons, carrying off by the Earth’s rotation from East to West. By the
right-hand rule the MGF has usual North and South Poles.

Clearly, there should be a certain external magnetic field to provide
“initialization”, for example, of an inductive electric current at the time of
its occurrence [19, 23].

In order to calculate the value of an original external field, it is needed to
know the Reynolds numbers both kinematic and magnetic [6]. The Reynolds
kinematic number for the liquid core is selected as 100–150 units based on the
fact that these values define the interface between laminarity and turbulence
of the flow in the liquid core [15]. Such Reynolds numbers do not forbid
from the occurrence of turbulence, possibly, in local temperature anomalies
against a general laminar flow of charged particles. Generally speaking, such
an assumption is a compromise between a laminar flow and local turbulence
that can occur according to anomalies in the MGF observed over the ages.
Nevertheless, the Reynolds kinematic number allows the assessment of the
width of the charged particles flow based on the relation:

Re =
Uφ · l
ν

, l = 150 · 103/50 = 3 · 103 m, (1.60)

where ν is kinematic viscosity in the liquid core equal to 103 m2/sec.
Such a low intensity of the flow, equal to three km is due to a relatively

insignificant kinematic viscosity that essentially narrows the flow in spite
of rather a large Reynolds kinematic number which, in turn, brings about
“widening” the flow intensity. The interaction of the contradictory tenden-
cies stabilizes the flow resulting in its steady-state existence confirmed by
the MGF stability.

The known intensity (width) of a charged particles flow allows the as-
sessment of the Reynolds magnetic number Rm from the formula

Rm = l · σF · µ0 · Uφ = 3 · 103 · 5 · 105 · 4π · 10−7 = 9.42 · 104, (1.61)

where σF = 5 · 105 (Om ·m)−1 is specific conductivity in the zone F of the
core [15].

Such a large Reynolds magnetic number allows us to neglect ohmic losses.
In this case the inductive excitation will be defined only by a reactive com-
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ponent. Then the original “initialization” magnetic field can be calculated
based on the Braginsky formula [8]:

H = H0 ·Rm, |H0| =
|H|
Rm

=
60 · 10−5

9.42
≈ 64 nT. (1.62)

Such a small in intensity initialization field for induction could exist at
the dawn of occurrence of the MGF, on the one hand, and it is just this field
that currently supports the MGF in connection with the influence of the con-
stant component of the solar magnetic field through the “solar wind”, on the
other hand. Till the Sun exists, the MGF will exist as well. The stability
of the latter as related to external and internal effects is given by formula
(1.45). The stability is attained at the expense of the inverse proportion
between the velocity of the flow and the magnetic field intensity. Demagne-
tization results in increasing the velocity of the flow, while strengthening of
the magnetic field results in decreasing the velocity of the flow which then
is equavilized by the Earth’s stable rotation, the latter being a pledge of the
MGF stability as a whole.

The Earth’s poles are focused by a weak toroidal magnetic field by the
formula

[HT ×HP ] = HPrHTφeθ −HPrHTθeφ + (HTθHPφ −HTφHPθ)er. (1.63)

A maximum value of the poloidal magnetic field on the poles is amplified
by components of the toroidal magnetic field “screwing” onto the lines of
force of the poloidal field by formula (1.8). This leads to the focusing effect
on the MGF poles. In the present model of the source of the MGF, a
change of polarity in the MGF, often being a subject of discussions among
geologists, can take place only at the expense of changing the direction of
the Earth’s rotation to the opposite one, on the one hand, or liquidation for
whatever reason of the Poles focusing on the other hand. Such events for
the Earth as a planet are highly improbable.

1.3.5. On electrodynamic parameters of the MGF source

In order to evaluate, based on the data obtained, electrodynamic parame-
ters of the source it is necessary to previously evaluate geometric parameters
of the flow, that is, its cross-section square and the volume it occupies. Based
on the fact that the source generates the toroidal magnetic field, measured
on the whole Earth’s surface, the source will be considered to be distributed
in the spherical layer three kilometers thick from Pole to Pole (1.60). Then
the square (in square meters) of a cross-section of the semi-layer will be
equal to

SF =
π

2
(R2

2 −R2
1) = 13.5 · 109m2, (1.64)

where R2 = 1.437 · 106, R1 = 1.434 · 106 m.
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The volume of the layer is

VF =
4
3
π(R3

2 −R3
1) = 7.8 · 1016m3. (1.65)

Based on the equality of magnetic moments expressed through the magnetic
field and the current force by the formula

|HF | ·R3
F = SF · I,

it is possible to calculate the current force in the source:

I =
|HF | ·R3

F

SF
=

60 · 4π · 10−3(1.437)3 · 1018

13.5 · 109
= 1.66 · 108A. (1.66)

Thus, the current force in the source is about one trillion A. The density of
the current in the source can be assessed as follows:

|j| = I

SF
=

1.66 · 108

13.5 · 109
= 1.23 · 10−2A/m2. (1.67)

The number of particles in a cubic meter in the source is assessed through
the current density and the velocity of the particles flow:

ne =
jφ

Uφ
, (1.68)

where the amount of the charge Q in a cubic meter equals

ne =
1.23 · 10−2

50
= 2.46 · 10−4Q/m3.

If we consider the electric current in the source to be generated by the
electron flux, then the amount of particles (electrons) in a cubic meter will
be equal to

n =
2.46 · 10−4

1.6 · 10−19
= 15 · 1014, (1.69)

where e = 1.6 · 10−19 is the electron charge. The electric field in a layer is
evaluated as follows. The specific conductivity of the liquid core is known
from literature [15]. It is about σF = 5 · 105 S/m, then the electric field can
be assessed by the formula

|EF | =
|jF |
σF

=
1.23 · 10−2

5 · 105
= 2.46 · 10−8V/m. (1.70)

Such an electric field is provided by the delay of the electrons flux with
respect to the angular velocity of the Earth’s rotation. The amount of
charge in a layer is assessed from the amount of charge in a cubic meter
multiplied by the volume of this layer (1.65), that is
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neVF = 2.46 · 10−4 · 7.8 · 1016 = 1.92 · 1013 Q. (1.71)

A charge in a layer rotates with angular velocity (1.47), therefore the
current force it generates in one of directions will be equal to half the charge
multiplied by the angular velocity of the flux rotation:

I =
1
2
neVFωUφ = 0.5 · 1.92 · 1013 · 3.4 · 10−5 ≈ 3.26 · 108 A, (1.72)

or equal to I ≈ 6 · 108 A through the full charge in the layer. These values
of the current force in order of the value coincide with the current force
calculated from the equality of moments calculated from the magnetic field
(1.66).

Thus, electrodynamic parameters of the MGF source, representing a
toroidal electric conductivity current, provided by a flux of free electrons in
the zone F of the liquid core, generate values of the poloidal and toroidal
magnetic fields observed on the Earth. The electric current is supported
by the Earth’s stable rotation and by insignificant inductive initialization
due to the solar magnetic field and interplanetary magnetic field. Until the
above-mentioned rather weak magnetic fields exist on the Earth, there will
exist the Earth’s stable MGF. With its stability, the MGF has provided a
long-term evolution of the Earth’s biosphere (Figure 1.1).

Figure 1.1. The source of the
Earth’s main geomagnetic field
Parameters of the source:
The distance to the source . . . 4934 km
Internal radius of torus . . . . . . 1437 km
Diametrical size of torus . . . . . . . . .3 km
Current force . . . . . . . . . . . . . . 1.7 · 108 A
Current density . . . . . 1.23 · 10−2 A/m2

Intensity of electric field
in the source . . . . . . . . 2.5 · 10−8 V/m

Intensity of poloidal magnetic field
in the source . . . . . . . . . . . . . . . . . 60 Gs

Intensity of toroidal magnetic field
in the source . . . . . . . . . . . . . . . . .3.6 Gs

1.4. On separating the main geomagnetic field into
the external and internal parts

When interpreting data of the world network of geomagnetic stations, it
is proposed to separate the magnetic fields of inner sources, located in the
Earth’s interior, from those of possible exterior to the Earth sources.
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This problem was solved in [27]. The Schmidt formulas were generally
applied when separating the Earth’s potential magnetic fields. In combi-
nation with the result earlier obtained by Gauss, the result leading to the
separation of magnetic fields into external and internal is sometimes called
the Gauss–Schmidt theorem. Now it is time to proceed to the generalization
of this theorem to the toroidal vector (magnetic) fields.

Theorem 1 generalizes the Helmholtz theorem of reconstructing solenoidal
vector fields in a sphere from their external normal component on the sur-
face S of the sphere V in addition to the vector fields in a sphere having no
such normal component to the surface S (a toroidal vector field) provided
that ∇ ×HT = HP . The latter is identically fulfilled in the case of pre-
senting the vector fields under study by one scalar function. Really, when
HT = ∇×(Qr), HP = ∇×∇×(Qr), obtain∇×HT = ∇×∇×(Qr) = HP .
In this case, the scalar function Q is uniquely defined by the normal com-
ponent HN (r), specified at each point of the sphere surface S by formula
(1.22). The generalized Helmholtz theorem, i.e., Theorem 1, allows us to
formulate a theorem of the separation of solenoidal vector fields into the
fields from external and internal sources, containing poloidal and toroidal
components generalizing, in addition, the Gauss–Schmidt theorem.

Theorem 9. The problem of the separation of poloidal and toroidal vector
fields from the sources located outside the sphere V from the same fields
but from the sources, located inside the sphere, is solvable in one way if the
external normal component HN (r) and one of the two tangential components
Ht(r) of the total vector field H on the surface S of the sphere V are known.

Really, let, according to formula (1.22), on S, the total scalar function
Q = Qe +Qi, consisting from the external Qe and the internal Qi parts be
known. Then with allowance for (1.15) and (1.22) on the surface S, we can
write down

Qe +Qi = −
∞∑
n=1

R
Sn(θ, φ)
n(n+ 1)

[
An

1
Rn+1

+BnR
n
]
, (1.73)

where An and Bn are complex constants of the external An and the internal
Bn parts of the function Q, respectively, R is the radius of the sphere. The
toroidal and poloidal components of the magnetic field on the sphere surface
S are calculated with definitions (1.8):

HT =
1

sin θ
∂

∂φ
(Qe +Qi)eθ −

∂

∂θ
(Qe +Qi)eφ,

HP =
1
r

∂

∂r
r
∂

∂θ
(Qe +Qi)eθ +

1
r sin θ

∂

∂r
r
∂

∂φ
(Qe +Qi)eφ − (1.74)

1
r sin θ

( ∂
∂θ

sin θ
∂

∂θ
(Qe +Qi)− 1

sin θ
∂2

∂φ2
(Qe +Qi)

)
er.
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Keeping in mind the dependence of the function Q on a radius r for
external and internal sources (1.15) and omitting elementary formulas, let
us write down components of the poloidal field as follows:

HPθ = − n

rn+2

∂

∂θ
Qe + (n+ 1)rn−1 ∂

∂θ
Qi,

HPφ = − n

rn+2

1
sin θ

∂

∂φ
Qe + (n+ 1)rn−1 1

sin θ
∂

∂φ
Qi, (1.75)

HPr =
1

r sin θ

[
cos θ

∂(Qe + Qi)
∂θ

+ sin θ
∂2(Qe + Qi)

∂θ2
− 1

sin θ
∂2(Qe + Qi)

∂φ2

]
.

Taking into account (1.74), (1.75), and (1.22), write down tangential compo-
nents of the total magnetic field and its normal component in the following
form:

Htθ = −
∞∑
n=1

Xn(θ, φ)
1

n(n+ 1)

[
−An

n

Rn+1
+Bn(n+ 1)Rn

]
,

Htφ = −
∞∑
n=1

Yn(θ, φ)
1

n(n+ 1)

[
−An

n

Rn+1
+Bn(n+ 1)Rn

]
, (1.76)

HN =
∞∑
n=1

Zn(θ, φ)
1

n(n+ 1)

[
An

1
Rn+1

+BnR
n
]
.

Here Xn(θ, φ), Yn(θ, φ), Zn(θ, φ) ∈ C∞ are complex angular functions that
are derived from the known function Sn(θ, φ), whose analytical form will be
defined below. Formulas (1.76) indicate to the fact that any pair composed
of one tangential and one normal components makes it possible to uniquely
separate the coefficients of external and internal vector fields as related to
the surface S since the determinant of separating equations differs from zero:∣∣∣∣∣∣∣

1
Rn+1

Rn

− n

Rn+1
(n+ 1)Rn

∣∣∣∣∣∣∣ =
(2n+ 1)

R
. (1.77)

The separate calculation of Qe and Qi allows us to reconstruct on the sphere
surface S the poloidal and toroidal vector fields both from the sources located
inside the sphere and from external sources. The numerical implementation
of the separation algorithm with allowance for toroidal fields according to
the evidence on the MGF dated back to 1965 is presented in monograph [6].

Formulas (1.76) and (1.77) make possible to be sure that Theorem 9
is valid. In addition, the Gauss–Shmidt result of the unique separation of
potential magnetic fields is confirmed for the case of their presentation by
one scalar function, which as it happened, also concerns solenoidal magnetic
fields containing both the toroidal and the poloidal parts.
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1.5. On algorithms of observations interpolation of the main
geomagnetic field on the Earth’s surface

1.5.1. The Gauss–Schmidt interpolation decompositions of
the MGF

It turned out so that usually for the interpolation of the MGF observed
on the Earth’s surface at separate points, the Gauss–Schmidt algorithm was
conventionally applied. In the modern interpretation, the Gauss method is
based on the two assumptions. The first concerns the physical properties
of the MGF in the Earth’s atmosphere. In the Gauss method, the MGF
in the atmosphere is considered to be potential: ∇ ×H = 0. The second
assumption resulting from the first one concerns sources of a magnetic field.
These sources are scalar, because at that time they were considered to be
magnetic masses. The magnetic field potential of magnetic masses H =
−∇V satisfied the Laplace equation and could be determined by solving the
following equation:

∇×H = 0, ∇ ·H = ρ′m ⇒ ∆V = −ρ′m, V = −
∫
W

ρ′m
R0

dw′, (1.78)

where ρ′m is the magnetic masses density in the sphere (the Earth),
R0(r, θ, φ, r′, θ′, φ′) is a distance between any point in the sphere and any
point outside it, i.e., in the atmosphere, r, θ, φ, r′, θ′, φ′ are spherical coordi-
nates with the center in the Earth’s center, the dotted coordinates referring
to the Earth’s volume, W being the volume of the Earth.

In the modern mathematics, the Gauss interpolation series on the sphere
surface are obtained by expanding the function 1/R0 in the spherical func-
tions Pmn (cos θ) and trigonometric functions cosmφ, sinmφ and integrating
over the dotted coordinates. Let sources locate inside the sphere, and a
magnetic field outside it, then

V e =
∞∑
n=1

1
rn+1

n∑
m=0

(Amn cosmφ+Bm
n sinmφ)Pmn (cos θ), (1.79)

where
Amn = −

∫
W

ρ′mr
′n cosmφ′Pmn (cos θ′) dw′,

Bm
n = −

∫
W

ρ′mr
′n sinmφ′Pmn (cos θ′) dw′.

In (1.79), it is convenient to introduce the notation with a radius of the
sphere equal to R:
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Amn = R−(n+2)gmn , Bm
n = R−(n+2)hmn . (1.80)

Then potential (1.79) can be rewritten as follows:

V e = R
∞∑
n=1

(R
r

)n+1
n∑

m=0

(gmn cosmφ+ hmn sinmφ)Pmn (cos θ), (1.81)

and on the sphere surface we obtain

V e = R

∞∑
n=1

n∑
m=0

(gmn cosmφ+ hmn sinmφ)Pmn (cos θ). (1.82)

In this case, according to (1.78), components of the magnetic field intensity
on the sphere surface will be of the form

He
φ = − 1

r sin θ
∂V

∂φ
= −

∞∑
n=1

n∑
m=0

(−gmn sinmφ+ hmn cosmφ)
mPmn (cos θ)

sin θ
,

He
θ = −1

r

∂V

∂θ
= −

∞∑
n=1

n∑
m=0

(gmn cosmφ+ hmn sinmφ)
∂Pmn (cos θ)

∂θ
, (1.83)

He
r = −∂V

∂r
=
∞∑
n=1

n∑
m=0

[
(n+ 1)gmn cosmφ+ (n+ 1)hmn sinmφ

]
Pmn (cos θ).

When sources are outside the sphere and a magnetic field is concentrated
inside the sphere, formed by an external source, components of the field are
determined from the following potential:

V i =
∞∑
n=1

rn

Rn−1

n∑
m=0

(jmn cosmφ+ kmn sinmφ)Pmn (cos θ). (1.84)

In this case
jmn = Cmn R

n−1, kmn = Dm
n R

n−1.

Components of the field from the external source inside the sphere:

H i
φ = −

∞∑
n=1

n∑
m=0

(−jmn sinmφ+ kmn cosmφ)
mPmn (cos θ)

sin θ
,

H i
θ = −

∞∑
n=1

n∑
m=0

(jmn cosmφ+ kmn sinmφ)
∂Pmn (cos θ)

∂θ
,

H i
r = −

∞∑
n=1

n∑
m=0

(jmn cosmφ+ kmn sinmφ)nPmn (cos θ).

(1.85)

The total magnetic field on the sphere surface are expressed by the interpo-
lation formulas
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Hφ= −
∞∑
n=1

n∑
m=0

[
−(gmn + jmn ) sinmφ+ (hmn + kmn ) cosmφ

]mPmn (cos θ)
sin θ

,

Hθ= −
∞∑
n=1

n∑
m=0

[
(gmn + jmn ) cosmφ+ (hmn + kmn ) sinmφ

]∂Pmn (cos θ)
∂θ

, (1.86)

Hr=
∞∑
n=1

n∑
m=0

[(
(n+1)gmn −njmn

)
cosmφ+

(
(n+1)hmn −nkmn

)
cosmφ

]
Pmn (cos θ).

Here the separating equations will take the form{
gmn + jmn = pmn ,

(n+ 1)gmn − njmn = p′mn ,{
hmn + kmn = qmn ,

(n+ 1)hmn − nkmn = q′mn .

(1.87)

A determinant of any pair of equations from (1.87) equals −(2n+ 1), there-
fore separation of coefficients of the fields from internal and external sources
proceed uniquely.

Interpolation formulas (1.86) have been used up till now when recon-
structing the MGF from its measurements at separate points of the Earth’s
surface on the world network of stations as well as when interpolating satel-
lite data.

Interpolation formulas (1.86) have been obtained under the assumption
of the MGF potentiality in the Earth’s atmosphere. In connection with this
sufficiently strict assumption, the interpolation decompositions of a mag-
netic field appeared to be rather simple.

If one takes into account the toroidal part of the MGF, then according
to Theorem 1, the MGF can also be reconstructed using one scalar poten-
tial, however interpolation formulas will be different. There will be terms
referring to the toroidal part of the MGF.

1.5.2. Interpolation decompositions of the MGF with allowance
for its toroidal part

Let us now obtain interpolation decompositions of the MGF using the
potential Q from Theorem 1 and the experiment discussed in Section 1.5.1.
Let a source be inside and the field be outside the sphere, then the potential
outside the sphere will have the form

Qi =
∞∑
n=1

n∑
m=0

(amn cosmφ+ bmn sinmφ)Pmn (cos θ)
Rn+2

rn+1
, (1.88)



1.5. On algorithms of observations interpolation 33

where amn = ãmn /R
n+2, bmn = b̃mn /R

n+2, the index i is a source located inside
the sphere, the index e is a source outside the sphere.

On the sphere surface we obtain

Qi = R
∞∑
n=1

n∑
m=0

(amn cosmφ+ bmn sinmφ)Pmn (cos θ). (1.89)

Let a source locate outside the Earth, a magnetic field inside the sphere,
formed by an external source, then the function Q will be equal to

Qe =
∞∑
n=1

n∑
m=0

(cmn cosmφ+ dmn sinmφ)Pmn (cos θ)
rn

Rn−1
, (1.90)

where cmn = c̃mn · Rn−1, dmn = d̃mn · Rn−1. The function Qe on the Earth’s
surface will be equal to

Qe = R
∞∑
n=1

n∑
m=0

(cmn cosmφ+ dmn sinmφ)Pmn (cos θ). (1.91)

The toroidal fields from external and internal sources at any point, ac-
cording to (1.8), are equal to:

• From internal sources––

H i
T θ =

∞∑
n=1

n∑
m=0

(−amn sinmφ+ bmn cosmφ)
mPmn (cos θ)

sin θ
Rn+2

rn+1
,

H i
Tφ = −

∞∑
n=1

n∑
m=0

(amn cosmφ+ bmn sinmφ)
∂Pmn (cos θ)

∂θ

Rn+2

rn+1
;

(1.92)

• From external sources––

He
Tθ =

∞∑
n=1

n∑
m=0

(−cmn sinmφ+ dmn cosmφ)
mPmn (cos θ)

sin θ
rn

Rn−1
,

He
Tφ = −

∞∑
n=1

n∑
m=0

(cmn cosmφ+ dmn sinmφ)
∂Pmn (cos θ)

∂θ

rn

Rn−1
.

