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Algorithms and software for the analysis of
disordering the structure of cellular walls
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Abstract. The purpose of this work is the development and search of the analysis
algorithms for textural features and various orthonormal spectral decompositions
of the images obtained by the transmission electronic microscopy. The research is
carried out for the Institute of Solid State Chemistry and Mechanochemistry of the
Siberian Branch of the Russian Academy of Sciences. Its main focus is on working
out software tools for the analysis of above-mentioned micro-photos. Suitable algo-
rithms have been selected and the corresponding program tools have been created.
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Introduction

The basis for conducting this research is the Contract between the Institute
of Solid State Chemistry and Mechanochemistry, SB RAS, and A.P. Ershov
Institute of Informatics Systems, SB RAS.

The work is carried out under the Agreement No. 16-13-10200 of May
12, 2016 between the Russian Science Foundation, project manager and
organization that has received a grant for fundamental scientific research
and exploratory research on the project “Controlled change in the structure
and composition of plant raw materials by mechanochemical methods to
intensify the extraction of biologically active compounds”.

The work is devoted to the analysis of textures. The source is the micro-
photos of raw plant materials ground in special mills. The aim of the work is
to determine the porosity, chemical reactivity, and other parameters of raw
materials from micro-photos, which has not been accomplished to the full
because it requires deeper research. We have focused mainly on the develop-
ment of software tools for image analysis, namely, programs for the analysis
of textures with the help of sets of texture attributes (19 features) and spec-
tral transformations based on orthogonal matrices (6 transforms). Also, we
have carried out preliminary experiments on the application of R/S analysis
and fractal analysis. In the future, machine learning algorithms based, for
example, on the neurocomputing approach, can be used to determine chem-



2 G.B. Abdikerimova, A.L. Bychkov, Wei Xin Yu, F.A. Murzin et al.

ical reactivity. Having trained the system on a data set, we will be able to
predict this parameter.

1. Methods for the analysis of textural features

Despite the ubiquity of textures in images, so far there is no unique for-
mal approach to describing the texture and its strict definition. As a rule,
methods for texture analysis are developed for each individual case.

In [1], a texture is understood as a “spatial organization of elements
within part of the surface”. It also explains that this organization is due
to a certain statistical distribution of the intensity of gray tones or tones
of different colors. A site can be considered as a texture if the number of
intensity changes or color changes observed on it is sufficiently large. In
[2], the texture is called “a surface area organized in some way”. In [3],
the texture is defined as a matrix or a fragment of the spatial properties of
sections of images with homogeneous statistical characteristics.

Textures can be divided into several classes as follows:

1. by origin: artificial (for example, graphic patterns) and natural (for
example, grass, forest, land);

2. by the surface structure: structural, consisting of geometrically correct
repeating elements, and stochastic, formed by a sequence of random
elements;

3. by the relative dimensions of texture elements: fine-grained and coarse-
grained;

4. by the shape of texture elements: wavy, spotted, irregular, ruled, and
so on [1].

It follows from the above definitions and characteristics that a texture is
a certain area of an image that has homogeneous statistical characteristics.
This means that each texture of a given class can be described using a
characteristic property common to all textures of the given class [1]. Such
properties are called texture attributes. Textural features play an important
role when an image is divided into separate areas. Let us consider in more
detail the system of features.

In this problem, gray (halftone) images are considered. Thus, the image
is given in the form of a matrix whose values are the brightness values of
pixels in the range from 0 to 255.

The standard approach to calculating the texture attributes is as follows.
It is necessary to choose the so-called sliding window with the odd side: 3,
5, 7 pixels. The attribute is calculated inside the sliding window. The size
of the local fragment is the carrier of texture properties. The value of the
characteristic is written to a new matrix of the same size as the original one.
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In the new matrix, the value is written on the point with the coordinates
equal to the coordinates of the center of the sliding window. The elements
of the new matrix are obtained in a certain interval [A, B]. Further, this
interval is linearly mapped into a segment [0,255]. After this, it is possible
to visualize the result of calculating the texture feature.

Experiments have shown that the standard approach is not very informa-
tive in this case. Therefore, it was decided to use a non-standard approach.
Namely, the texture windows are computed from large windows (including
non-square ones) that the user can specify by selecting an area that may
be of interest to him/her. That is, we are talking about the calculation of
numerical characteristics relating to vast areas, including various kinds of
artifacts. Nineteen most important textural features have been considered,
and all of them have been implemented in the program.

2. Main textural features

2.1. Features based on statistical characteristics

As such features, we can use statistical moments of spatial distributions cal-
culated as homogeneity measures from a one-dimensional histogram of signal
values (first-order characteristics) and two-dimensional histograms of signal
values (second-order characteristics). Thus, as the numerical estimates of
the texture with respect to a one-dimensional histogram, the following sta-
tistical characteristics can be used [4]:

k-th initial moment

T k
1 = n−2

1∑
i=1

1∑
j=1

[f(i, j)]k

entropy

T2 = −
N−1∑
g=0

F (g) log10 F (g)

energy

T3 =
N−1∑
k=0

[F (g)]2

variation

T4 = −
N−1∑
g=0

(g − µ)2F (g),

where n is the size of the sliding window (n = 2W + 1) in pixels;
f