(1.93)

The total field on the Earth’s surface for r = R and with notations imn :=
amn + cmn , jmn := bmn + dmn will be

HTθ = R
∞∑
n=1

n∑
m=0

(−imn sinmφ+ jmn cosmφ)
mPmn (cos θ)

sin θ
,

HTφ = −R
∞∑
n=1

n∑
m=0

(imn cosmφ+ jmn sinmφ)
∂Pmn (cos θ)

∂θ
.

(1.94)

The poloidal magnetic field from the internal sources outside the sphere will
take the form
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H i
Pθ = −

∞∑
n=1

n∑
m=0

(amn cosmφ+ bmn sinmφ)
∂Pmn (cos θ)

∂θ

nRn+2

rn+2
,

H i
Pφ = −

∞∑
n=1

n∑
m=0

(−amn sinmφ+ bmn cosmφ)
mPmn (cos θ)

sin θ
nRn+2

rn+2
, (1.95)

H i
Pr =

∞∑
n=1

n∑
m=0

(amn cosmφ+ bmn sinmφ)
(
∂Pmn (cos θ)

∂θ
ctg θ +

∂2Pmn (cos θ)
∂θ2

− m2Pmn (cos θ)
sin2 θ

)
Rn+2

rn+2
.

The poloidal magnetic field from the external sources inside the sphere will
take the form:

He
Pθ =

∞∑
n=1

n∑
m=0

(cmn cosmφ+ dmn sinmφ)
∂Pmn (cos θ)

∂θ

(n+ 1)rn−1

Rn−1
,

He
Pφ =

∞∑
n=1

n∑
m=0

(−cmn sinmφ+ dmn cosmφ)
mPmn (cos θ)

sin θ
(n+ 1)rn−1

Rn−1
,

He
Pr =

∞∑
n=1

n∑
m=0

(cmn cosmφ+ dmn sinmφ)×

(
ctg θ

∂Pmn (cos θ)
∂θ

+
∂2Pmn (cos θ)

∂θ2
− m2Pmn (cos θ)

sin2 θ

) rn−1

Rn−1
.

(1.96)

If we introduce the notation

īmn := −namn + (n+ 1)cmn , j̄mn := −nbmn + (n+ 1)dmn , (1.97)

the total poloidal magnetic field with r = R will take the form:

HPθ =
∞∑
n=1

n∑
m=0

(̄imn cosmφ+ j̄mn sinmφ)
∂Pmn (cos θ)

∂θ
,

HPφ =
∞∑
n=1

n∑
m=0

(−īmn sinmφ+ j̄mn cosmφ)
mPmn (cos θ)

sin θ
, (1.98)

HPr =
∞∑
n=1

n∑
m=0

(imn cosmφ+ jmn sinmφ)
(

ctg θ
∂Pmn (cos θ)

∂θ
+

∂2Pmn (cos θ)
∂θ2

− m2Pmn (cos θ)
sin2 θ

)
.

From formulas (1.98) it follows that it is sufficient to measure one normal
component of the magnetic field, i.e., HPr on the Earth’s surface for recon-
structing, in addition, the toroidal magnetic field (1.94) as coefficients in
them are the same.
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The total magnetic field (the poloidal and toroidal fields) looks like

Hθ =
∞∑
n=1

n∑
m=0

(̄imn cosmφ+ j̄mn sinmφ)
∂Pmn (cos θ)

∂θ
+

(−imn sinmφ+ jmn cosmφ)
RmPmn (cos θ)

sin θ
,

Hφ =
∞∑
n=1

n∑
m=0

(−īmn sinmφ+ j̄mn cosmφ)
mPmn (cos θ)

sin θ
−

(imn cosmφ+ jmn sinmφ)
R∂Pmn (cos θ)

∂θ
, (1.99)

Hr =
∞∑
n=1

n∑
m=0

(imn cosmφ+ jmn sinmφ)
(

ctg θ
∂Pmn (cos θ)

∂θ
+

∂2Pmn (cos θ)
∂θ2

− m2Pmn (cos θ)
sin2 θ

)
.

Formulas (1.99) are evidence in favor of the conclusion from Theorem 9
that it is sufficient to have a normal component, in our case Hr, and one
tangential component (Hφ or Hθ) for the reconstruction and separation of
the whole total magnetic field to modifications and to the fields from ex-
ternal and internal sources. For separation of magnetic fields it is required
to compose from definable decomposition coefficients (1.99) the following
equations: {

−namn + (n+ 1)cmn = īmn ,

amn + cmn = imn ,{
−nbmn + (n+ 1)dmn = j̄mn ,

bmn + dmn = jmn .

(1.100)

The determinant of these pairs of equations always differs from zero:∣∣∣∣ −n n+ 1
1 1

∣∣∣∣ = −(2n+ 1), (1.101)

therefore equations (1.99) allow the calculation of each decomposition co-
efficient with the known right-hand side in (1.100). In this case, as noted
above, it is sufficient to measure (to consider to be known) two components
of the total field: one vertical and one of the horizontal components.

Interpolation formulas (1.99) essentially differ from the Gauss-Schmidt
interpolation formulas (1.86) obtained from the assumption of the MGF
potentiality in the Earth’s atmosphere. In the tangential components of
formulas (1.99), there appear terms, responsible for the toroidal magnetic
field on the Earth’s surface. That is why formulas (1.99) make possible to
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reconstruct (on the Earth’s surface) not only a poloidal but also a toroidal
field, being its important part. Monograph [6] deals with interpreting the
MGF with allowance for a toroidal magnetic field.

1.5.3. Interpolation decompositions of the MGF at instants of
its current system

In the late seventies of the last century, the author proposed that if
scalar sources of the MGF and its variations in (1.86) be changed to vec-
tor sources (magnetic masses to electric currents), then earlier elucidated
unclear difficulties will become clear, on the one hand, and on the other
hand, interpolation at points of the Earth’s surface of magnetic fields will
improve both qualitatively and quantitatively. This will happen, in the au-
thor’s opinion, due to the fact that unknown coefficients to be calculated
in more complicated decompositions will acquire the physical sense of mo-
ments of an arbitrary current system, which is essentially the MGF source
and its variations [6]. Analytically, the formulas in this case are based on a
solenoidal field instead of a potential magnetic field:

∇×H = j′, ∇·H = 0, H = ∇×A, ∆A = j′, ∇·A = 0, A =
∫
W

j′

R0
dw′,

Ax =
∫
W

j′x
R0

dw′, Ay =
∫
W

j′y
R0

dw′, Az =
∫
W

j′z
R0

dw′,

Aθ = Ax cos θ cosφ+Ay cos θ sinφ−Az sin θ,

Aφ = −Ax sinφ+Ay cosφ,

Ar = Ax sin θ cosφ+Ay sin θ sinφ+Az cos θ.

(1.102)

Here x, y, z are rectangular coordinates fixed at the Earth’s center, R0 is
a distance between points outside and inside the sphere, j′ is the vector of
the current density in the Earth, ∆ = ∇∇ ·−∇×∇× is the vector Laplace
operator, A is a vector potential, ∇ · A = 0 is the Coulomb calibration, R
is the Earth’s radius.

Expanding the function 1/R0 from (1.102) in spherical and trigonomet-
ric functions and integrating over the dotted coordinates, we obtain new
interpolation series, whose coefficients in terms of physics are moments of
an arbitrary current system, located both inside and outside the Earth [6].

If a source is located inside the sphere, we obtain

Aiθ =
∞∑
n=1

n∑
m=0

[
(κmn cosmφ+ ρmn sinmφ) cos θ cosφ+

(µmn cosmφ+ νmn sinmφ) cos θ sinφ−

(umn cosmφ+ vmn sinmφ) sin θ
]Rn+2

rn+1
Pmn (cos θ),
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Aiφ =
∞∑
n=1

n∑
m=0

[
− (κmn cosmφ+ ρmn sinmφ) sinφ+

(µmn cosmφ+ νmn sinmφ) cosφ
]Rn+2

rn+1
Pmn (cos θ), (1.103)

Air =
∞∑
n=1

n∑
m=0

[
(κmn cosmφ+ ρmn sinmφ)sinθ cosφ+

(µmn cosmφ+ νmn sinmφ) sin θ sinφ+

(umn cosmφ+ vmn sinmφ) cos θ
]Rn+2

rn+1
Pmn (cos θ).

In formula (1.103), complex coefficients (due to complex features of the
current density components) acquire a physical sense to be found in concrete
formulas:

κmn =
1

Rn+2

∫
W

r′nj′x cosmφ′Pmn (cos θ′)dw′,

ρmn =
1

Rn+2

∫
W

r′nj′x sinmφ′Pmn (cos θ′)dw′,

µmn =
1

Rn+2

∫
W

r′nj′y cosmφ′Pmn (cos θ′)dw′,

νmn =
1

Rn+2

∫
W

r′nj′y sinmφ′Pmn (cos θ′)dw′,

umn =
1

Rn+2

∫
W

r′nj′z cosmφ′Pmn (cos θ′)dw′,

vmn =
1

Rn+2

∫
W

r′nj′z sinmφ′Pmn (cos θ′)dw′.

(1.104)

As is known, the expression r′ cos θ′ represents a projection of a vector ra-
dius r′ onto the axis y′, and r′ sinφ′ sin θ′ is a projection onto the axis y′,
etc. In this connection, constant complex coefficients (1.104) can to a first
approximation be written down in the following way:

κ0
1 =

1
R3

∫
W

z′j′xdw
′ =

M ′y
R3

, ρ1
1 =

1
R3

∫
W

y′j′xdw
′ = −M

′
z

R3
. (1.105)

From (1.105) follows that complex coefficients represent projections of mo-
ments of different orders of an arbitrary current system on an axis of the
rectangular coordinate system. Each component of the current density gen-
erates certain projections of moments of current systems onto rectangular
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axes of the Cartesian coordinate system. Thus, the component j′x yields only
the projections Mm

ny′ and Mm
nz′ , the component j′y yields only the projections

Mm
nx′ and Mm

nz′ , etc. In this connection coefficients (1.104) are similar to the
Gauss decomposition coefficients (1.86) that are projections of the dipole
moments of different orders onto rectangular axes of the Cartesian coordi-
nate system.

Based on the above definitions of the toroidal and poloidal magnetic
fields and on formulas (1.103), let us write down decompositions of these
fields for interior sources, omitting cumbersome intermediate formulas and
choosing the notations for a magnetic field and its components as in the
previous case. Decompositions of a toroidal field on the Earth’s surface for
r = R will look like

H i
T θ =

∞∑
n=1

n∑
m=0

[
− κmn (cosmφ sinmφ+m sinmφ cosφ) +

ρmn (m cosmφ cosφ− sinmφ sinφ) +
µmn (cosmφ cosφ−m sinmφ sinφ) +
νmn (m cosmφ sinφ+ sinmφ cosφ) +

(−umn sinmφ+ vmn cosmφ)mctgθ
]
Pmn (cos θ), (1.106)

H i
Tφ = −

∞∑
n=1

n∑
m=0

(κmn cosmφ cosφ+ ρmn sinmφ cosφ)×

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
+

(µmn cosmφ sinφ+ νmn sinmφ sinφ)×(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
+

(umn cosmφ+ vmn sinmφ)
(

cos θ
∂Pmn (cos θ)

∂θ
− sin θPmn (cos θ)

)
.

It is necessary to add to components of toroidal magnetic field (1.106) three
components of the poloidal magnetic field for r = R:

H i
Pθ =

∞∑
n=1

n∑
m=0

[−nκmn cosmφ sinφ− nρmn sinmφ sinφ+

nµmn cosmφ cosφ+ nνmn sinmφ cosφ]Pmn (cos θ),

H i
Pφ=

∞∑
n=1

n∑
m=0

[−nκmn cosmφ cosφ cos θ − nρmn sinmφ cosφ cos θ −

nµmn cosmφ sinφ cos θ − nνmn sinmφ sinφ cos θ +
numn cosmφ sin θ + nvmn sinmφ sin θ]Pmn (cos θ), (1.107)
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H i
Pr =

∞∑
n=1

κmn
(

cosmφ sinφ
∂Pmn (cos θ)

∂θ
−

m sinmφ cosφ ctg θPmn (cosmφ)
)

+

ρmn

(
sinmφ sinφ

∂Pmn (cos θ)
∂θ

+m cosmφ cosφ ctg θPmn (cos θ)
)
−

µmn

(
cosmφ cosφ

∂Pmn (cos θ)
∂θ

+m sinmφ sinφ ctg θPmn (cos θ)
)
−

νmn

(
sinmφ cosφ

∂Pmn (cos θ)
∂θ

−m cosmφ sinφ ctg θPmn (cos θ)
)

+

(umn sinmφ− vmn cosmφ)mPmn (cos θ).

Decompositions (1.106) and (1.107) represent a set of components of a
toroidal and a poloidal fields from the Earth’s interior sources. In addi-
tion, (1.106) and (1.107) realize the principle laid in Theorem 1: the normal
component H i

Pr contains the whole variety of coefficients (moments of the
current system) that are needed for the calculation of toroidal field compo-
nents (1.106). The presence of H i

Pr on the Earth’s surface uniquely resolves
the problem of reconstruction both of a poloidal and a toroidal magnetic
fields by one normal component.

Now we need to obtain similar decompositions for components of the
fields from the external sources, i.e., from those outside the Earth. First
write down decompositions for components of the external sources potential:

Aeθ =
∞∑
n=1

n∑
m=0

[
(amn cosmφ+ bmn sinmφ) cos θ cosφ+

(cmn cosmφ+ dmn sinmφ) cos θ sinφ−

(emn cosmφ+ fmn sinmφ) sin θ
] rn

Rn−1
Pmn (cos θ),

Aeφ =
∞∑
n=1

n∑
m=0

[
− (amn cosmφ+ bmn sinmφ) sinφ+

(cmn cosmφ+ dmn sinmφ) cosφ
] rn

Rn−1
Pmn (cos θ), (1.108)

Aer =
∞∑
n=1

n∑
m=0

[
(amn cosmφ+ bmn sinmφ) sin θ cosφ+

(cmn cosmφ+ dmn sinmφ) sin θ sinφ+

(emn cosmφ+ fmn sinmφ) cos θ
] rn

Rn−1
Pmn (cos θ).

Decompositions of a toroidal field from exterior sources for r = R can be
written as
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He
Tθ =

∞∑
n=1

n∑
m=0

[
− amn (cosmφ sinφ+m sinmφ cosφ) +

bmn (− sinmφ sinφ+m cosmφ cosφ) +
cmn (cosmφ cosφ−m sinmφ sinφ) +
dmn (sinmφ cosφ+m cosmφ sinφ) +

(−emn sinmφ+ fmn cosmφ)m ctg θ
]
Pmn (cos θ), (1.109)

He
Tφ = −

∞∑
n=1

n∑
m=0

(amn cosmφ+ bmn sinmφ) cosφ×

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
+

(cmn cosmφ+ dmn sinmφ) sinφ
(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
+

(emn cosmφ+ fmn sinmφ)
(
−sinθPmn (cos θ) + cos θ

∂Pmn (cos θ)
∂θ

)
.

Decompositions of a poloidal magnetic field from exterior sources look like

He
Pθ =

∞∑
n=1

n∑
m=0

[
(n+ 1)amn cosmφ sinφ+ (n+ 1)bmn sinmφ sinφ−

(n+ 1)cmn cosmφ cosφ− (n+ 1)dmn sinmφ cosφ
]
Pmn (cos θ),

He
Pφ =

∞∑
n=1

n∑
m=0

[(
(n+ 1)amn cosmφ cosφ+ (n+ 1)bmn sinmφ×

cosφ+ (n+ 1)cmn cosmφ sinφ+ (n+ 1)dmn sinmφ sinφ
)

cos θ −(
(n+ 1)emn cosmφ+ (n+ 1)fmn sinmφ

)
sin θ

]
Pmn (cos θ), (1.110)

He
Pr =

∞∑
n=1

n∑
m=0

amn

(
cosmφ sinφ

∂Pmn (cos θ)
∂θ

−

m sinmφ cosφ ctg θPmn (cos θ)
)

+

bmn

(
sinmφ sinφ

∂Pmn (cos θ)
∂θ

+m cosmφ cosφ ctg θPmn (cos θ)
)
−

cmn

(
cosmφ cosφ

∂Pmn (cos θ)
∂θ

+m sinmφ sinφ ctg θPmn (cos θ)
)
−

dmn

(
sinmφ cosφ

∂Pmn (cos θ)
∂θ

−m cosmφ sinφ ctg θPmn (cos θ)
)

+

(emn sinmφ− fmn cosmφ)mPmn (cos θ).

Based on decompositions for external and internal sources it is possible to
obtain decompositions for the total field (a toroidal plus a poloidal fields).
Toroidal components of the total field are of the form
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HTθ =
∞∑
n=1

n∑
m=0

[
− īmn (cosmφ sinφ+m sinmφ cosφ) +

j̄mn (m cosmφ cosφ− sinmφ sinφ)k̄mn (cosmφ cosφ−
m sinmφ sinφ) + l̄mn (m cosmφ sinφ+ sinmφ cosφ) +
(−q̄mn sinmφ+ p̄mn cosmφ)m ctg θ]Pmn (cos θ), (1.111)

HTφ = −
∞∑
n=1

n∑
m=0

(̄imn cosmφ+ j̄mn sinmφ) cosφ×(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
+

(k̄mn cosmφ+ l̄mn sinmφ) sinφ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

(q̄mn cosmφ+ p̄mn sinmφ)
(

cos θ
∂Pmn (cos θ)

∂θ
− sin θPmn (cos θ)

)
.

Components of the total poloidal magnetic field look like

HPθ =
∞∑
n=1

n∑
m=0

[
− (̃imn − īmn ) cosmφ sinφ− (j̃mn − j̄mn ) sinmφ sinφ+

(k̃mn − k̄mn ) cosmφ cosφ+ (l̃mn − l̄mn ) sinmφ cosφ
]
Pmn (cos θ),

HPφ =
∞∑
n=1

n∑
m=0

[
(̄imn − ĩmn ) cosmφ cosφ+ (j̄mn − j̃mn ) sinmφ cosφ+

(k̄mn − k̃mn ) cosmφ sinφ+ (l̄mn − l̃mn ) sinmφ sinφ
]

cos θPmn (cos θ)−[
(q̄mn + q̃mn ) cosmφ+ (p̄mn + p̃mn ) sinmφ

]
sin θPmn (cos θ), (1.112)

HPr =
∞∑
n=1

n∑
m=0

īmn

(
cosmφ sinφ

∂Pmn (cos θ)
∂θ

−

m sinmφ cosφ ctg θPmn (cos θ)
)

+

j̄mn

(
sinmφ sinφ

∂Pmn (cos θ)
∂θ

+m cosmφ cosφ ctg θPmn (cos θ)
)
−

k̄mn

(
cosmφcosφ

∂Pmn (cos θ)
∂θ

+m sinmφ sinφ ctg θPmn (cos θ)
)
−

l̄mn

(
sinmφ cosφ

∂Pmn (cos θ)
∂θ

−m cosmφ sinφ ctg θPmn (cos θ)
)

+

q̄mn m sinmφPmn (cos θ)− p̄mnm cosmφPmn (cos θ).

Based on formulas (1.111) and (1.112) it is possible to obtain components
of the observed field tangential to the Earth’s surface. In the observed
magnetic field, the vertical component coincides with that of the poloidal
magnetic field (1.112), therefore by virtue of the equality HPr ≡ Hr, it is
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not presented here. Thus, components of the magnetic field observed on the
Earth are of the form

Hθ =
∞∑
n=1

n∑
m=0

[−īmnm sinmφ cosφ+ j̄mn m cosmφ cosφ−

k̄mn m sinmφ sinφ+ l̄mn m cosmφ sinφ
]
Pmn (cos θ)−

(q̄mn sinmφ− p̄mn cosmφ)m ctg θPmn (cos θ) +

[−ĩmn cosmφ sinφ− j̃mn sinmφ sinφ+ k̃mn cosmφ cosφ+

l̃mn sinmφ cosφ]Pmn (cos θ), (1.113)

Hφ = −
∞∑
n=1

n∑
m=0

[̄imn cosmφ cosφ+ j̄mn sinmφ cosφ+

k̄mn cosmφ sinφ+ l̄mn sinmφ sinφ
]

sin θ
∂Pmn (cos θ)

∂θ
+

(q̄mn cosmφ+ p̄mn sinmφ) cos θ
∂Pmn (cos θ)

∂θ
+

[̃imn cosmφ cosφ+ j̃mn sinmφ cosφ+ k̃mn cosmφ sinφ+

l̃mn sinmφ sinφ] cos θPmn (cos θ) +
(q̃mn cosmφ+ p̃mn sinmφ) sin θPmn (cos θ),
Hr ≡ HPr.

Formulas (1.113) should be supplemented by the equations to which all
the coefficients entering the decompositions obey. The coefficients of the
observed magnetic field are related to those of external and internal fields
observed by the following equations:{

κmn + amn = īmn ,

(n+ 1)κmn − namn = ĩmn ,

{
ρmn + bmn = j̄mn ,

(n+ 1)ρmn − nbmn = j̃mn ,{
µmn + cmn = k̄mn ,

(n+ 1)µmn − ncmn = k̃mn ,

{
νmn + dmn = l̄mn ,

(n+ 1)νmn − ndmn = l̃mn ,{
umn + emn = q̄mn ,

−(n+ 1)umn + nemn = q̃mn ,

{
vmn + fmn = p̄mn ,

−(n+ 1)vmn + nfmn = p̃mn .

(1.114)

Equations (1.114) permit writing down formulas for the internal coefficients:

κmn =
ĩmn + nīmn

2n+ 1
, ρmn =

j̃mn + nj̄mn
2n+ 1

,

µmn =
k̃mn + nk̄mn

2n+ 1
, νmn =

l̃mn + nl̄mn
2n+ 1

,

umn =
nq̄mn − q̃mn

2n+ 1
, vmn =

np̄mn − p̃mn
2n+ 1

.

(1.115)
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For the coefficients of the external magnetic field, appropriate formulas are
sought for in a similar way:

amn =
(n+ 1)̄imn − ĩmn

2n+ 1
, bmn =

(n+ 1)j̄mn − j̃mn
2n+ 1

,

cmn =
(n+ 1)k̄mn − k̃mn

2n+ 1
, dmn =

(n+ 1)l̄mn − l̃mn
2n+ 1

,

emn =
(n+ 1)q̄mn + q̃mn

2n+ 1
, fmn =

(n+ 1)p̄mn + p̃mn
2n+ 1

.

(1.116)

Table 1.1

θ◦ ϕ◦

Field

toroidal poloidal summarized observed

BTθ BTϕ BPθ BPϕ BPr Bθ Bϕ Br Bθ Bϕ Br

40 0 1392 3235 −20383 −3977 40222 −18991 −741 40222 −19200 −2330 42810
60 −550 3411 −19184 128 47319 −19734 3539 47319 −19840 3210 49580

120 −181 −253 −21856 −1773 51498 −22037 −2026 51498 −21820 −3500 54060
180 −922 −1163 −21652 4156 37986 −22574 2994 37986 −22540 2650 41500
240 1011 −2506 −16791 9498 51495 −15780 6992 51495 −15950 6700 55150
300 −583 −1349 −12286 −5704 50467 −12869 −7053 50467 −12840 −7150 54040

60 0 −1431 2019 −27897 −3554 24868 −29328 −1535 24868 −29150 −2960 26640
60 569 3695 −33264 −2632 30984 −32695 1063 30989 −32280 1130 33030

120 971 −3257 −35388 1654 30807 −34417 −1602 30807 −34730 −2190 32330
180 −683 −43 −25730 4556 25898 −26413 4513 25898 −26540 4390 25690
240 117 47 −26555 6194 39796 −26438 6240 39796 −26570 6680 38680
300 421 −2178 −23133 −4333 43467 −22712 −6512 43467 −22660 −6580 42940

80 0 −1283 −792 −30557 −1196 5425 −31840 −1988 5425 −31680 −4510 5080
60 2176 589 −38157 −1906 11319 −35981 −1316 11319 −37980 −1130 3900

120 −414 −2531 −39104 3157 6783 −39518 626 6783 −39590 690 2820
180 −30 2872 −31653 3040 7647 −31683 5913 7647 −31590 5680 9230
240 −486 3591 −31073 1821 13381 −31560 5412 13381 −31670 5240 16070
300 825 −3427 −29095 −2185 20483 −28271 −5612 20483 −28330 −5200 23390

100 0 −370 −231 −21372 −2171 −14996 −21742 −2402 −14996 −21880 −6400 −19800
60 1302 −897 −27380 −3581 −16575 −26078 −4477 −16575 −28200 −4110 −24060

120 −1459 −1739 −34874 3557 −22307 −36333 1818 −22307 −36460 1660 −27330
180 144 3250 −34635 3460 −17231 −34491 6710 −17231 −34650 6740 −16340
240 −284 3020 −30377 2609 −9072 −30661 5629 −9072 −30700 5580 −6880
300 1353 −1624 −28300 −1841 −2215 −26947 −3466 −2215 −26820 −3150 −1640

120 0 2238 2123 −15298 −5151 −25949 −13061 −3028 −25949 −13120 6400 −24880
60 −1239 −1175 −15400 −8049 −35003 −16639 −9223 −35003 −16430 −9030 −33680

120 −2267 −2176 −23137 2266 −53236 −25405 90 −53236 −25600 −40 −51820
180 999 1174 −29157 6874 −40264 −28158 8049 −40264 −28190 7980 −41130
240 −67 1353 −27003 6245 −24132 −27070 7598 −24132 −27050 7960 −25320
300 91 −865 −22265 412 −9031 −22175 −454 −9031 −22200 −390 −10830

140 0 3829 2362 −16869 −6250 −29185 −13040 −3888 −29185 −13220 −6420 −26720
60 −1170 1599 −11911 −14500 −41777 −13081 −12901 −41777 −13060 −13100 −39590

120 −1023 −896 −9873 −794 −66736 −10897 −1690 −66736 −10820 −3250 −64620
180 −291 −73 −17082 8848 −60954 −17373 8774 −60954 −17320 8300 −57790
240 −288 −352 −20515 11702 −46824 −20803 11350 −46824 −20810 11350 −43460
300 −686 −1079 −21325 4055 −25760 −22011 2976 −25760 −22070 2830 −22300
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Unknown coefficients entering decompositions (1.112) and (1.113) can
be determined using experimental data to be obtained for a preset year,
called “epoch”. The following data are available: LOIZMIRAN (Saint-
Petersburg), referring to the epoch of 1965. With these data the MGF
was spherically analyzed by formulas (1.113). The detailed results of this
analysis are presented in [6]. Here as illustration we present Table 1.1 listing
synthesized after the spherical analysis values of the toroidal and poloidal
magnetic fields on the Earth’s surface for the epoch of 1965.

Analysis of Table 1.1 shows a clear existence on the Earth’s surface both
of a poloidal magnetic field, usually well elucidated by the Gauss algorithm
for the spherical analysis, and the toroidal part of the MGF. The presence of
the toroidal magnetic field on the Earth’s surface made possible to solve the
problem of its determination in the zone F of the Earth’s liquid core (Sec-
tion 1.3.3), thus predetermining the author’s opinion about the hypothesis
of dynamo-excitation of the MGF and enabled him to propose a developed
version of excitation of the MGF by toroidal currents in the zone F of the
Earth’s liquid core.

1.5.4. On relationship of the MGF decompositions of
different types

Sections 1.5.2 and 1.5.3 present the MGF decompositions obtained by
the two different techniques: with one scalar function and with three scalar
functions indicating to the vector character of the vector potential A. It is
natural to expect the presence of connection between these decompositions.
This connection results from formulas (1.30). Really, the poloidal magnetic
field is expressed through the function Q and the vector potential component
as follows:

HPθ =
1
r

∂

∂r

∂

∂θ
(Qr) = −1

r

∂

∂r
rAφ,

HPφ =
1
r

∂

∂r

1
sin θ

∂

∂φ
(Qr) =

1
r

∂

∂r
rAθ, (1.117)

HPr = − 1
r2 sin θ

( ∂
∂θ

sin θ
∂(Qr)
∂θ

+
∂

∂φ

1
sin θ

∂(Qr)
∂φ

)
= − 1

r sin θ

(
− ∂

∂θ
sin θAφ +

∂

∂φ
Aθ

)
.

The toroidal magnetic field is similarly expressed:

HTθ =
1

r sin θ
∂

∂φ
(Qr) =

1
r sin θ

∂

∂φ
Ar,

HTφ = −1
r

∂

∂θ
(Qr) = −1

r

∂

∂θ
Ar.

(1.118)
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Formulas (1.117) and (1.118) assign the desired magnetic fields of the
Earth with the help of the scalar function Q and the vector components
Aθ, Aφ, Ar, defined through the toroidal currents. In formulas (1.102), no
divergence of the vector potential A was fixed. It would be reasonable to
expect its presence in the vector potential A, presented by formula (1.5)
The following theorem gives the answer to this question:

Theorem 10. The calibration conditions of Coulomb ∇ · A = 0 or of
Lorentz ∇ · A = σφ̄ for an auxiliary vector field A are uniquely fulfilled
provided that

Q(r, θ, φ) = Q(θ, φ)/r3. (1.119)

Actually, from formula (1.9) follows

A = (Qr) +∇× (Qr) +∇φ̄. (1.120)

Calculate the divergence from (1.120):

∇ ·A = ∇ · (Qr) +∇ · ∇ × (Qr) +∇ · ∇φ̄. (1.121)

In (1.121), the second term by definition equals zero, the first term being

∇ · (Qr) = Q∇ · r + r · ∇Q =
3
r3
Q(θ, φ)− 3

r3
Q(θ, φ) ≡ 0. (1.122)

In the third term, we consider variants

∆φ̄ = 0 or ∆φ̄ = σφ̄, (1.123)

where σ = const.
From (1.119)–(1.123) follow two above-mentioned versions of calibration

of the auxiliary vector field A, namely, the Coulomb calibration

∇ ·A = 0, (1.124)

or the Lorentz calibration
∇ ·A = σφ̄. (1.125)

The physical sense of Theorem 10 is in that orthogonal decomposition
(1.5) does not seriously change physical properties of the solenoidal vector
magnetic field H and does not change mathematical calibration conditions
of the vector potential according to Coulomb or according to Lorentz. How-
ever, it imposes a supplementary condition on the scalar function Q, namely,
its dependence on the coordinate r, which, generally speaking is due to the
property of the total magnetic field H. The latter generally decreases with
distance as 1/r3. The toroidal magnetic field must decrease as well. And
this dependence for the toroidal magnetic field is laid by formula (1.119).



46 Chapter 1. The constant geomagnetic field

1.5.5. On inversion of original matrices in calculating unknown
coefficients of the MGF decompositions

The Gauss method of spherical analysis is, as known, in that for defining
unknown coefficients, for example, in decomposition (1.86) or (1.113), the
MGF observations at points of the Earth’s surface are used, to be exact,
observations at the world network of magnetic stations, which currently
range up to 200, geomagnetic maps and satellite observations being applied
as well. Therewith, in decompositions (1.86) or (1.113) one needs to restrict
himself to a certain number of terms per series. This number varies in
literature. In this paper, interpolation calculations by formulas (1.113) up
to n = 10 are carried out. It turned out that properties of the original
matrices, obtained with the points with assigned coordinates, do not meet
the requirements of methods of their precise inversion. They do not possess
an explicit diagonal predominance, and their determinators are sufficiently
small resulting in large conditioning numbers. It is practically impossible to
convert ill-conditioned matrices of high order with the use of exact methods.
Therefore in our calculations we made use of the Moore [25] and the Penrose
[26] pseudo-inversion technique with the Tokhonov regularization. One of
the algorithms of such a strategy could be the following.

Let a matrix A of the spherical analysis by formulas (1.113) be of n×m
and n > m dimension; X be the vector of solutions with the coordinates
(x1, . . . , xm)T , b be the vector of the right-hand sides with the coordinates
(b1, . . . , bn)T . In this case, by formulas (1.113)coordinates of the vector xi
are coefficients of decompositions of the total magnetic field on a sphere.
Entries of the matrix A are basis functions in the field components de-
compositions. These entries depend on coordinates of observations points,
therefore, they can be calculated with rather a high accuracy. The right-
hand sides bi are values of intensity of components of the magnetic field H
complicated by measurements errors. For decreasing the influence of ob-
servations errors, the matrix A is strongly overdetermined. However, when
calculating the unknowns xi with a strongly redetermined matrix A, the
following unstandard situations can occur.

The rank r of the matrix A can be equal to or less than the number
of unknowns m. If r = m < n, there is no solution, exactly satisfying the
original equation Ax = b. Therewith to solve the equation, the least squares
method is applied that minimizes the mean square of the residual of the
form

εT · ε = (Ax− b)T (Ax− b). (1.126)

Here T denotes transposition.
If the rank r = m = n, then the matrix A has its inverse. The solution

will be x = A−1b. The generalized solution coincides with it.
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If r < m < n, then there may be infinitely many solutions by the least
squares method. The system of normal equations is degenerate, its matrix
ATA has no inverse. In this case, we introduce a solution x̃, obtained with
a pseudo-inverse matrix H in the following manner: x̃ = Hb. Therewith,
the solution x̃, approximately satisfies the equation. In other words, if the
solution x̃ = Hb is substituted into the system Ax = b, the result must not
strongly differ from the right-hand side b. This means that the product AH
should be a unit matrix of order n, i.e., In. Thus, for a solution be close to
the true one, the product AH should be made not strongly different from
In. On the other hand, the more HA differs from Im, the smoother solution
is obtained.

As was noted above, the right-hand sides of the equation Ax = b contain
observations errors. Let Rb be a covariance matrix of observations, then
the covariance matrix of estimations of the solution will be Rx̃ = HRbH

T .
Hence follows that the dispersion of the solution should not be too great.
Since the matrix H is complicated by observations errors, the demand for
smallness of dispersion imposes constraints on the operator H. In other
words, on H one should impose a requirement of regularizing the solution.
Below we present one of possible ways of such a regularization.

The algorithm of finding a pseudo-inverse matrix H is based on a singular
decomposition of the matrix A. Any rectangular matrix A, whose rank
r ≤ m,n, can be presented as the following product: A = UΣV T , where Σ
is a diagonal r×r matrix and U , V are rectangular n×r and m×r matrices,
respectively. Columns of the rotation matrices U and V are vectors ui and
vi defined from the system of equations

Avi = λiui, ATui = λivi. (1.127)

Diagonal entries λi of the matrix Σ are eigenvalues of the matrix A. Systems
of equations for defining U and V can be written down as

AV = UΣ, ATU = V Σ,

ATAV = V Σ2, AATU = UΣ2.
(1.128)

Clearly, any vector vi is an eigenvector corresponding to non-zero eigenvalues
of the symmetric matrix ATA, and ui –– to the eigenvector of the matrix
AAT . In this connection, the matrices U and V are orthonormal:

UTU = Ir, V TV = Ir. (1.129)

In this case, a pseudo-inverse matrix H is defined as follows:

H = V Σ−1UT . (1.130)
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A regularizing matrix H̄ can be calculated by the formula

H̄ = V Σ(Σ2 + αI)−1UT , (1.131)

where I = A−1A; α is a regularization parameter that is equal, for example,
to the relation between the dispersion of noise and a priori dispersion of the
solution.

As was noted above, when r = m = n, and A = V ΣV T , then

H = V Σ−1V T = A−1. (1.132)

Here a pseudo-inverse matrix coincides with the inverse one and the system
has a unique solution x = A−1b, the generalized solution coinciding with it.

The case when r = m < n was also mentioned above, therewith is of
interest the fact of coincidence of the solution, obtained by the least squares
method and of that by the pseudo-inversion. The method of the least squares
(L.S.) yields the solution to equation

ATAxL.S. = AT b. (1.133)

If r = m, the matrix ATA has its inverse, and then

xL.S. = (ATA)−1AT b. (1.134)

Because of the fact that the matrix A is equal to A = UΣV T , we can write
down

xL.S. = (V ΣUTUΣV T )−1Ab. (1.135)

With allowance for the orthogonality of U and V , write down

xL.S. = V Σ−2V TV ΣUT b = V Σ−1UT b = Hb. (1.136)

Thus, for r = m < n, the pseudo-inversion and the least squares method
yield the same result.

If r < m < n, then there may be as many solutions by the least squares
method as is wished. Decompose the solution and the vector of observations
in terms of the system of eigenvectors

x = V α+ V0α0, b = Uβ + U0β0. (1.137)

Consider a solution minimizing the mean residual square

ε2 = ATAx−AT b. (1.138)
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Substitute into it expansions (1.137) and obtain

ε2 = V Σ2α+ V Σ2V TV0α0 − V Σβ − V ΣUTU0β0. (1.139)

From (1.139) it follows that a residual square minimum is attained when
α = Σ−1β. It is also necessary to impose on the value α0 the condition of
the norm minimum of the solution ‖x‖, where α0 = 0. Hence, the solution,
corresponding to a residual square minimum and the norm of solution, will
look like

x = V Σ−1β. (1.140)

From (1.137) follows that the parameter β = UT b, so the solution will be

x = V Σ−1UT b = Hb. (1.141)

Thus, in this important case, the generalized inverse operator H results in
an approximate solution, coinciding with that by the method of least squares
and possessing a minimum norm.

The method of pseudo-inversion is sometimes called the rotation method
because the matrices U and V turn the space of columns of the matrix A
up to its coincidence with the space of lines, so that the matrix A turns into
the diagonal matrix Σ.

The results of the pseudo-inversion by the above algorithm were com-
pared to those of the solution to normal equations with almost a special
matrix by the conjugate gradients method. Both methods have brought
about the coinciding results. The method of pseudo-inversion of matrices of
the equation Ax = b for the rang of matrices r < m < n is extremely impor-
tant for the spherical analysis of electromagnetic fields as the ranges of their
expansion matrices are often lower/smaller than the number of unknown
coefficients in expansions (1.86) and (1.113) to be determined.

The algorithm given here has been used without regularization since the
late 1960s and with regularization since the 1990s to calculate the expansion
coefficients by the spherical and the spatial MGF analysis and its long-period
variations.

1.6. On the generalized electrodynamic equations for
the main geomagnetic field

Consideration of the MGF toroidal part requires that the principal prop-
erty of the toroidal magnetic field be determined, namely, the absence of the
Lorentz force in its intensity. Indeed, the Lorentz force FL is defined by the
formula

FL = [j ×B] = [σE × µH], (1.142)
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where E is the intensity of the electric field in the source, σ is conductivity
in it, and σ is magnetic permeability.

Since the toroidal magnetic field generates no electric currents owing
to its main property ∇ ×HT = HP , the Lorentz force in its intensity is
determined with allowance for formula (1.28), therefore it can be written
down as

F T
L =

[γ
η
HT × µHT

]
≡ 0. (1.143)

In (1.143), the Lorentz force F T
L is identically equal to zero because the

vector product of the toroidal magnetic field by itself equals zero due to
the coinciding direction. Therefore, the toroidal field intensity should be
measured by magnetometers, immediately responding to the intensity HT .

The derivation of general equations, to which the MGF is subject both
in a source and in the Earth’s atmosphere is of interest, also, in terms of
physical applications. In this paper, one can come across such equations.
Now we can write them down in the general form. In the area of a source,
the equations take the form

∇×HP = j + χHT , ∇×HT = HP ,

∇ · (HT ,HP ) = 0, BT,P = µHT,P .
(1.144)

Outside the source, in the Earth’s atmosphere, the form of equations is
reduced to

∇×HP = 0, ∇×HT = HP ,

∇ · (HT ,HP ) = 0, BT,P = µHT,P .
(1.145)

The physical sense of formulas (1.144) is clear. In the source, a mu-
tual generation of HP and HT according to Theorem 6 is possible, because
equations (1.145) are closed with respect to the fields they include. In the
atmosphere, according to (1.145) and Theorems 2 and 4, a toroidal mag-
netic field is present due to the effect of boundary conditions (1.28). This
field is not potential, but does not generate electric currents through the
Atmosphere. This explains the occurrence of a non-potential part of the
magnetic field in the essentially unconducting atmosphere of the Earth, re-
vealed in [7, 28]. The Maxwell equations, generalized in (1.144) and (1.145)
to the toroidal magnetic fields in the atmosphere is based on the experiment
conducted at the world network of magnetic stations, on the one hand, and
on the unclosed character of Maxwell’s equations as they are, on the other
hand.

Thus, the outlined theory of the concept proposed of the MGF, observed
by the world network of geomagnetic stations, explains the existence of the
toroidal and poloidal magnetic fields in the Earth’s atmosphere and unam-
biguously indicates to the source of such fields as toroidal electric currents.



Chapter 2

Varying electromagnetic fields of
the Earth’s electromagnetic variations

Introduction

To the alternating part of the Earth’s electromagnetic field we refer the
MGF variations of different periods: starting with ages and finishing with
short-time periods. For rather a long time, the long-period variations, ob-
served by the world network of stations on the Earth’s surface, were inves-
tigated with the use of the Gauss–Schmidt expansions for interpolation of
their intensity. As is mentioned in Chapter 1, such expansions are based
on the assumption of potentiality of the field of variations in the air. This
automatically results in a one-modal interpretation scheme of the magnetic
fields obtained after interpolation.

As a result of one-modal interpretation of only magnetic components,
there arose problems associated with the existence in the Earth’s atmosphere
of a significant non-potential part in its intensity. This phenomenon was first
detected in [28] and later confirmed in [7]. Much later Chetaev [20] with his
experiments with short-period variations, their vertical electric field to be
exact, discovered in the atmosphere significant values in its intensity, which
should not take place according to standard Maxwell’s equations.

The above-mentioned data prompted the author to initiate a research
of electrodynamics of geoelectromagnetic variations with allowance for their
possible two-modality.

In order not to introduce in advance the principle of variations poten-
tiality in the air, the atmosphere conductivity when constructing the elec-
trodynamics of an alternating field of variations was taken into account.
This considerably complicated the mathematical part of the research, but
directly revealed the above-mentioned problems.

2.1. On two-modal presentation of electromagnetic
variations fields in the air

The research into geoelectromagnetic variations fields in the atmosphere
with a weak conductivity begins with proving the following

Theorem 11. The electromagnetic field of variations in the air is two-
modal.
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Really, let an alternating magnetic field H and an electric field E of geo-
electromagnetic variations be time-dependent as eiωt, and external sources
of variations be denoted by jCT and depend on time in the same manner
as fields. Further let us omit the time dependence in the form of eiωt ev-
erywhere, however keeping it in mind when calculating temporal variables.
Then Maxwell’s equations connecting sources and fields in the air can be
written down as

∇×H = σ0E + ε0
∂E

∂t
+ jCT, ∇ ·E = 0,

∇×E = −µ0
∂H

∂t
, ∇ ·H = 0,

(2.1)

where σ0, ε0, µ0 are electromagnetic constants of the air.
Formulas (2.1) allow us to introduce the vector potential A and to con-

ventially express the electric and magnetic fields by the vector-potential:

H = ∇×A, E = −iωµ0A +∇φ. (2.2)

Substituting (2.2) into (2.1), we obtain

∇×∇×A = σ′E + jCT,

∇∇ ·A−∆A = −κ̄2A + σ′ ∇φ+ jCT,
(2.3)

where σ′ = σ0 + iωε0, κ̄2 = iωµ0σ0−ω2ε0µ0. Formulas (2.3) can be written
down as

∆A = κ̄2A +∇(∇ ·A− σ′φ) + jCT. (2.4)

It is required to introduce into (2.4) the Lorentz calibration

∇ ·A− σ′φ = 0. (2.5)

Then for the vector-potential A we obtain the equation

∆A + κ̄2A = jCT, (2.6)

which differs from (1.29) by the presence of one more term κ̄2A correspond-
ing to the time-dependent structure of the electromagnetic field of variations.
Equation (2.6) is the Helmholtz equation whose projections on the axis of
the spherical coordinate system can be obtained in a similar to the previous
way, keeping in mind that in (2.6) the Laplace operator is vectorial and
equal to ∆ = ∇∇ · −∇×∇×. Then
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∆Aθ +
2
r2

∂Ar
∂θ
− Aθ

r2 sin2 θ
− 2 cos θ
r2 sin2 θ

∂Aφ
∂φ

+ κ̄2Aθ = jCT
θ ,

∆Aφ −
Aφ

r2 sin2 θ
+

2
r2 sin θ

∂Ar
∂φ

+
2 cos θ
r2 sin2 θ

∂Aφ
∂φ

+ κ̄2Aφ = jCT
φ , (2.7)

∆Ar −
2
r2
Ar −

2
r2

∂Aθ
∂θ
− 2ctgθ

r2
Aθ −

2
r2 sin θ

∂Aφ
∂φ

+ κ̄2Ar = jCT
r .

Here a scalar spherical Laplace operator should be applied to each of spher-
ical components of the vector potential.

Equations (2.7) show that in the vector field, the vector-potential and the
current, exciting variations, are subject (in a spherical case) to the property
of each one of spherical components of the current to generate a respective
potential component as well as derivatives of all the three potential com-
ponents. Now let us turn to an auxiliary scalar function Q, introduced in
Chapter 1 by formula (1.5), however this time it will be a function of four
variables Q(r, θ, φ, t) ∈ C∞ and will depend on time as the magnetic and
electric fields and the parameter χ from formula (1.28), for t > 0, will be
equal to χ = −(iωµσ′)1/2. Substituting (1.5) into (2.2) and taking into
account the above-said about the function Q, will result in

H = ∇× (Qr) +∇×∇× (Qr),

E = −iωµ0(Qr)− iωµ0∇× (Qr) +
1
σ′
∇∇ · (Qr) +

1
σ′
∇∇ · ∇ × (Qr).

(2.8)

The latter term of the second formula from (2.8) automatically vanishes for
any Q. The term

−iωµ0(Qr) (2.9)

is to be excluded.
Now, following [17], we need to introduce two modifications (modes) of

the electromagnetic field: a field of the magnetic type (MT) and that of
the electric type (ET). They can be introduced having formed the above
modifications of the field by the rule of the source identity:

• MT field

HMT = ∇×∇× (Qr), EMT = −iωµ0∇× (Qr); (2.10)

• ET field

HET = ∇× (Qr), EET = −iωµ0(Qr) +
1
σ′
∇∇ · (Qr). (2.11)
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It is not difficult to understand that the fields defined in (2.10) and (2.11)
are in agreement with the classical definition of the MT and the ET-fields
[17]. At the same time it is easy to see that each of them consists of the two
earlier introduced types of fields: the MT field (defined in (2.10) consists of
the poloidal magnetic and the toroidal electric fields, while the ET-field ––
of the toroidal magnetic and poloidal electric fields. The first term from the
second formula of (2.11) is compensated by the second one, which will be
proved below.

Thus, the way of dividing variable fields into modifications (modes) dif-
fers from that generally accepted in the MGF. Nevertheless, the excitation
of the MT and the ET modes is similar to the MGF revealed in the process
of investigation. In order to detect toroidal components of the magnetic
field from jCT

θ and jCT
φ components of the toroidal current in the sources, it

is sufficient to compare formulas (2.7), (1.29) and (1.32).
Properties of a variable magnetic field are the same as of a constant field

in that the vortices of a toroidal variable field in the air do not generate
current but a poloidal field that can be essentially potential due to a weak
conductivity of the atmosphere. Thus, the presence of the toroidal part of
the magnetic field (the ET mode) in the air does not result in appearance
of a radial current through the atmosphere. The current through the atmo-
sphere does not essentially excite an observable magnetic field because of
its minor density, i.e., of order 10−12 ÷ 10−14 A/m2. On the other hand, a
toroidal non-potential magnetic field in the air is generated by quite differ-
ent current components, namely, jCT

θ - and jCT
φ -components of the toroidal

current in sources of variations. How these current components occur in
spherical layers: it makes no difference whether by the induction way as in
the Earth, or due to the dynamo-excitation or the wind as in the ionosphere.
Of importance is only the fact that the currents jCT

θ and jCT
φ flow along the

spherical ionosphere surface or in the Earth’s spherical layers. A spherical
property of the toroidal current is the first cause of occurrence of the toroidal
mode together with the ET-field in the air. Similarly, the spherical property
is the first cause of generation of the toroidal magnetic field in the air.

Scalar components of the MT- and ET-fields can be expressed through
the vector potential components and an auxiliary scalar function Q(r, θ, φ, t)
with the notation from (1.30). The MT field can be written down with the
components Aθ, Aφ and the function Q:

HMT
θ =

1
r

∂

∂r

∂

∂θ
(Qr) =

1
r

∂

∂r
rAφ,

HMT
φ =

1
r

∂

∂r

1
sin θ

∂

∂φ
(Qr) =

1
r

∂

∂r
rAθ,
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HMT
r = − 1

r2 sin θ

( ∂
∂θ

sin θ
∂(Qr)
∂θ

+
∂

∂φ

1
sin θ

∂(Qr)
∂φ

)
− 1
r sin θ

(
− ∂

∂θ

1
sin θ

Aφ +
∂Aθ
∂φ

,
)
, (2.12)

EMT
θ = −iωµ0

1
r sin θ

∂

∂φ
(Qr) = −iωµ0Aθ,

EMT
φ = −iωµ0

(
−1
r

∂

∂θ
(Qr)

)
= −iωµ0Aφ,

the ET-field–– by the component Ar and the auxiliary function Q:

HET
θ =

1
r sin θ

∂

∂φ
(Qr) =

1
r sin θ

∂

∂φ
Ar,

HET
φ = −1

r

∂

∂θ
(Qr) = −1

r

∂

∂θ
Ar,

EET
θ =

1
σ′

1
r

∂

∂θ

1
r2

∂

∂r
r2(Qr) =

1
σ′

1
r

∂

∂θ

1
r2

∂

∂r
r2Ar, (2.13)

EET
φ =

1
σ′

1
r sin θ

∂

∂φ

1
r2

∂

∂r
r2(Qr) =

1
σ′

1
r sin θ

∂

∂φ

1
r2

∂

∂r
r2Ar,

EET
r = −iωµ0(Qr) +

1
σ′

∂

∂r

1
r2

∂

∂r
r2(Qr)

= −iωµ0Ar +
1
σ′

∂

∂r

1
r2

∂

∂r
r2Ar.

It is not difficult to understand that in the latter formula of (2.13) there
is an induction term −iωµ0Ar, corresponding to the radial current in the
“Earth–Atmosphere–Ionosphere–Magnetosphere” model that is not to be
found in the air due to the presence of an essentially unconducting atmo-
sphere in the model. In [6], the compensation of the induction term by the
second potential term in the case of a variable field is specially studied. To
prove this fact, let us expand the internal and external functions Q in the
series of the form

Qi(r, θ, φ, t) =
∞∑
n=1

Kn+1/2(κr/R0)Sn(θ, φ),

Qe(r, θ, φ, 7) =
∞∑
n=1

In+1/2(κr/R0)Sn(θ, φ),

(2.14)

where κ = iωµ0σ0R
2
0 − ε0ω

2µ0R
2
0, R0 is the the Earth’s radius. The factor

eiωt in the right- and in the left-hand sides is omitted.
Formulas (2.14) as radial components include the Bessel functions of a

half-integer index and the known function Sn(θ, φ), presented by (2.14). The
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first and second derivatives, for example, of the function Qi to be used later
on, will have the form

∂Qi

∂r
=
∞∑
n=1

Sn(θ, φ)K ′n+1/2

(κr
R0

)
=
∞∑
n=1

Sn(θ, φ)×[
− κ
R0
Kn−1/2

(κr
R0

)
− n+ 1/2

r
Kn+1/2

(κr
R0

)]
,

∂2Qi

∂r2
=
∞∑
n=1

Sn(θ, φ)K ′′n+1/2

(κr
R0

)
=
∞∑
n=1

Sn(θ, φ)× (2.15)[((n+ 1/2)(n+ 3/2)
r2

+
κ2

R2
0

)
Kn+1/2

(κr
R0

) κ
rR0

Kn−1/2

(κr
R0

)]
.

Let us transform a radial component of the ET-field from (2.13):

EET
r = −iωµ0Qr+

1
σ′

∂

∂r

1
r2

∂

∂r
r2Qr =

1
σ′

[
−κ̄2Qr+r

∂2Q

∂r2
+4

∂Q

∂r

]
. (2.16)

It is required to substitute in turn the expansions of the auxiliary functions
Qi and Qe into formula (2.16) and to sum the results for obtaining the total
electric field EET

r . Let us demonstrate this only with the function Qi:

Ei,ET
r =

1
σ′

∞∑
n=1

Sn(θ, φ)
[
−κ̄2rKn+1/2

(κr
R0

)
+

r
((n+1/2)(n+3/2)

r2
+

κ2

R2
0

)
Kn+1/2

(κr
R0

)
+

κ
R0
Kn−1/2

(κr
R0

)
−

4κ
R0

Kn−1/2

(κr
R0

)
− 4(n+ 1/2)

r
Kn+1/2

(κr
R0

)]
. (2.17)

Let us present similar terms with allowance for κ2 = κ̄2R2
0. As a result, we

obtain

Ei,ET
r =

1
σ′

∞∑
n=1

Sn(θ, φ)
[
−κ̄2rKn+1/2

(κr
R0

)
+ κ̄2rKn+1/2

(κr
R0

)
+

n(n− 2)− 5/4
r

Kn+1/2

(κr
R0

)
− 3κ
R0

Kn−1/2

(κr
R0

)]
. (2.18)

It is not difficult to understand that in (2.18) the induction term disappears,
only a potential part of the Ei,ET

r -component remains, which for r = R0 on
the Earth’s surface will have the form
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Ei,ET
r =

1
σ′

∞∑
n=1

Sn(θ, φ)
(n(n− 2)− 5/4

R0
Kn+1/2(κ)− 3κ

R0
Kn−1/2(κ)

)
. (2.19)

Similar formulas can also be presented with the second auxiliary function
Qe. The result would be the same: the induction term disappears.

Thus, the EMF of the electric type consists of the toroidal magnetic and
the poloidal electric fields. In this case, the ET will be

HET = ∇× (Qr), EET =
1
σ′
∇∇ · (Qr). (2.20)

Formulas (2.10) and (2.20) prove Theorem 11 and completely correspond
to Theorem 1 which, according to the above-said, realizes the possibility of
reconstructing the poloidal and the toroidal electromagnetic fields with the
help of one scalar function by a specified normal component of the magnetic
field HMT

Pr . According to (2.10) and (2.20), the electromagnetic fields of the
MT- and the ET-modes are reconstructed on the Earth’s surface also by
means of one scalar function Q to be dependent in this case on the four
variables: three spatial coordinates and time.

2.2. On a force and a non-force components of the field of
variations in the air

In a variable field of electromagnetic variations, observed in the Earth’s
atmosphere, as follows from the previous section, two modifications of the
electromagnetic field, namely, the MT- and the ET-fields, are realized.

Now let us ask which of these modifications is a force one, i.e., which
one possesses a non-zero Lorentz force in a magnetic field, while an electric
field possesses an electromotive induction force (e.m.f.). The answer to this
question is given in the following theorem.

Theorem 12. The electromagnetic field of the Earth’s electromagnetic vari-
ations contains a force and a non-force components.

Really, a force modification consists of a poloidal magnetic and a toroidal
electromagnetic fields (HMT

P , EMT
T ). The Lorentz force for this modification

is not equal to zero, the e.m.f of induction also differs from zero. In our
definition this is a MT-field, specified by formula (2.10):

FL = [σ′EMT
T × µ0H

MT
P ] 6= 0, (2.21)

e.m.f. =
∮
L

(EMT
T · dl) =

∫
W

(∇×EMT
T · ds) = −µ0

∫
W

(∂HMT
P

∂t
· ds

)
6= 0.
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A non-force modification consists of a toroidal magnetic and a poloidal
electric fields (HET

T , EET
P ). For this modification, the Lorentz force equals

zero and the e.m.f of induction is also equal to zero [6]. In our definition
this is an ET-mode, given by (2.20):

FL = [χHET
T × µ0H

ET
T ] ≡ 0,

e.m.f. =
∫
L

(EET
p · dl) =

∫
W

(∇×EET
P · ds) ≡ 0. (2.22)

In formulas (2.22), the Lorentz force FL identically equals zero because of
the vectorial product of the toroidal magnetic field by itself equals zero due
to the coinciding direction. The constants χ and µ0 do not change the
direction. The e.m.f of induction is also identically equal to zero because
the rotor of the poloidal electric field equals zero as this field is a gradient
of a certain scalar, specified by divergence of the vector (Qr).

The two-modality of the electromagnetic fields observed on the Earth
should be taken into consideration when applying them to geophysical
prospecting with the use of natural electromagnetic fields. A non-force
magnetic field does not possess the property to excite electric current in
a medium, therefore a skin-effect is not characteristic of it. That is why a
non-force ET-mode penetrates into the Earth essentially three times as deep
as a force field [4, 5]. In the context of a non-force character of the second
mode of the EMF, it is required to measure its magnetic and electric fields
with magnetometer and electrometer, respectively.

Thus, Theorem 12 fixes the existence of force and non-force electromag-
netic fields in a weakly conducting Earth’s atmosphere. Examples of the
solar-daily variations will be given below.

2.3. On boundary conditions for the fields of
electromagnetic variations

When declining the idea of two-modality of an observed natural EMF,
a natural factor was a known boundary condition for checking the circula-
tion of a magnetic field along the Earth’s surface around a closed contour.
The supporters of such a verification usually present a well-known chain of
equalities [15]:∮

(H · dl) =
∫

(∇×H · ds) =
∫
jn · ds|jn=0 = 0, (2.23)

And since current does not flow into an essentially unconducting atmosphere
(jn ≈ 0), the product under the latter integral in (2.23) is equated to zero.
This results in a zero rotor of the magnetic field under the second integral
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in (2.23), thus confirming the potentiality of the magnetic field observed in
the atmosphere. Therefore, since a magnetic field in the air is considered to
be potential, then it cannot contain a non-potential part.

These, seemingly convincing arguments resulted in the fact that toroidal
magnetic components of the field in the air were deliberately excluded. How-
ever, following Chapter 1, a toroidal part of the magnetic field can never-
theless exist in the unconducting atmosphere owing to∮

(HET
T · dl) =

∫
(∇×HET

T · ds) =
∫
HMT
Pn · ds|HMT

Pn 6=0 6= 0, (2.24)

because of HMT
Pn 6= 0 in the air. Formula (2.24), written for a toroidal

magnetic field assigns a specific physical meaning to boundary conditions
for the magnetic field variations. According to (1.7), a toroidal field satisfies
the known property ∇×HT = HP , therefore a non-potential toroidal part
of the magnetic field of variations in the air can exist. Its vortices transfer to
a poloidal magnetic field, whose vortices, according to (2.23), are potential.

It is such a two-step transfer in the vortices of the observed magnetic
field that explains a non-potential part of the EMF of variations in the air
[7, 27] and the whole ET-mode completely.

As follows from this investigation, the source of the ET-mode is just these
torodial electric currents in a spherical source, namely, jST

θ - and jST
φ -com-

ponents. The latter (in the spherical case), in addition to the polodial part,
also generate a non-potential torodial part of the magnetic field. The pres-
ence of a torodial component in the magnetic variations field brings about
the ET-mode.

As was mentioned above, neither inside the Earth nor on its surface, be-
cause of a weak conductivity , thin, ideally conducting screens can exist and
high-permeable masses on the Earth’s surface are not observed. Therefore,
boundary conditions for magnetic fields of both types on the Earth’s surface
are standard:

(H1,MT
P −H2,MT

P )|r=R0 = 0, (H1,ET
T −H2,ET

T )|r=R0 = 0. (2.25)

Here 1 and 2 are numbers of the upper and lower parts of the surface S, R0

is the Earth’s radius.
Boundary conditions (2.25) and formula (2.24) permit the ET-modes to

a toroidal magnetic field, provided it is present, to freely penetrate into the
Earth’s atmosphere and to be measured there by magnetometers both on
the world network of magnetic observatories and at separate points of the
Earth’s surface in regional investigations.

Somewhat different are boundary conditions for an electric field of the
ET-mode. First, in (2.19) an induction term in EET

r -component is proved to
be absent. The current does not flow into the atmosphere neither from the



60 Chapter 2. Varying electromagnetic fields

Earth nor from the ionosphere. Second, boundary conditions for the vertical
and tangential components towards the Earth’s surface in the electric field
are known to be different [6]. The boundary conditions are formed based on
the behavior of currents at the interface of conducting media. Let: j0

n be a
current component that is normal from the air, jE

n be a current component
that is normal from the Earth to the interface, σ′ be complex conductivities
of the air, σ′E be the Earth’s complex conductivity, σ′I be complex conduc-
tivity of the ionosphere, E0

n, E0
t be normal and tangential components of

the electric field in the air, respectively. Then

j0
n = jE

n , hence E0
n =

1
σ′
jEn ,

1
σ′E
E1,ET
Pn =

1
σ′
E2,ET
Pn ,

j0
t

jE
t

=
σ′

σ′E
, hence E0

t =
1
σ′E
jE
t , E

1,ET
Pt = E2,ET

Pt .

(2.26)

Here indices 1 and 2 denote Earth and air, respectively.
Formulas (2.26) oblige choosing different conductivities as starting point

of calculation of electric components of the ET-mode: in the radial compo-
nent––conductivity of the air σ′, in the horizontal components––conductivity
of the Earth’s upper layer σ′E or conductivity of the ionosphere σ′I for the
external field. When calculating, this difference in levels of reading electric
components of the ET-mode should be understood and taken into account.

From definition (2.10) for a torodial electric field of the MT-mode, au-
tomatically follow its boundary conditions:

(E1,MT
T −E2,MT

T )|r=R0 = 0, EMT
Tn = 0.

Thus, the formulated boundary conditions for electromagnetic fields make
possible to construct with confidence the two-modality theories of a natural
electromagnetic field of variations, bearing in mind that the spherical fea-
ture of the Earth along with that of the ionosphere as well as the spherical
feature of the MGF sources and its variations allow the existence of a two-
modality field in the air. A variable toroidal magnetic field in the air can be
present, being non-potential, however, it does not generate electric currents
neither at the expense of a magnetic nor at the expense of an electric field.

2.4. Interpolation decompositions of a two-modality
electromagnetic field of variations at instants of

its current system

Similar to the above, it is required to propose decompositions of a two-
modality electromagnetic field of global electromagnetic variations in the
air. Such decompositions are presented in [3]. Let us recall the main stages
of their derivation.
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One must bear in mind that sources of the field of variations can exist
both in the Earth and outside it, that is why equation (2.6) decomposes into
two equations (for internal and external sources):

∆Ai + κ̄2Ai = jEC
i ,

∆Ae + κ̄2Ae = jEC
e .

(2.27)

Solutions to these equations in the air are of the form

Ai(p) =
1

4π

∫
W

jEC
i (q)

e−iκ̄R(p,q)

R(p, q)
dϑq, r ≥ R0,

Ae(q) =
1

4π

∫
G

jEC
e (p)

eiκ̄R(p,q)

R(p, q)
dϑp, r ≤ R0 + h.

(2.28)

Here p is a point outside the Earth, q is a point in the Earth, h is a height
up to the ionosphere, jEC

i (q) are electric currents in the Earth, jEC
e (p) are

electric currents in the ionosphere and outside it, R0 is the Earth’s radius.
The first integral represents a potential of internal sources. It is analyti-

cal at all the points p for r ≥ R0. At the internal points of the sphere W for
R→ 0 a peculiarity of the form 1/R holds, which is excluded by an appro-
priate selection of a spherical Bessel function of a half-integer index tending
to zero in zero. This is also in agreement with the physics of the event, as
sources of most of variations are damping with depth due to the skin-effect
since they are induced by the field of external origin. Integral (2.28) provides
the fulfilment of the radiation condition for the fields of external sources at
infinity. It is analytical at all the points q for r ≤ R0 + h except for the
points, where R = 0, having a peculiarity of the form 1/R to be excluded
by an appropriate selection of the Bessel function. This integral has a pe-
culiarity at infinity thus allowing one to provide a prescribed growth of the
field when approaching an external source. Since the integral in question is
applied to a limited domain, occupied with the atmosphere, the peculiarity
occurring at infinity does not directly influence the calculation of the field
in the atmosphere.

Similar to the known expansions of the function 1/R, it is now needed
to expand in spherical functions the fundamental solutions exp(± iκ̄R)/R.
Clearly, due to symmetry, these expansions should differ from the Gauss
expansions only by the law of a change in the spherical coordinates r and r′

in the manner required by the physics of sources. An important factor is the
fulfilment of the condition of transferring the new expansions to the Gauss
expansions for the fields of external and internal sources, respectively, for
κ̄2 → 0.
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Thus, let us write down expansions of required functions using as radial
the spherical Bessel functions in the Morze definition:

exp(−iκ̄R)/R =
∞∑
n=1

n∑
m=0

c̄mn cosmϕ cosmϕ′Pmn (cos θ)Pmn (cos θ′)×

Kn+1/2

(κr
R0

)
In+1/2

(κr′

R0

)
+

c̄mn sinmϕ sinmϕ′Pmn (cos θ)Pmn (cos θ′)×

Kn+1/2

(κr
R0

)
In+1/2

(κr′

R0

)
, r ≥ R0. (2.29)

Similarly, for the function with a positive exponent

exp(iκ̄R)/R =
∞∑
n=1

n∑
m=0

c̄mn cosmϕ cosmϕ′Pmn (cos θ)Pmn (cos θ′)×

In+1/2

(κr
R0

)
Kn+1/2

(κr′

R0

)
+

c̄mn sinmϕ sinmϕ′Pmn (cos θ)Pmn (cos θ′)×

In+1/2

(κr
R0

)
Kn+1/2

(κr′

R0

)
, r ≤ R0 + h. (2.30)

In formulas (2.29) and (2.30), the coefficient c̄mn means the number of
combinations from n by m. If the wave number κ tends to zero, then
due to the asymptotic behavior of the spherical Bessel functions with small
arguments, products of these functions of the first and second kinds yield a
needed relation of radii, and the formulas as a whole, transfer to the Gauss
expansions for the function 1/R.

Expansion (2.29) is used when integrating over the domain W (the
Earth), therefore the functions of the coordinates with a prime, entering it,
exclude the peculiarity in zero. Functions with coordinates without primes
do not realize this peculiarity because the expansion in them is used only
for r ≥ R0.

Expansion (2.30) is applied when integrating over the domain G (the
ionosphere), therefore the functions of the coordinates with a prime used for
integration exclude this peculiarity at infinity. The functions of coordinates
without prime are given for r ≤ R0 + h, therefore their peculiarity is not
realized at infinity: they tend in zero to zero.

The convergence of expansions (2.29) and (2.30) for r = R0 is not worse
than that of Fourier series [17], which converge absolutely and uniformly,
that is why their substitution into integrals (2.28) changing places of in-
tegration and summation are possible. Let us make use of this possibility
without reserve.
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In the rectangular coordinate system, fixed at the Earth’s center, inte-
grals (2.28) can be expanded in components along the coordinate axes:

Ai
x(p) =

1
4π

∫
W

jEC
ix (q)

e−iκ̄R(p,q)

R(p, q)
dvq,

Ai
y(p) =

1
4π

∫
W

jEC
iy (q)

e−iκ̄R(p,q)

R(p, q)
dvq,

Ai
z(p) =

1
4π

∫
W

jEC
iz (q)

e−iκ̄R(p,q)

R(p, q)
dvq, r ≥ R0, (2.31)

Ae
x(q) =

1
4π

∫
G

jEC
ex (p)

eiκ̄R(p,q)

R(p, q)
dvp,

Ae
y(q) =

1
4π

∫
G

jEC
ey (p)

eiκ̄R(p,q)

R(p, q)
dvp,

Ae
z(q) =

1
4π

∫
G

jEC
ez (p)

eiκ̄R(p,q)

R(p, q)
dvp, r ≤ R0 + h.

It is now required to substitute expansions (2.29) and (2.30) into (2.31),
to gather under integrals the functions of coordinates with a prime. This
allows us to denote integrals with constants. For constant internal sources,
the following presentations are valid:

κmn =
c̄mn
4π

∫
W

jEC
ix (q) cosmϕ′Pmn (cos θ′)In+1/2

(κr′

R0

)
dv′,

ρmn =
c̄mn
4π

∫
W

jEC
ix (q) sinmϕ′Pmn (cos θ′)In+1/2

(κr′

R0

)
dv′,

µmn =
c̄mn
4π

∫
W

jEC
iy (q) cosmϕ′Pmn (cos θ′)In+1/2

(κr′

R0

)
dv′, (2.32)

νmn =
c̄mn
4π

∫
W

jEC
iy (q) sinmϕ′Pmn (cos θ′)In+1/2

(κr′

R0

)
dv′,

umn =
c̄mn
4π

∫
W

jEC
iz (q) cosmϕ′Pmn (cos θ′)In+1/2

(κr′

R0

)
dv′,

vmn =
c̄mn
4π

∫
W

jEC
iz (q) sinmϕ′Pmn (cos θ′)In+1/2

(κr′

R0

)
dv′.
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For arbitrary constant external sources it is necessary to introduce similar
presentations:

amn =
c̄mn
4π

∫
G

jEC
ex (p) cosmϕ′Pmn (cos θ′)Kn+1/2

(κr′

R0

)
dv′,

bmn =
c̄mn
4π

∫
G

jEC
ex (p) sinmϕ′Pmn (cos θ′)Kn+1/2

(κr′

R0

)
dv′,

cmn =
c̄mn
4π

∫
G

jEC
ey (p) cosmϕ′Pmn (cos θ′)Kn+1/2

(κr′

R0

)
dv′, (2.33)

dmn =
c̄mn
4π

∫
G

jEC
ey (p) sinmϕ′Pmn (cos θ′)Kn+1/2

(κr′

R0

)
dv′,

emn =
c̄mn
4π

∫
G

jEC
ez (p) cosmϕ′Pmn (cos θ′)Kn+1/2

(κr′

R0

)
dv′,

fmn =
c̄mn
4π

∫
G

jEC
ez (p) sinmϕ′Pmn (cos θ′)Kn+1/2

(κr′

R0

)
dv′.

With allowance for the notations from (2.32) and (2.33) as well as for for-
mulas of transferring the rectangular components to spherical ones (2.2) by
substituting expansions (2.29) and (2.30) into (2.31), it is possible to obtain
expansions for potentials of internal and external sources:

Aiθ(p) =
∞∑
n=1

n∑
m=0

[
(κmn cosmϕ+ ρmn sinmϕ) cos θ cosϕ+ (2.34)

(µmn cosmϕ+ νmn sinmϕ) cos θ cosϕ−

(umn cosmϕ+ vmn sinmϕ) sin θ
]
Pmn (cos θ)Kn+1/2

(κr
R0

)
,

Aiϕ(p) =
∞∑
n=1

n∑
m=0

[
− (κmn cosmϕ+ ρmn sinmϕ) sinϕ+

(µmn cosmϕ+ νmn sinmϕ) cosϕ
]
Pmn (cos θ)Kn+1/2

(κr
R0

)
,

Air(p) =
∞∑
n=1

n∑
m=0

[
(κmn cosmϕ+ ρmn sinmϕ) sin θ cosϕ+

(µmn cosmϕ+ νmn sinmϕ) sin θ sinϕ+

(umn cosmϕ+ vmn sinmϕ) cos θ
]
Pmn (cos θ)Kn+1/2

(κr
R0

)
, r≥R0,
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Aeθ(q) =
∞∑
n=1

n∑
m=0

[
(amn cosmϕ+ bmn sinmϕ) cos θ cosϕ+

(cmn cosmϕ+ dmn sinmϕ) cos θ cosϕ−

(emn cosmϕ+ fmn sinmϕ) sin θ
]
Pmn (cos θ)In+1/2

(κr
R0

)
,

Aeϕ(q) =
∞∑
n=1

n∑
m=0

[−(amn cosmϕ+ bmn sinmϕ) sinϕ+

(cmn cosmϕ+ dmn sinmϕ) cosϕ
]
Pmn (cos θ)In+1/2

(κr
R0

)
,

Aer(q) =
∞∑
n=1

n∑
m=0

[
(amn cosmϕ+ bmn sinmϕ) sin θ cosϕ+

(cmn cosmϕ+ dmn sinmϕ) sin θ sinϕ+

(emn cosmϕ+fmn sinmϕ) cos θ
]
Pmn (cos θ)In+1/2

(κr
R0

)
, r ≤ R0 + h.

The analysis of expansions of the potentials of internal and external
sources (2.34) has revealed that in the given approach all the three compo-
nents of the potential both of internal and external sources are expressed
through the same coefficients, which are integrals of the respective compo-
nents of the current density, generating both the poloidal and the toroidal
parts of the observed field. The obtained expansions of the potentials con-
tain 12 types of constant coefficients subject to determination. For their
determination, one reasonably needs more information about the observed
field, i.e., the data obtained from a greater number of points. Below we
can check that the lack of the number of points benefits in the components
of the field needed for measurements. In our case, it is sufficient to mea-
sure two components of a magnetic field: one vertical and one tangential in
order to reconstruct all the magnetic and electric components of the field,
to separate fields from external and internal sources, as evidenced by the
corresponding theorem. This fact is of importance for the current geophys-
ical practice, because most of stations of the world network measure only
magnetic components.

In order to obtain expansions of the EMF of the magnetic type of inter-
nal sources, it is necessary to substitute the first three components of the
potential from (2.34) into (2.12). As a result, we come to

H i,MT
θ =

∞∑
n=1

n∑
m=0

[
(κmn cosmϕ+ ρmn sinmϕ) sinϕ− (2.35)

(µmn cosmϕ+ νmn sinmϕ) cosϕ
]
×

Pmn (cos θ)
(
n− 1/2

r
Kn+1/2

(κr
R0

)
− κ
R0
Kn−1/2

(κr
R0

))
,
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H i,MT
ϕ =

∞∑
n=1

n∑
m=0

[
(κmn cosmϕ+ ρmn sinmϕ) cos θ cosϕ+

(µmn cosmϕ+ νmn sinmϕ) cos θ sinϕ−

(umn cosmϕ+ vmn sinmϕ) sin θ
]
×

Pmn (cos θ)
(
−n−1/2

r
Kn+1/2

(κr
R0

)
− κ
R0
Kn−1/2

(κr
R0

))
,

H i,MT
r =

∞∑
n=1

n∑
m=0

[
κmn
(

cosmϕ sinϕ
∂Pmn (cos θ)

∂θ
−

m sinmϕ cosϕ ctg θPmn (cos θ)
)

+

ρmn

(
sinmϕ sinϕ

∂Pmn (cos θ)
∂θ

+m cosmϕ cosϕ ctg θPmn (cos θ)
)
−

µmn

(
cosmϕ cosϕ

∂Pmn (cos θ)
∂θ

+m sinmϕ sinϕ ctg θPmn (cos θ)
)
−

νmn

(
sinmϕ cosϕ

∂Pmn (cos θ)
∂θ

−m cosmϕ sinϕ ctg θPmn (cos θ)
)
−

(vmn cosmϕ− umn sinmϕ)mPmn (cos θ)
]1
r
Kn+1/2

(κr
R0

)
,

Ei,MT
θ =

∞∑
n=1

n∑
m=0

−iωµ0

[
(κmn cosmϕ+ ρmn sinmϕ) cos θ cosϕ+

(µmn cosmϕ+ νmn sinmϕ) cos θ sinϕ−

(umn cosmϕ+ vmn sinmϕ) sin θ
]
Pmn (cos θ)Kn+1/2

(κr
R0

)
,

Ei,MT
ϕ =

∞∑
n=1

n∑
m=0

iωµ0

[
(κmn cosmϕ+ ρmn sinmϕ) sinϕ−

(µmn cosmϕ+ νmn sinmϕ) cosϕ
]
Pmn (cos θ)Kn+1/2

(κr
R0

)
.

The ET-field of internal sources has the following expansions

H i,ET
θ =

∞∑
n=1

n∑
m=0

[
−κmn (m sinmϕ cosϕ+ cosmϕ sinϕ) + (2.36)

ρmn (m cosmϕ cosϕ− sinmϕ sinϕ)−
µmn (m sinmϕ sinϕ− cosmϕ cosϕ) +

νmn (m cosmϕ sinϕ+ sinmϕ cosϕ) +

(vmn cosmϕ− umn sinmϕ)m ctg θ
]
Pmn (cos θ)

1
r
Kn+1/2

(κr
R0

)
,
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H i,ET
ϕ = −

∞∑
n=1

n∑
m=0

[
κmn cosmϕ cosϕ×

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
+

ρmn sinmϕ cosϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

µmn cosmϕ sinϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

νmn sinmϕ sinϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

umn cosmϕ
(

cos θ
∂

∂θ
Pmn (cos θ)− sin θPmn (cos θ)

)
+

vmn sinmϕ
(

cos θ
∂

∂θ
Pmn (cos θ)− sin θPmn (cos θ)

)]1
r
Kn+1/2

(κr
R0

)
,

Ei,ET
θ =

−1
σ′r

∞∑
n=1

n∑
m=0

[
κmn cosmϕ cosϕ

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
+

ρmn sinmϕ cosϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

µmn cosmϕ sinϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

νmn sinmϕ sinϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

umn cosmϕ
(

cos θ
∂Pmn (cos θ)

∂θ
− sin θPmn (cos θ)

)
+

vmn sinmϕ
(

cos θ
∂Pmn (cos θ)

∂θ
− sin θPmn (cos θ)

)]
×(n− 3/2

r
Kn+1/2

(κr
R0

)
+

κ
R0
Kn−1/2

(κr
R0

))
,

Ei,ET
ϕ =

−1
σ′r

∞∑
n=1

n∑
m=0

{[
− κmn (m sinmϕ cosϕ+ cosmϕ sinϕ) +

ρmn (m cosmϕ cosϕ− sinmϕ sinϕ)−
µmn (m sinmϕ sinϕ− cosmϕ cosϕ) +

νmn (m cosmϕ sinϕ+ sinmϕ cosϕ)
]
Pmn (cos θ)−

(umn sinmϕ− vmn cosmϕ)m ctg θPmn (cos θ)
}
×(n− 3/2

r
Kn+1/2

(κr
R0

)
+

κ
R0
Kn−1/2

(κr
R0

))
,
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Ei,ET
r =

1
σ′r

∞∑
n=1

n∑
m=0

[
(κmn cosmϕ+ ρmn sinmϕ) sin θ cosϕ+

(µmn cosmϕ+ νmn sinmϕ) sin θ sinϕ+

(umn cosmϕ+ vmn sinmϕ) cos θ
]
Pmn (cos θ)×[(

−κ̄2r2 + n2 − 9/4+
κ2r2

R2
0

)1
r
Kn+1/2

(κr
R0

)
− κ
R0
Kn−1/2

(κr
R0

)]
.

The analysis of the latter formulas has revealed that both types of the
fields are expressed through the same coefficients. In addition, the coeffi-
cients of expansions (2.35) and (2.36) testify to the fact that it is sufficient to
measure the vertical component of the magnetic field H i,MT

r for reconstruct-
ing the whole electromagnetic field of the MT- and ET-modes of internal
sources. This essentially amplifies the value of Theorem 1, as it solves, in
addition, the problem of reconstructing variables of electromagnetic fields
that are regular with respect to time. On the Earth’s surface, the electric
field of the ET-mode is potential for r = R0. The induction part of the
radial component Ei,ETr has been compensated.

The fields of the magnetic and electric types from external sources in
expansions are written down as follows.

The MT-field for r ≤ R0 + h:

He,MT
θ =

∞∑
n=1

n∑
m=0

[
(amn cosmϕ+ bmn sinmϕ) sinϕ− (2.37)

(cmn cosmϕ+ dmn sinmϕ) cosϕ
]
×

Pmn (cos θ)
( κ
R0
In−1/2

(κr
R0

)
− n− 1/2

r
In+1/2

(κr
R0

))
,

He,MT
ϕ =

∞∑
n=1

n∑
m=0

[
(amn cosmϕ+ bmn sinmϕ) cos θ cosϕ+

(cmn cosmϕ+ dmn sinmϕ) cos θ sinϕ−
(emn cosmϕ+ fmn sinmϕ) sin θ

]
×

Pmn (cos θ)
( κ
R0
In−1/2

(κr
R0

)
− n− 1/2

r
In+1/2

(κr
R0

))
,

He,MT
r =

∞∑
n=1

n∑
m=0

[
amn

(
cosmϕ sinϕ

∂Pmn (cos θ)
∂θ

−

sinmϕ cosϕm ctg θPmn (cos θ)
)

+

bmn

(
sinmϕ sinϕ

∂

∂θ
Pmn (cos θ) + cosmϕ cosϕm ctg θPmn (cos θ)

)
−
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cmn

(
cosmϕ cosϕ

∂

∂θ
Pmn (cos θ) + sinmϕ sinϕm ctg θPmn (cos θ)

)
−

dmn

(
sinmϕ cosϕ

∂

∂θ
Pmn (cos θ)− cosmϕ sinϕm ctg θPmn (cos θ)

)
−

(fmn cosmϕ− emn sinmϕ)mPmn (cos θ)
]1
r
In+1/2

(κr
R0

)
,

Ee,MT
θ = −iωµ0

∞∑
n=1

n∑
m=0

[
(amn cosmϕ+ bmn sinmϕ) cos θ cosϕ+

(cmn cosmϕ+ dmn sinmϕ) cos θ sinϕ−

(emn cosmϕ+ fmn sinmϕ) sin θ
]
Pmn (cos θ)In+1/2

(κr
R0

)
,

Ee,MT
ϕ = iωµ0

∞∑
n=1

n∑
m=0

[
(amn cosmϕ+ bmn sinmϕ) sinϕ−

(cmn cosmϕ+ dmn sinmϕ) cosϕ
]
Pmn (cos θ)In+1/2

(κr
R0

)
.

The ET-field of external sources for r ≤ R0 +h is calculated in a similar
way:

He,ET
θ =

∞∑
n=1

n∑
m=0

[
−amn (m sinmϕ cosϕ+ cosmϕ sinϕ) + (2.38)

bmn (m cosmϕ cosϕ− sinmϕ sinϕ)−
cmn (m sinmϕ sinϕ− cosmϕ cosϕ) +
dmn (m cosmϕ sinϕ+ sinmϕ cosϕ)−

(emn sinmϕ− fmn cosmϕ)m ctg θ
]
Pmn (cos θ)

1
r
In+1/2

(κr
R0

)
,

He,ET
ϕ = −

∞∑
n=1

n∑
m=0

[
amn cosmϕ cosϕ×

(
cos θPmn (cos θ) + sin θ

∂

∂θ
Pmn (cos θ)

)
+

bmn sinmϕ cosϕ
(

cos θPmn (cos θ) + sin θ
∂

∂θ
Pmn (cos θ)

)
+

cmn cosmϕ sinϕ
(

cos θPmn (cos θ) + sin θ
∂

∂θ
Pmn (cos θ)

)
+

dmn sinmϕ sinϕ
(

cos θPmn (cos θ) + sin θ
∂

∂θ
Pmn (cos θ)

)
+

emn cosmϕ
(

cos θ
∂

∂θ
Pmn (cos θ)− sin θPmn (cos θ)

)
+

fmn sinmϕ
(

cos θ
∂

∂θ
Pmn (cos θ)− sin θPmn (cos θ)

)]1
r
In+1/2

(κr
R0

)
,
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Ee,ET
θ =

−1
σ′r

∞∑
n=1

n∑
m=0

[
amn cosmϕ cosϕ×

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
+

bmn sinmϕ cosϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

cmn cosmϕ sinϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

dmn sinmϕ sinϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

emn cosmϕ
(

cos θ
∂

∂θ
Pmn (cos θ)− sin θPmn (cos θ)

)
+

fmn sinmϕ
(

cos θ
∂

∂θ
Pmn (cos θ)− sin θPmn (cos θ)

)]
×(

− κ
R0
In−1/2

(κr
R0

)
+
n− 3/2

r
In+1/2

(κr
R0

))
,

Ee,ET
ϕ =

−1
σ′r

∞∑
n=1

n∑
m=0

[
−amn (m sinmϕ cosϕ+ cosmϕ sinϕ) +

bmn (m cosmϕ cosϕ− sinmϕ sinϕ)−
cmn (m sinmϕ sinϕ− cosmϕ cosϕ) +
dmn (m cosmϕ sinϕ+ sinmϕ cosϕ)−
(emn sinmϕ− fmn cosmϕ)m ctg θ

]
Pmn (cos θ)×(

− κ
R0
In−1/2

(κr
R0

)
+
n− 3/2

r
In+1/2

(κr
R0

))
,

Ee,ET
r =

1
σ′r

∞∑
n=1

n∑
m=0

[
(amn cosmϕ+ bmn sinmϕ) sin θ cosϕ+

(cmn cosmϕ+ dmn sinmϕ) sin θ sinϕ+

(emn cosmϕ+ fmn sinmϕ) cos θ
]
Pmn (cos θ)×[(

−κ̄2r2 + n2 − 9/4 +
κ2r2

R2
0

)1
r
In+1/2

(κr
R0

)
+

κ
R0
In−1/2

(κr
R0

)]
.

The ET-field from external sources is also expressed through the same
coefficients. The ET-field is completely poloidal, the induction part of the
radial component of the electric field on the Earth’s surface being compen-
sated for r = R0, as κ̄2R2

0 = κ2.
The total field of the MT- and the ET-modes is obtained by superposition

of fields of internal and external sources. As a result, we arrive at the
equations, separating unknown coefficients:
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κmn

1
r
Kn+1/2

(κr
R0

)
+ amn

1
r
In+1/2

(κr
R0

)
= imn ,

−κmn
κ
R0
Kn−1/2

(κr
R0

)
+ amn

κ
R0
In−1/2

(κr
R0

)
= īmn ,

ρmn
1
r
Kn+1/2

(κr
R0

)
+ bmn

1
r
In+1/2

(κr
R0

)
= jmn ,

−ρmn
κ
R0
Kn−1/2

(κr
R0

)
+ bmn

κ
R0
In−1/2

(κr
R0

)
= j̄mn ,

µmn
1
r
Kn+1/2

(κr
R0

)
+ cmn

1
r
In+1/2

(κr
R0

)
= kmn ,

−µmn
κ
R0
Kn−1/2

(κr
R0

)
+ cmn

κ
R0
In−1/2

(κr
R0

)
= k̄mn ,

(2.39)


νmn

1
r
Kn+1/2

(κr
R0

)
+ dmn

1
r
In+1/2

(κr
R0

)
= lmn ,

−νmn
κ
R0
Kn−1/2

(κr
R0

)
+ dmn

κ
R0
In−1/2

(κr
R0

)
= l̄mn ,

umn
1
r
Kn+1/2

(κr
R0

)
+ emn

1
r
In+1/2

(κr
R0

)
= qmn ,

−umn
κ
R0
Kn−1/2

(κr
R0

)
+ emn

κ
R0
In−1/2

(κr
R0

)
= q̄mn ,

vmn
1
r
Kn+1/2

(κr
R0

)
+ fmn

1
r
In+1/2

(κr
R0

)
= pmn ,

−vmn
κ
R0
Kn−1/2

(κr
R0

)
+ fmn

κ
R0
In−1/2

(κr
R0

)
= p̄mn .

The total field of the MT-mode on the Earth’s surface for r = R0 looks
like

HMT
θ =

∞∑
n=1

n∑
m=0

[(̄
imn − (n− 1/2)imn

)
cosmϕ sinϕ+ (2.40)

(
j̄mn − (n− 1/2)jmn

)
sinmϕ sinϕ−(

k̄mn − (n− 1/2)kmn
)

cosmϕ cosϕ−(
l̄mn − (n− 1/2)lmn

)
sinmϕ cosϕ

]
Pmn (cos θ),

HMT
ϕ =

∞∑
n=1

n∑
m=0

[(̄
imn − (n− 1/2)imn

)
cosmϕ cosϕ cos θ +

(
j̄mn − (n− 1/2)jmn

)
sinmϕ cosϕ cos θ +(

k̄mn − (n− 1/2)kmn
)

cosmϕ sinϕ cos θ +(
l̄mn − (n− 1/2)lmn

)
sinmϕ sinϕ cos θ −



72 Chapter 2. Varying electromagnetic fields(
q̄mn − (n− 1/2)qmn

)
cosmϕ sin θ −(

p̄mn − (n− 1/2)pmn
)

sinmϕ sin θ
]
Pmn (cos θ),

HMT
r =

∞∑
n=1

n∑
m=0

imn

(
cosmϕ sinϕ

∂Pmn (cos θ)
∂θ

−

sinmϕ cosϕm ctg θPmn (cos θ)
)

+

jmn

(
sinmϕ sinϕ

∂Pmn (cos θ)
∂θ

+ cosmϕ cosϕm ctg θPmn (cos θ)
)
−

kmn

(
cosmϕ cosϕ

∂Pmn (cos θ)
∂θ

+ sinmϕ sinϕm ctg θPmn (cos θ)
)
−

lmn

(
sinmϕ cosϕ

∂Pmn (cos θ)
∂θ

− cosmϕ sinϕm ctg θPmn (cos θ)
)
−

(pmn cosmϕ− qmn sinmϕ)mPmn (cos θ),

EMT
θ = −iωµ0R0

∞∑
n=1

n∑
m=0

(
imn cosmϕ cosϕ cos θ + jmn sinmϕ cosϕ cos θ +

kmn cosmϕ sinϕ cos θ + lmn sinmϕ sinϕ cos θ −

qmn cosmϕ sin θ − pmn sinmϕ sin θ
)
Pmn (cos θ),

EMT
ϕ = iωµ0R0

∞∑
n=1

n∑
m=0

(
imn cosmϕ sinϕ+ jmn sinmϕ sinϕ−

kmn cosmϕ cosϕ− lmn sinmϕ cosϕ
)
Pmn (cos θ),

The total field of the ET-mode on the Earth’s surface for r = R0 has the
form

HET
θ =

∞∑
n=1

n∑
m=0

[
−imn (m sinmϕ cosϕ+ cosmϕ sinϕ) + (2.41)

jmn (m cosmϕ cosϕ− sinmϕ sinϕ)−
kmn (m sinmϕ sinϕ− cosmϕ cosϕ) +

lmn (m cosmϕ sinϕ+ sinmϕ cosϕ)−

(qmn sinmϕ− pmn cosmϕ)m ctg θ
]
Pmn (cos θ),

HET
ϕ = −

∞∑
n=1

n∑
m=0

imn cosmϕ cosϕ×

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
+
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jmn sinmϕ cosϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

kmn cosmϕ sinϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

lmn sinmϕ sinϕ
(

cos θPmn (cos θ) + sin θ
∂Pmn (cos θ)

∂θ

)
+

qmn cosmϕ
(

cos θ
∂Pmn (cos θ)

∂θ
− sin θPmn (cos θ)

)
+

pmn sinmϕ
(

cos θ
∂Pmn (cos θ)

∂θ
− sin θPmn (cos θ)

)
,

EET
θ =

1
σ′ER0

∞∑
n=1

n∑
m=0

(̄
imn − (n− 3/2)imn

)
cosmϕ cosϕ×

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
+(

j̄mn −(n−3/2)jmn
)

sinmϕ cosϕ
(

cos θPmn (cos θ)+ sin θ
∂Pmn (cos θ)

∂θ

)
+(

k̄mn −(n−3/2)kmn
)

cosmϕ sinϕ
(

cos θPmn (cos θ)+ sin θ
∂Pmn (cos θ)

∂θ

)
+(

l̄mn −(n−3/2)lmn
)

sinmϕ sinϕ
(

cos θPmn (cos θ)+ sin θ
∂Pmn (cos θ)

∂θ

)
+(

q̄mn −(n−3/2)qmn
)

cosmϕ
(

cos θ
∂Pmn (cos θ)

∂θ
− sin θPmn (cos θ)

)
+(

p̄mn −(n−3/2)pmn
)

sinmϕ
(

cos θ
∂Pmn (cos θ)

∂θ
− sin θPmn (cos θ)

)
,

EET
ϕ =

1
σ′ER0

∞∑
n=1

n∑
m=0

[
−
(̄
imn − (n− 3/2)imn

)
×

(m sinmϕ cosϕ+ cosmϕ sinϕ) +(
j̄mn − (n− 3/2)jmn

)
(m cosmϕ cosϕ− sinmϕ sinϕ)−(

k̄mn − (n− 3/2)kmn
)
(m sinmϕ sinϕ− cosmϕ cosϕ) +(

l̄mn − (n− 3/2)lmn
)
(m cosmϕ sinϕ+ sinmϕ cosϕ)−(

q̄mn − (n− 3/2)qmn
)

sinmϕm ctg θ +(
p̄mn − (n− 3/2)pmn

)
cosmϕm ctg θ

]
Pmn (cos θ),

EET
r =

1
σ′R0

∞∑
n=1

n∑
m=0

[(̄
imn + (n2 − 9/4)imn

)
cosmϕ cosϕ sin θ +(

j̄mn + (n2 − 9/4)jmn
)

sinmϕ cosϕ sin θ +(
k̄mn + (n2 − 9/4)kmn

)
cosmϕ sinϕ sin θ +(

l̄mn + (n2 − 9/4)lmn
)

sinmϕ sinϕ sin θ +
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q̄mn + (n2 − 9/4)qmn

)
cosmϕ cos θ +(

p̄mn + (n2 − 9/4)pmn
)

sinmϕ cos θ
]
Pmn (cos θ).

The total field of variations, observed on the Earth’s surface, is obtained
by superposition of the MT- and the ET-fields. When implementing such
a superposition one needs to take into consideration two more important
circumstances. The first is in that in practice (at stations) Hθ-component is
observed with a reverse sign (a measuring device is generally oriented to the
North), values of intensity in components observed being given in nanotesla
(nT).

The second circumstance is in that the intensity of electric components is
measured in volts per meter (V/m), therefore the above-obtained formulas
should be multiplied by the transfer coefficient 10−2/4π. We must also keep
in mind that all the formulas presented have been obtained obtained for
one temporal harmonic. The observed field contains a great number of such
harmonics, therefore before carrying out the spherical analysis, for which all
the formulas were obtained, the Fourier harmonic analysis is made, whose
description for the sake of simplicity is omitted.

Thus, components of the total observed field of global electromagnetic
variations of the Earth’s MGF have the following expansions

Hθ = −
∞∑
n=1

n∑
m=0

[̄
imn cosmϕ sinϕ+ j̄mn sinmϕ sinϕ− (2.42)

k̄mn cosmϕ cosϕ− l̄mn sinmϕ cosϕ−
imn
(
m sinmϕ cosϕ+ (n+ 1/2) cosmϕ sinϕ

)
+

jmn
(
m cosmϕ cosϕ− (n+ 1/2) sinmϕ sinϕ

)
−

kmn
(
m sinmϕ sinϕ− (n+ 1/2) cosmϕ cosϕ

)
+

lmn
(
m cosmϕ sinϕ+ (n+ 1/2) sinmϕ cosϕ

)
+

(pmn cosmϕ− qmn sinmϕ)m ctg θ
]
Pmn (cos θ),

Hϕ =
∞∑
n=1

n∑
m=0

[̄
imn cosmϕ cosϕ cos θ + j̄mn sinmϕ cosϕ cos θ +

k̄mn cosmϕ sinϕ cos θ + l̄mn sinmϕ sinϕ cos θ −
(p̄mn sinmϕ+ q̄mn cosmϕ) sin θ

]
Pmn (cos θ)−

imn

(
(n+1/2) cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
cosmϕ cosϕ−

jmn

(
(n+1/2) cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
sinmϕ cosϕ−

kmn

(
(n+1/2) cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
cosmϕ sinϕ−
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lmn

(
(n+1/2) cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)
sinmϕ sinϕ−

pmn

(
cos θ

∂Pmn (cos θ)
∂θ

− (n+1/2) sin θPmn (cos θ)
)

sinmϕ−

qmn

(
cos θ

∂Pmn (cos θ)
∂θ

− (n+ 1/2) sin θPmn (cos θ)
)

cosmϕ,

Hr =
∞∑
n=1

n∑
m=0

imn

(
cosmϕ sinϕ

∂Pmn (cos θ)
∂θ

−

sinmϕ cosϕm ctg θPmn (cos θ)
)

+

jmn

(
sinmϕ sinϕ

∂Pmn (cos θ)
∂θ

+ cosmϕ cosϕm ctg θPmn (cos θ)
)
−

kmn

(
cosmϕ cosϕ

∂Pmn (cos θ)
∂θ

+ sinmϕ sinϕm ctg θPmn (cos θ)
)
−

lmn

(
sinmϕ cosϕ

∂Pmn (cos θ)
∂θ

− cosmϕ sinϕm ctg θPmn (cos θ)
)
−

(pmn cosmϕ− qmn sinmϕ)mPmn (cos θ),

Eθ =
10−2

4πσ′ER0

∞∑
n=1

n∑
m=0

[
−imn

(
(κ2 + n− 3/2) cos θPmn (cos θ) +

(n− 3/2) sin θ
∂Pmn (cos θ)

∂θ

)
+

īmn

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)]
cosmϕ cosϕ+[

−jmn
(

(κ2+n−3/2) cos θPmn (cos θ)+(n−3/2) sin θ
∂Pmn (cos θ)

∂θ

)
+

j̄mn

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)]
sinmϕ cosϕ+[

−kmn
(
(κ2+n−3/2) cos θPmn (cos θ)+(n−3/2) sin θ

∂Pmn (cos θ)
∂θ

)
+

k̄mn

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)]
cosmϕ sinϕ+[

−lmn
(
(κ2+n−3/2) cos θPmn (cos θ)+(n−3/2) sin θ

∂Pmn (cos θ)
∂θ

)
+

l̄mn

(
cos θPmn (cos θ) + sin θ

∂Pmn (cos θ)
∂θ

)]
sinmϕ sinϕ+[

qmn

(
(κ2+n−3/2) sin θPmn (cos θ)−(n−3/2) cos θ

∂Pmn (cos θ)
∂θ

)
+

q̄mn

(
cos θ

∂Pmn (cos θ)
∂θ

− sin θPmn (cos θ)
)]

cosmϕ+
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pmn

(
(κ2+n−3/2) sin θPmn (cos θ)−(n−3/2) cos θ

∂Pmn (cos θ)
∂θ

)
−

p̄mn

(
cos θ

∂Pmn (cos θ)
∂θ

− sin θPmn (cos θ)
)]

sinmϕ,

Eϕ =
10−2

4πσ′ER0

∞∑
n=1

n∑
m=0

[
imn
(
(κ2 + n− 3/2) cosmϕ sinϕ+

(n− 3/2)m sinmϕ cosϕ
)
−

īmn (m sinmϕ cosϕ+ cosmϕ sinϕ) +

j̄mn (m cosmϕ cosϕ− sinmϕ sinϕ) +

jmn
(
(κ2+n−3/2) sinmϕ sinϕ−(n−3/2)m cosmϕ cosϕ

)
−

k̄mn (m sinmϕ sinϕ− cosmϕ cosϕ)−

kmn
(
(κ2+n−3/2) cosmϕ cosϕ−(n−3/2)m sinmϕ sinϕ

)
+

l̄mn (m cosmϕ sinϕ+ sinmϕ cosϕ)−

lmn
(
(κ2+n−3/2) sinmϕ cosϕ+(n−3/2)m cosmϕ sinϕ

)
−(

q̄mn − (n− 3/2)qmn
)

sinmϕm ctg θ +(
p̄mn − (n− 3/2)pmn

)
cosmϕm ctg θ

]
Pmn (cos θ),

Er =
10−2

4πσ′R0

∞∑
n=1

n∑
m=0

[(̄
imn + (n2 − 9/4)imn

)
cosmϕ cosϕ sin θ +

(
j̄mn + (n2 − 9/4)jmn

)
sinmϕ cosϕ sin θ +(

k̄mn + (n2 − 9/4)kmn
)

cosmϕ sinϕ sin θ +(
l̄mn + (n2 − 9/4)lmn

)
sinmϕ sinϕ sin θ +(

q̄mn + (n2 − 9/4)qmn
)

cosmϕ cos θ +(
p̄mn + (n2 − 9/4)pmn

)
sinmϕ cos θ

]
Pmn (cos θ).

The analysis of these expansions has revealed that all the components of
the observed EMF have the same set of unknown constants. Three magnetic
components are generally measured at the world network of stations, a few
stations measuring toroidal electric components. Therefore it is necessary
to include into the spherical analysis all available data about components
of the field. In this case, it is possible to essentially smooth the influence
of random errors of measurements when converting the main matrix (see
Section 1.5.5).
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From (2.42) it follows that it is possible not to measure electric com-
ponents of the field of global electromagnetic variations. They can be cal-
culated with the results of the spherical analysis of magnetic components
only. This is essential because measurements are aimed merely at magnetic
components only.

According to (2.42), a vertical electric component of the field is potential
on the Earth’s surface. Its induction part is compensated by the potential
part. Analysis of (2.39) and (2.42) makes possible to formulate the following
theorem for a variable EMF.

Theorem 13. Complete separation of observed electromagnetic fields into
the MT- and the ET-modifications, as well as into external and internal
fields in them, is uniquely solvable when the vertical component and one of
the horizontal components of a magnetic field are known.

The algorithm of solving the complete separation problem is in the fol-
lowing. With the magnetic components of the field of variations, measured
at the world network of stations with the use of the spherical analysis, a
certain number (up to a given upper limit of summation n in (2.42)) of coef-
ficients with a stroke and without it. Then with the help of these coefficients
in terms of (2.42) the total field is synthesized. If the synthesis of the field
at each point slightly differs from the observed one (by a prescribed ε), then
the number of such coefficients is considered to be sufficient for presenting
the observed field on the sphere.

After that, equations (2.39) are solved, and with the coefficients obtained
the MT- and ET-modes of the external and internal fields are synthesized.
The MT- and the ET-modes can be calculated by formulas (2.40) and (2.41)
in the total field with the same coefficients that are obtained by the spherical
analysis method.

The Gauss–Shmidt method of the spherical analysis of observational data
is approximate for calculation of coefficients. The degree of approximation
depends on termination of infinite sums of expansions (2.42) on a certain
prescribed number n. The value of number n that is potential for termina-
tion depends on the number of observational points available on the Earth’s
surface. The greater is their number, up to the greater n the field can be
expanded. Whether the field of a selected number n is sufficient for inter-
polation is determined by comparing the observed field to its synthesis.

2.5. Magnetic and electric fields of the solar-daily variations
in the MGG: 1957–1958

The best-understood and extensively studied in geophysics are solar-
daily variations (Sq -variations), whose global propagation along the Earth’s



78 Chapter 2. Varying electromagnetic fields

surface is now beyond question. The research into the solar-daily variations
began as long ago as in the 30–40-s of the last century [7]. At that time,
using the data of the International Geophysical Year (IGY-1933), Benkova
examined magnetic components of the solar-daily variations by the method
of spherical analysis with the Gauss–Shmidt formulas. Rather a large non-
potential constituting part in magnetic components was fixed, which further
was recalculated into currents. The densities of these currents appeared to
be essentially exceeding those observed in the air, which caused criticizing
the results obtained in [7] as viewed from the public opinion among geo-
physicists. Gradually “the baby was thrown out along with the bathwater”.
This appeared to be a widespread belief that there cannot be a non-potential
part in the field Sq of variations in the atmosphere.

The author earlier mentioned that only one incorrect step was made in
[7], namely, when the observed non-potential magnetic field was recalculated
into electric currents. This should not been done, because ∇ × HET

T =
HMT
P , i.e., vortices of a toroidal non-potential magnetic field do not generate

electric currents in the Earth’s atmosphere. Such vortices always excite only
a poloidal magnetic field of the MT-mode. Therefore due to the existence
of a toroidal part of the magnetic field of Sq-variations in the atmosphere
an unusual situation arises: there is a non-potential magnetic field in the
atmosphere, while there is no electric current through the atmosphere. As
was noted above, the toroidal magnetic field in the atmosphere is generated
by the spherical components j0 and jϕ of the toroidal electric current, which
are arranged in the ionosphere and in the Earth’s spherical layers. The
worthy cause for the occurrence of a toroidal part of the magnetic field, as
noted above, is a spherical property of sources, in our case this is a spherical
property of the sources of Sq-variations.

The author’s research was based on the important result that a toroidal
variable magnetic field does not generate electric currents in the atmosphere.
The author (monograph [6] and many other publications ) presents his re-
sults employing expansions (2.42) of Sq-variations on evidence derived from
the MGG-1958, processed by Rotanova and Borisova [16]. The data in ques-
tion were published long ago and are well known, that is why here we only
give a reference. Monograph [6] presents tables of coefficients calculated
on evidence derived from [16]. These tables give real (small letters) and
fictitious (capital letters) parts of unknown complex expansion coefficients
(2.42). According to Theorem 1, the complexity of coefficients provides
the completeness of expansions (2.42) for five (k = 5) temporal and five
(n = 5) spatial harmonics. The considered coefficients made possible to
synthesize the toroidal and poloidal parts of the MT- and the ET-modes of
Sq-variations. As an example we present Table 2.1 of the daily variation
of the total field of the MT- and the ET-modes at the station “Moskva”
(θ = 34.52◦, ϕ = 37.42◦) in the MGG-1957/1958. Table 2.1 gives the world
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Table 2.1

t, h Hθ Hφ Hr HMT
θ HMT

φ HMT
r HET

θ HET
φ

0 2 2 4 −10 17 4 12 −15
1 1 4 6 −14 20 6 15 −16
2 4 9 7 −24 25 7 28 −15
3 6 18 8 −26 30 8 32 −12
4 7 26 8 −26 33 8 33 −6
5 3 34 6 −30 36 6 32 −1
6 −7 39 2 −31 38 2 24 1
7 −18 37 0 −31 35 0 13 1
8 −29 28 −2 −24 26 −2 −5 1
9 −35 11 −6 −15 8 −6 −20 3

10 −35 −9 −1 −7 −14 −10 −28 5
11 −27 −27 −13 2 −33 −13 −29 5
12 −15 −40 −13 9 −44 −13 −24 4
13 −3 −42 −9 14 −44 −9 −17 2
14 7 −34 −3 12 −35 −3 −4 1
15 14 −21 3 6 −24 3 8 3
16 16 −9 6 9 −18 6 7 10
17 18 −2 4 22 −18 4 −4 16
18 20 −2 1 31 −18 1 −12 16
19 20 −5 0 35 −17 0 −15 12
20 19 −6 0 36 −12 0 −16 6
21 16 −5 −1 33 −5 −1 −17 0
22 11 −4 −1 26 3 −1 −15 −7
23 6 −2 2 4 11 2 2 −13

time (UT ) in hours. The values of intensity of components are given in
nanotesla. Table 2.1 displays the observed components as well as those syn-
thesized by the spherical analysis: the poloidal part of the MT-mode and
the toroidal part of the ET-mode.

The analysis of the table reveals that the poloidal and toroidal parts
of the magnetic field of Sq variations at the station “Moskva” are equal in
the value of intensity in maxima and in minima of the daily variation from
0 up to 23 hours of the world time. The spherical property of the source
of Sq-variations so strongly influences the observed field that its toroidal
part becomes not only appreciable but compatible to the poloidal one. This
important fact is observed at all (without exception) stations of the world
network, fixing Sq-variations of the magnetic field [6]. The list of the stations
is given in [16]. Nevertheless, it is impossible to recalculate such an appre-
ciable toroidal magnetic field into the atmospheric electric currents because
∇×HET

T = HMT
P .

Thus, the two-modality of the magnetic field of Sq-variations is available.
The toroidal part of the magnetic field is compatible in intensity to the
poloidal field. This fact should not be ignored both in theory and practice
of the research and applications of the magnetic field of Sq-variations as well
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as of any other variations of global propagation: there may arise serious
errors if the toroidal magnetic field in the Earth’s atmosphere is not taken
into account.

In [1], diagrams of external and internal parts of the MT- and the
ET-modes are presented. Since both the internal and the external elec-
tromagnetic fields of Sq-variations are two-modal, it is not of primary im-
portance where the initial source is situated: either in the ionosphere or in
the Earth, the main thing its being spherical. The spherical property is the
main reason for the existence of the MT- and the ET-modes.

The structure of the electric field of global electromagnetic variations
in the atmosphere is rather complicated. As a magnetic field, the electric
field is two-modal. In addition, as elucidated above, the induction part of
the radial (vertical) component of the electric field on the Earth’s surface
is compensated by the potential part, however, it can be reconstructed by
calculation results of unknown coefficients with the method of the spherical
or spatial analysis, as is done in [3] when analyzing Sq-variations.

The intensity of these components is different as well as their behavior
from hour to hour local time (LT ) (Figure 2.1). However the analysis of
invisible radial component enables us to make interesting conclusions about
sources of the solar-daily Sq-variations and to apply a radial component of
the electric field to the two-modal sounding of the Earth.

Thus, the electric field of global Sq-variations has a radial component
consisting of a visible potential and an invisible on the Earth’s surface in-
ductive parts. Their examples are displayed in Figure 2.1. At some points,
the intensity of the radial potential part attains 1 kV/m, the intensity of
the invisible part attaining millivolts per kilometer.

So, the debates about the presence or the absence in the field of variations
of a radial (vertical or normal) component of the electric field [20] argues
for its presence in the Earth’s atmosphere. Moreover, this component in the
atmosphere appeared to consist of two different parts: a potential (visible)
part and an inductive (invisible) part that can be readily reconstructed with
the help of results of the spherical analysis of independent magnetic com-
ponents of the observed field. And these are not all “surprises” that are
intrinsic of the electric field of global electromagnetic variations. In Sec-
tion 2.3, when analyzing boundary conditions it was revealed that counting
the intensity in their potential components should start with a different spe-
cific conductivity. These are, respectively, the Earth’s conductivity σ′E or
the ionosphere conductivity σ′I in the components, tangential to the Earth’s
surface and the ionosphere. In the vertical (radial) component, which is
completely potential, the count begins with the atmosphere conductivity
that is very low. Therefore, the potential part of Er-component (formula
(2.42)), which is counted from a very low atmosphere conductivity (of order
10−12 ÷ 10−14(Ohm ·m)−1) has the intensity of up to the first kV/m. How-
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Figure 2.1. Electric field of external sources of variations at equatorial stations

ever, the intensity of the tangential components Eθ and Eϕ of the potential
electric field due to the high conductivity of the Earth’s upper layer does
not exceed the first microvolts per kilometer. Although such values of the
field intensity are very low, they are measurable. Due to their smallness,
they are not taken into consideration when interpreted.

An electric field of the MT-mode, as mentioned above, is toroidal, its
intensity being the first tens mV/km in Sq-variations. According to the
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boundary conditions (Section 2.3), a toroidal electric field of the MT-mode
coincides with the field of terrestrial currents in the Earth and is measured
at some stations of the world network. In [1], the author analyzes the data
on the toroidal electric components observed at the station Pleschenitsy,
the Minsk region (θ = 45.5◦, ϕ = 27.9◦). The theoretically obtained results
and the observations are in good agreement, although the observations and
calculation were made with the data referring to different epochs. However,
due to the repeatability of the solar-daily variations, the results of the ex-
periment and the calculation essentially coincided. Table 2.2 presents the
observed daily variations (the first two columns) and the calculated (the next
two columns) toroidal electric components of the MT-mode at the station
Pleschenitsy. The field of variations contain the toroidal electric components
of the MT-mode, their intensity at certain points of the Earth’s surface ex-
ceeding the first ten mV/km (see Table 2.2). Such fields are convincingly
observed and can be used for the calculation of the Earth’s and ionosphere
conductivity.

Thus, the global field the solar-daily variations consists not only of the
toroidal and the poloidal parts of the magnetic field, but also contains in the

Table 2.2

t, h
Station Pleschenitsy Station Moskva

EMT
θ EMT

φ EMT
θ EMT

φ EMT
θ EMT

φ

0 −2 −5 −1 −1 1 7
1 −1 −6 −1 −2 1 4
2 0 −6 2 −2 2 3
3 2 −1 2 −3 1 −1
4 5 −5 4 −2 2 1
5 6 4 6 0 4 −4
6 3 5 2 3 2 −7
7 2 6 −1 4 −1 −6
8 0 9 1 5 −1 −8
9 −1 8 −1 4 −3 −8

10 1 8 −2 2 −4 −8
11 −1 1 −3 1 −5 0
12 −3 −4 −7 −2 −8 7
13 −4 −2 −5 −2 −4 4
14 −7 −7 0 −3 1 9
15 −4 1 2 −3 2 5
16 0 1 4 −1 3 −5
17 2 1 3 −1 1 −2
18 5 1 1 −1 0 0
19 2 3 −1 −1 2 −1
20 1 8 −1 0 1 −1
21 −1 −2 −2 1 0 −5
22 −1 −8 −2 1 1 1
23 −2 −4 −1 −1 2 13
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atmosphere both non-potential toroidal components of the electric field that
are horizontal to the Earth’s surface and horizontal poloidal potential elec-
tric components and a potential radial (vertical) component of the electric
field.

In addition, the algorithms developed can aid in the reconstruction of
the compensated inductive part of the radial component of the electric field
and use it for a detailed analysis of sources of the solar-daily variations and
for the Earth’s sounding. The formula for the induction invisible part of the
electric field has the form

EI
r = − iωµ0R0 · 10−2

4π

∞∑
k=−∞

∞∑
n=1

n∑
m=0

k ×

[
(imn cosmϕ+ jmn sinmϕ) sin θ cosϕ+

(kmn cosmϕ+ lmn sinmϕ) sin θ sinϕ+

(qmn cosmϕ+ pmn sinmϕ) cos θ
]
k
Pmn (cos θ). (2.43)

2.6. A source of the solar-daily variations

The simulation of sources of geoelectromagnetic variations is a necessary
element of interpretation and aids in the solution of a variety of problems
of studying morphological peculiarities of variations, their generation, as
well as a general geophysical nature of the event. In addition, a model of a
source of one or another variation is of interest not only because it reflects a
geophysical event as it is, but it makes possible, for example with the use of
variations, to study the system of winds at the height of a source, as in the
first approximation the direction of the electric current reflects the direction
of wind in the ionosphere. The research into the morphology of the current
systems of different variations aids, in addition, in the solution of a more
complicated global problem of the solar-terrestrial connections. Therefore,
the adequacy of a source to the field, measured on the Earth’s surface, is of
primary importance in the variations interpretation.

The sources of geoelectromagnetic variations are simulated with the use
of results of the spherical analysis of their field, observed on the Earth’s
spherical surface (the Earth in the first approximation is considered to be
spherical). The complete separation of variations fields in this case con-
tributes to solving the problem of simulation by providing the separation of
the field of external origin in both modifications. The principle of modeling
equivalent sources, based on the transfer from the magnetic field of external
sources to the double layer of charges, whose power was identified with the
force of an equivalent current, was introduced into the theory of the current
systems comparatively long ago. Contours of the equal force current form a



84 Chapter 2. Varying electromagnetic fields

current system that is similar to that existing in nature. Numerous scientific
studies are devoted to the investigation of equivalent current systems.

However, due to the existence of an ET- field, it is necessary to solve a
number of new problems. The first is in developing the physical basis of the
way of constructing a current system, adequate to the observed field. The
key to solving this problem is in separation of two modifications of the field
and in development of a physically justified way of the transfer from the
observed field to its source.

The second problem is in the derivation of all necessary formulas suitable
for the numerical calculation.

The third problem is to apply theory to a concrete material of obser-
vations and to reveal new peculiarities of sources, whose existence is pre-
determined by the existence of the ET-field that was not earlier taken into
account in the theory.

The simulation of sources of the MT-field should be based on a few
assumptions. First, the Earth is considered to be spherical, the electric
currents, accompanied by the MT-field, to be concentrated in the ionosphere
thin layer E at the height h = 120 km from the Earth’s surface. Second,
from the physical stand point and the fact that the ET-type field is excluded
beforehand follows that a thin layer, which is a carrier of the current system,
is spherically symmetric to the Earth. In the opposite case, an ET- field that
was excluded beforehand, would arise. In this case it is natural to assume
that the interaction of currents has occurred before the separation of fields,
so the MT-field would reflect the final picture in distributing the current in
a source.

The next important assumption is that the surface–– the current carrier––
is supposed to be infinitely thin: above and below it, all the space is filled
with the air with the conductivity σ′ or is empty σ′ = 0.

If the current is concentrated on a thin surface, the tangential to it com-
ponents of the magnetic field satisfy on this surface the boundary condition
of the form

j(p) =
[
n,
(
H+(p)−H−(p)

)]
. (2.44)

Here H+(p) is a magnetic field at the point p above the layer with current,
H−(p) is a magnetic field at the point p under the layer with current, j(p)
is the surface current, n is an external normal. In the above-discussed state-
ment, properties of the medium above and below the layer with current are
considered to be identical, that is why the magnetic field components will
differ only by a sign. The expansion coefficients of the field under the layer
and below it coincide on the layer. In order to make sure that it is so, let
us consider a simple example. Let the conductivity above and below the
layer be equal to zero σ′ = 0, then it will be possible to apply the reduced
expansions for the MT field. The coefficients of these reduced expansions
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are expressed via integrals. Let us take, for example, one coefficient from
the external side of the surface:

κmn =
c̄mn

4πR̃n+2

∫
W

r′njCT
x′ (x′, y′, z′) cosmφ′Pmn (cos θ′) dw′, (2.45)

where W is a layer above the Earth, R̃ is a distance from the Earth’s center
up to the layer W . From the inner side of the layer the corresponding
coefficient will have the form

amn =
c̄mn R̃

n−1

4π

∫
W

1
r′n+1

jCT
x′ (x′, y′, z′) cosmφ′Pmn (cos θ′) dw′. (2.46)

Here r′ is a current radius. If the layer thickness tends to zero, the radii are
transformed as follows:

R̃ = R0 + h, r′ = R0 + h, (2.47)

where R0 is the Earth’s radius, h is a height from the Earth’s surface to the
surface with current. In this case in integrals (2.45) and (2.46), the steady
volume current should be changed for the surface current. As a result we
come to

κmn =
c̄mn

4π(R0 + h)2

∫
Σ

jCT
x′ (x′, y′, z′) cosmφ′Pmn (cos θ′) ds′,

amn =
c̄mn

4π(R0 + h)2

∫
Σ

jCT
x′ (x′, y′, z′) cosmφ′Pmn (cos θ′) ds′,

(2.48)

where Σ is the surface with current, ds′ is an element of the surface.
There is no difficulty to see that in (2.48) the coefficients on different

sides of an infinitely thin surface with current are described by the same
formulas. Similar operations can be carried out with the rest coefficients
and to make sure that they coincide, i.e., really, when transferring a thin
layer with electric current the tangential components change only a sign,
the coefficients on both sides coinciding. Thus, when constructing formulas
for the surface current density it is possible to employ the expansions of the
field below the surface with current.

From the external side of the surface with current, the tangential com-
ponents have the form
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H+MT
θ = −

∞∑
n=1

n∑
m=0

[
(amn cosmφ+ bmn sinmφ) sinφ−

(cmn cosmφ+ dmn sinmφ) cosφ
]
Pmn (cos θ)×(

−n− 1/2
R0 + h

In+1/2

(
κ
R0 + h

R0

)
+

κ
R0
In−1/2

(
κ
R0 + h

R0

))
,

H+MT
φ = −

∞∑
n=1

n∑
m=0

[
(amn cosmφ+ bmn sinmφ) cos θ cosφ+ (2.49)

(cmn cosmφ+ dmn sinmφ) cos θ sinφ−
(emn cosmφ+ fmn sinmφ) sin θ

]
Pmn (cos θ)×(

−n− 1/2
R0 + h

In+1/2

(
κ
R0 + h

R0

)
+

κ
R0
In−1/2

(
κ
R0 + h

R0

))
.

From the inner side of the surface with electric current, the formulas for
tangential components of the magnetic field are written down as

H−MT
θ =

∞∑
n=1

n∑
m=0

[
(amn cosmφ+ bmn sinmφ) sinφ−

(cmn cosmφ+ dmn sinmφ) cosφ
]
Pmn (cos θ)×(

−n− 1/2
R0 + h

In+1/2

(
κ
R0 + h

R0

)
+

κ
R0
In−1/2

(
κ
R0 + h

R0

))
,

H−MT
φ =

∞∑
n=1

n∑
m=0

[
(amn cosmφ+ bmn sinmφ) cos θ cosφ+ (2.50)

(cmn cosmφ+ dmn sinmφ) cos θ sinφ−
(emn cosmφ+ fmn sinmφ) sin θ

]
Pmn (cos θ)×(

−n− 1/2
R0 + h

In+1/2

(
κ
R0 + h

R0

)
+

κ
R0
In−1/2

(
κ
R0 + h

R0

))
.

Now formulas (2.49) and (2.50) should be substituted into (2.44). In so
doing, it is convenient to present it as components:

jΠ
θ = H+MT

φ −H−MT
φ , jΠ

φ = H+MT
θ −H−MT

θ . (2.51)

For the radial function, we may introduce the notation

ψn(κ, h) =
(
−n− 1/2
R0 + h

In+1/2

(
κ
R0 + h

R0

)
+

κ
R0
In−1/2

(
κ
R0 + h

R0

))
. (2.52)

The factor 10−2/4π should be introduced into the final calculation for-
mulas, which transfers the values of coefficients obtained in nT to A/m.
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Since it is required to study the behavior of the current systems in terms
of time, it is convenient to reconstruct the earlier omitted dependence of
the current density on time. With allowance for the above-said, the electric
current components on an infinitely thin surface at a height h from the
Earth, will have the form

jΠ
θ =

−10−2

2π

∞∑
k=−∞

∞∑
n=1

n∑
m=0

[
(amn cosmφ+ bmn sinmφ) cos θ cosφ+

(cmn cosmφ+ dmn sinmφ) cos θ sinφ−
(emn cosmφ+ fmn sinmφ) sin θ

]
k
ψn(κ, h)Pmn (cos θ)eiωkt, (2.53)

jΠ
φ =

10−2

2π

∞∑
k=−∞

∞∑
n=1

n∑
m=0

[
(amn cosmφ+ bmn sinmφ) sinφ−

(cmn cosmφ+ dmn sinmφ) cosφ
]
k
Pmn (cos θ)ψn(κ, h)eikωt.

In (2.53), components of the surface current density have the dimension
in A/m and allow constructing the distribution of the current density vectors
on a given surface. A set of such vectors, constructed at a given instant of the
world time, represents a current system, generating a MT-field. The current
system, constructed by the MT-field, is known to be solenoidal because
an ET-field was excluded beforehand. The choice of the world time for
constructing the current systems is explained by a synchronous change in
variations in the unified world time. In this case, the adequacy of a source
to the observed field is ensured by formula (2.51), as the electric current is
directly calculated by the field components without any transformations.

The software package developed calculates the current systems by a
MT-field. Figure 2.2 presents the current system of Sq-variations in 1958 [2].
This system has been obtained by 6 o’clock of the world time. The following
details are characteristic. On the day side, known contours of the current
present: the southern with clockwise rotation and the northern with coun-
terclockwise rotation. The contours are divided by the electric current of the
east direction that flows in the vicinity of the equator and corresponds to a
known electrojet. The line connecting the centers of vortices on the day side
tends to the direction of the force lines of the MGF. Earlier this fact was not
pointed out. The night side has similar day northern and southern vortices,
but of the opposite rotation direction and separated by the west direction
current. The line connecting the centers of the night vortices is also close
to the direction of the force lines of the MGF. An important result is that
during the world day, the night vortices can shift closer to the morning or
to the evening side. Such a symmetric picture of the current vortices of a
MT-field was not noted earlier. In our opinion, it most of all corresponds to
the physics of sources and is adequate to the observed field.
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Figure 2.2. A source of the MT-field of Sq-variations at UT = 6 hours, each
vector corresponds to the direction and value of the surface current

Thus, the proposed technique of constructing a model of a source of a
MT-field enabled us to reveal a sufficiently trivial morphological structure
of a source of the solar-daily variations. The current system of Sq-variations
represents a set of the two symmetric variations on the day and night sides
(or on the morning and evening sides) and oppositely rotating systems of
currents, separated by electrojets of the east and the west directions, respec-
tively. The source of Sq-variations has no other contours in addition to the
above-mentioned. The symmetric picture of situation of the current vortices
corresponds to the morphology of the daily Sq-variations, observed on the
Earth’s surface and is in agreement with the electrodynamics of the event.

Then by analyzing an invisible part of the vertical electric field in the
equatorial zone, electrojets with vertical inflows on the morning and the
evening sides of the day were revealed. Clearly, these vertical currents can
exist only within the ionosphere, where the horizontal and vertical conduc-
tivities are present. Nevertheless, the presence of inflows is readily traced
from abnormal behavior of the inductive part of the vertical electric field
(Figure 2.1) in the morning and evening hours. This field has been con-
structed from the results of spherical analysis of magnetic components of
the solar-daily variations. The combined analysis of all new facts taking
place after separating the MT- and the ET-modes in Sq-variations and then
after the separation in each of the modes of external and internal sources en-
abled the author to propose his model of the source of Sq-variations which,
in our opinion, essentially contributes to a well-known classical model of
currents of Sq-variations in the ionosphere (Figure 2.3).
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Figure 2.3. An external source of Sq-variations, simulated by the MT- and
ET-fields, MGG 1957/1958 (LT is local time in hours)

The generation of such a current system of Sq-variations, displayed in
Figure 2.3, must apparently depend on winds at the height E of the iono-
sphere layer, the plasma drifting in it on the equator to the west in the day
time and to the east –– at night (the current flowing in the opposite direc-
tion), as well as on stationary convection in the lower magnetosphere. The
size of a contribution of one or another mechanism to generating regular
Sq-currents is to be revealed. The mechanism of forming a vertical current
on the equator on the morning and evening sides of the day, which is of a
strong interest as it is, seems to be absolutely unclear. Nevertheless, the
fact of appearance of vertical inflows on the equator is beyond question.

Thus, investigation of a source only of Sq-variations made possible to
obtain a number of the new interesting facts. Also, interesting facts can
be revealed in sources of all other types of variations if for their investiga-
tion one applies expansions (2.42) with allowance for all currently known
electrodynamic data on the global electromagnetic field of variations.
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2.7. Generalized electrodynamic equations for the Earth’s
constant and alternating electromagnetic fields

Electromagnetic fields, observed on the Earth by the world network of
magnetic observatories as well as by self-contained devices in the regional
prospecting of mineral resources, are conventionally considered to be force
and one-modal fields [15]. For the physico-mathematical simulation of the
EMFs, observed on the Earth, a force component of Maxwell’s equations is
often used. This is done because of their low oscillation frequency. But for
the mathematical modeling of the MGF, the potentiality of a force modifi-
cation (mode) of the magnetic field in the air is used [15].

A somewhat different situation is observed in the theory of the MGF
generation, where along with a force mode of an electric field its non-force
part, called a toroidal magnetic and a poloidal electric field is used. This
generation theory as compared to others, in due time was called the theory
of dynamo-excitation of the MGF. Its main peculiarity is the conviction that
the force mode is not to appear in the Earth’s atmosphere due to enormous
intensity (200–500 Hz) inside the Earth, which is necessary for the MGF
generation [15, p. 166]. The author proves that this is not so [6]. A non-
force EMF (a toroidal magnetic and a poloidal electric fields) is measured
in the Earth’s atmosphere along with a force component when the EMF
intensity is directly fixed by a device [6] and appears to be an unavoidable
obstacle when interpreting observations by a one-modal scheme.

It is natural that substitution of a one-modal for a two-modal inter-
pretation requires the development of the original equations for a complete
description of the EMFs observed on the Earth (in the atmosphere) in terms
of a force and a non-force modifications. In this chapter, a force and a non-
force parts of the observed EMF are expressed in terms of the concepts about
toroidal and poloidal EMFs. In this connection Maxwell’s force equations
in a low-frequency zone, according to definitions from (2.10) and (2.20), can
be written down as follows:

∇×HMT
P = σEMT

T , ∇×EMT
T = −µ

∂HMT
P

∂t
,

∇ · (HMT
P ,EMT

T ) = 0.
(2.54)

A non-force EMF is given by formula (2.20). Similar to relation (2.54) for
a non-force mode in a low-frequency area, we can write down equations

∇×HET
T = HMT

P , ∇×EET
P = 0,

∇ · (HET
T ,HMT

P ,EET
P ) = 0.

(2.55)

Formulas (2.55) include an important property of a toroidal magnetic field,
namely, its vortices do not excite the electric current in any medium, in-
cluding the Earth’s atmosphere, but according to Theorem 3, generate a
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force magnetic field. In this connection, standard boundary conditions for a
complete magnetic field, including those on the Earth’s surface are written
down by formulas (1.23) and (2.55).

Now it is possible to combine the force and the non-force EMFs in the
generalized Maxwell’s equations. The complete force modification of equa-
tions will look like

∇×HMT
P = σEMT

T + χHET
T , ∇×EMT

T = −µ
∂HMT

P

∂t
,

∇ · (HMT
P ,HET

T ,EMT
T ) = 0,

where

χ =


γ

η
, t = 0,

κ̄1/2, t > 0.
(2.56)

In this case, a supplementary electric current χHET
T = σ(µγHET

T ) = σE′MT
T

arising due to a spherical property of a source is just the source of a non-
force toroidal magnetic field, penetrating into the Earth’s atmosphere with
boundary conditions (1.23) and (2.25). The non-force mode can also be
characterized by its equations:

∇×HET
P = HMT

P , ∇×EET
P = 0,

∂DET
P

∂t
= −χH ′ET

T ,

∇ · (HET
T ,HMT

P ,EET
P ) = 0, ∇ ·DET

P = ρ, DET
P = εEET

P ,

(2.57)

where ρ is the electric charges density, ε is dielectric permeability. A specific
feature of equations (2.57) is the fact that they reflect a non-force toroidal
magnetic field H ′

T excited by the electric induction that is rapidly varying
in time. In this case, the equation for a temporal derivative of the electric
induction is a symmetric reflection of the second equation from (2.56). Re-
ally, if we assume that ∇× ∼ 1

L , where L is a characteristic size of a local

domain with a magnetic field, then µ
∂HMT

P
∂t ∼ − 1

LE
MT
T . The coefficient χ

from (2.57) has also a dimension of the inverse characteristic length χ ∼ 1
L ,

i.e., ∂DET
P
∂t ∼ − 1

LH ′ET
T .

Thus, in the temporal domain, the force and non-force EMFs are de-
scribed by the equations with a certain symmetry.

Combining the force and the non-force EMFs in the united system of
equations, we can write down their complete modification, called the gener-
alized Maxwell’s equations for the force and non-force EMFs, observed on
the Earth:
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∇×HMT
P = σEMT

T +
∂DET

P

∂t
+ χHET

T + JST,

∇×HET
T = HMT

P , ∇×EMT
T = −µ

∂HMT
P

∂t
, ∇×EET

P = 0,

∂DET
P

∂t
= −χH ′ET

T , ∇ · (HMT
P ,HET

T ,EMT
T ) = 0, (2.58)

∇ ·DET
P = ρ′, ∇ ·DMT

T = ρ,

BMT
P = µHMT

P , DET
P = εEET

P , BET
T = µHET

T , DMT
T = εEMT

T .

Here JST is an extraneous electric current. Naturally, equations (2.58) are
valid only in spherical domains and for spherical sources. In laboratory con-
ditions, when HET

T = 0, EET
P = 0, they automatically transfer to standard

Maxwell’s equations.
In a static EMF, similar equations are reduced as follows:

∇×HMT
P = σEMT

T +
γ

η
HET
T + JST, ∇×HET

T = HMT
P ,

∇×EMT,ET
P,T = 0, ∇ · (HMT

P ,HET
T ,EMT

T ) = 0, (2.59)

∇ ·DET
P = ρ′, BMT,ET

P,T = µHMT,ET
P,T , DMT,ET

P,T = εEMT,ET
P,T .

Active algorithms of observations interpretation at the world network of
magnetic observatories that were designed employing equations (2.58) and
(2.59), i.e., with allowance for a non-force modification of the Earth’s field.

The source of a non-force EMF, observed in the Earth’s atmosphere are
spherical (toroidal) electric conductivity currents, circulating in the Earth’s
spherical layers as well as electric currents in the ionosphere and in the
vortex current, which also excite the MGF variations.

Clearly, a group of the Lorentz transforms for systems (2.58) and (2.59)
remains the same as for the force part of Maxwell’s equations.

Here it is necessary to investigate the inverse problem, namely: how to
extract from standard Maxwell’s equations in spherical coordinates supple-
mentary electric currents that excite a non-force part of the magnetic field,
being situated in spherical layers and on spherical surfaces that excite a non-
force part of the magnetic field. To this end, let us present the following
formulas for the total EMF:

Hθ = −1
r

∂

∂r
(rAφ) +

1
r sin θ

∂Ar
∂φ

, Eθ = −iωµ0Aθ +
1
σ′
∇θ∇ ·A,

Hφ =
1
r

∂

∂r
(rAθ)−

1
r

∂Ar
∂θ

, Eφ = −iωµ0Aφ +
1
σ′
∇φ∇ ·A, (2.60)

Hr =
1

r sin θ

[ ∂
∂θ

(sin θAφ)− ∂

∂φ
Aθ

]
, Er = −iωµ0Ar +

1
σ′
∇r∇ ·A.
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It will be recalled how to calculate the magnetic field rotor through a vector
potential and the Laplace vector operator, based on the formula ∆ = ∇∇ ·
−∇×∇×:

∇×H = ∇∇ ·A−∇∇ ·A +∇×H = ∇∇ ·A− (∇∇ ·A−∇×H)

= ∇∇ ·A− (∇∇ ·A−∇×∇×A) = ∇∇ ·A−∆A. (2.61)

In (2.61), the term ∇∇ · A is added and subtracted. Now, calculate θ-
component of the magnetic field rotor:

∇θ ×H =
( 1
r sin θ

∂

∂φ
Hr −

1
r

∂

∂r
Hφ

)
eθ. (2.62)

Here eθ, eφ, er are orths of a spherical coordinates system. In terms of
potentials, this can be written down as

∇θ ×H =
cos θ

r2 sin2 θ

∂

∂φ
Aφ +

1
r2 sin θ

∂2

∂θ∂φ
Aφ −

1
r2 sin2 θ

∂2

∂φ2
Aθ +

1
r

∂2

∂θ∂r
Ar −

2
r

∂

∂r
Aθ −

∂2

∂r2
Aθ. (2.63)

Now, add and subtract the expression ∇θ∇ ·A:

∇θ∇ ·A =
2
r2

∂

∂θ
Ar+

1
r

∂2

∂r∂θ
Ar−

cos θ
r2 sin2 θ

∂

∂φ
Aφ+

1
r2 sin θ

∂2

∂θ∂φ
Aφ −

cos θ
r2 sin θ

∂Aθ
∂θ

+
1
r2

∂2

∂θ2
Aθ −

Aθ

r2 sin2 θ
. (2.64)

It is not difficult to check that a difference between (2.63) and (2.64) is
just a projection of the vector ∆A onto a tangential plane to the spherical
coordinate θ:

∆θA =
∂2

∂r2
Aθ +

2
r

∂

∂r
Aθ +

1
r2 sin2 θ

∂2

∂φ2
Aθ +

1
r2

∂2

∂θ2
Aθ −

cos θ
r2 sin θ

∂

∂θ
Aθ +

2
r2

∂

∂θ
Ar −

Aθ

r2 sin2 θ
− 2 cos θ
r2 sin2 θ

∂

∂φ
Aφ. (2.65)

Thus,
∇θ ×H = ∇θ∇ ·A−∆θA. (2.66)

If in the third line from (2.60) we multiply Eθ by σ′ and equate the result
to (2.66), we will obtain

−iωµ0σ
′Aθ +∇θ∇ ·A = ∇θ∇ ·A−∆θA (2.67)

or
∆θA = iωµ0σ

′Aθ. (2.68)
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The latter equation already strictly corresponds to equation (2.6) in the do-
mains, where JST=0. Thus, it appears possible to verify all the components
of the rotor of the field, where it is also required to distinguish the needed
electric currents components by the technique proposed. In order to show
the feasibility of the second Maxwell’s equation, it is sufficient to calculate
the rotor from the latter components of (2.60). From the right, there will
be strictly a magnetic field, because the gradient rotor identically becomes
zero. The magnetic field divergence also becomes zero, as ∇ · ∇ ×A ≡ 0.
As for the total current divergence, it is necessary to consider the following.
Calculate the divergence from

σ′E = −iωµ0σ
′A +∇∇ ·A. (2.69)

Then we come to

σ′∇ ·E = −iωµ0σ
′∇ ·A +∇ · ∇∇ ·A

= (−iωµ0σ
′φ+∆φ) =

1
σ′
∇ · (∆A− iωµ0σ

′A) = 0, (2.70)

∇ · ∇ ×H = ∇ · (∆A− iωµ0σ
′A) = σ′(∆φ− iωµ0σ

′φ) = 0.

Comparing these two formulas, which were obtained from the magnetic and
electric fields from (2.60), we see that the total current divergence is equal
to zero if the potential satisfies equation (2.6) for JST = 0. Taking the
above-said into account, let us divide (2.60) into the fields HMT

P and HET
T ,

and write down Maxwell’s equations for each of them. As follows from the
above, the fields HMT

P and HET
T are formed by the same components of the

total current, including JST , which by definition is solenoidal:

∇ · σ′ET = −iωµ0σ
′∇ ·A

= −iωµ0σ
′
( 1
r sin θ

∂

∂φ
Aφ +

1
r sin θ

∂

∂θ
sin θAθ

)
= 0, (2.71)

∇ · σ′EP = ∆φ− iωµ0σ
′φ = 0.

In formulas (2.71), the relation φ = 1
r2

∂
∂rr

2Ar is used. Hence, with allowance
for the solenoidal property of the total current in the electric field, the
division should be carried out as follows:

In the toroidal electric field

EMT
Tθ = −iωµ0Aθ, EMT

Tφ = −iωµ0Aφ,

EMT
Tr = 0, ∇ ·EMT

T = 0.
(2.72)
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In the poloidal electric field

EET
Pθ =

1
σ′
∇θ∇ ·A, EET

Pφ =
1
σ′
∇φ∇ ·A,

EET
Pr = −iωµ0Ar +

1
σ′
∇r∇ ·A, ∇ ·EET

P = 0.
(2.73)

The magnetic field must also be divided with allowance for the solenoidal
property of the currents generating it. The magnetic field of the poloidal
type is formed of solenoidal components of the potentials Aθ and Aφ:

HMT
Pθ = −1

r

∂

∂r
(rAφ), HMT

Pφ =
1
r

∂

∂r
(rAθ),

HMT
Pr =

1
r sin θ

[ ∂
∂θ

(sin θAφ)− ∂

∂φ
Aθ

]
.

(2.74)

The magnetic field of the toroidal type will be components

HET
Tθ =

1
r sin θ

∂

∂φ
Ar, HET

Tφ = −1
r

∂

∂θ
Ar. (2.75)

It is not difficult to see that the poloidal and toroidal EMFs, obtained on
the basis of other considerations, coincide by definition with those earlier
obtained in (2.12) and (2.13). Moreover, equations for the rotor of these
fields should be written down with allowance for (2.61)–(2.66), which reveal
that in spherical coordinates one should distinguish the part, corresponding
to the Laplacian. As the coordinates are spherical, this appears to be non-
trivial. Let us carry out the following:

∇θHMT
P =

cos θ
r2 sin2 θ

∂

∂φ
Aφ +

1
r2 sin θ

∂2

∂θ∂φ
Aφ −

=
1

r2 sin2 θ

∂2

∂φ2
Aθ −

2
r

∂

∂r
Aθ −

∂2

∂r2
Aθ, (2.76)

∇θ ×HET
T =

1
r

∂2

∂θ∂r
Ar.

To the poloidal field rotor in (2.76) we should add ∇θ∇·A and then subtract
it. In this case, for attaining a complete Laplacian it will lack a term of the
form 1

r
∂2

∂θ∂rAr, to be separated from the potential divergence gradient, i.e.

∇θ ×HMT
P +∇θ∇ ·A−∇θ∇ ·A = ∆θA +∇θ∇ ·A +

2
r2

∂

∂θ
Ar

= ∆θA +
2
r2

∂

∂θ
Ar = σ′ETθ +

2
r2

∂

∂θ
Ar. (2.77)

Hence follows that the rotor of θ-component of the poloidal type magnetic
field can be presented as



96 Chapter 2. Varying electromagnetic fields

∇θ ×HMT
P = σ′EMT

Tθ +
2
r2

∂

∂θ
Ar. (2.78)

By carrying out similar calculations with all other rotor components, ac-
cording to (1.117), we obtain

∇×HMT
P = σ′EMT

T +
2
r

GradAr = σ′EMT
T +

2
r
HET
T . (2.79)

Here Grad is a 2D gradient. At the same time, according to the second
equation from (2.76), similar calculations for a toroidal field result in the
formula

∇×HET
T = HMT

P . (2.80)

In (1.79), a supplementary current 2
rH

ET
T is just the one that yields in

spherical sources the additional toroidal field, defined in (1.29) and (1.31).
Based on the calculations carried out, a formal mathematical solution to the
inverse problem brings about Maxwell’s equations separately for a force and
a non-force parts of the magnetic field observed on the Earth. The force
part of the EMF is

∇×HMT
P = σ′EMT

T +
2
r
HET
T , ∇×EMT

T = −µ0
∂

∂t
HMT
P ,

∇ ·EMT
T = 0, ∇ ·HMT

P = 0,
(2.81)

its non-force part being

∇×HET
T = HMT

P , ∇×EET
P = 0,

∇ ·EET
P = 0, ∇ ·HET

T = 0.
(2.82)

Summing (2.81) and (2.82) and taking into account γ
η ∼

1
r , and (iωµ0σ

′)1/2 ∼
1
r , we obtain equations similar to (2.58) and (2.59). The main result of solv-
ing the inverse problem is that it appeared possible to reveal the mechanism
of generation of a supplementary current causing the appearance in spher-
ical sources of an additional non-force magnetic field HET

T . It should be
noted that the solution to the direct problem in the previous sections yields
a more adequate to the experiment result in terms of physics in the form of
equations (2.58) and (2.59).



Conclusion

The proposed development of the electrodynamics of the MGF and its
long-period variations, observed at the world network of geomagnetic sta-
tions, in the author’s opinion, essentially extends the possibilities of studying
both the MGF and its variations of any period. The form of presenting the
material as formulated theorems of the principal problems is the most rea-
sonable for the two main reasons: on the one hand, the development of
problems of the MGF and its variations is associated with generalization of
well-known classical theorems, such as the Helmholtz and the Gauss–Shmidt
theorems, Maxwell’s theorem of equations for geomagnetism, etc. On the
other hand, although the above-mentioned generalized theorems have a con-
crete mathematical proof, their understanding being associated, basically,
with the physics of events, is related direct ly to the MGF, and with the
field of its variations at different periods.

The physics of events in geomagnetism is an intricate question, mainly,
due to the absence of access to the MGF source. Nevertheless, the obser-
vations of the MGF, as well as its application to describing more general
theorems, allowed us to make fundamental conclusions about the nature of
the MGF source. As soon as was proved that a toroidal magnetic field is
measured by magnetometers of the world network of stations in the Earth’s
atmosphere [3], there immediately arised a possibility to calculate its in-
tensity not only in the atmosphere, but also in the vicinity of the liquid
core. This has allowed rejecting the hypothesis of dynamo-excitation of the
MGF, and following Elsasser and Frenkel, to turn to the development of the
induction hypothesis.

The detected distance to the MGF source, its geometrical size, the cur-
rent intensity in it, its stability as related to internal and external effects
on the magnetic field, have allowed the verified conclusion about the MGF
source as a toroidal electric current, supported by the Earth’s stable rota-
tion.

As for the long-period quiet solar-daily variations, their electromag-
netic field is two-modal, its two-modality being analytically and numerically
proved. In addition, the electromagnetic field of the electric type has been
proved to be non-force in the sense that the Lorentz force in its magnetic
field is absent and the electromotive force in the electric field is equal to zero.
In this connection, the magnetic field of the electric type is not subject to
skin-effect because it does not excite the electric current. It penetrates into
the Earth three times as deep as the force magnetic field.



98 Conclusion

The properties of the MGF and its variations, investigated in this paper,
in our opinion, do not exhaust all the problems known in the MGF and
its variations. The author would like to expect that the approach proposed
to studying the MGF and its variations could be useful in revealing still
unknown features of the MGF and its variations.
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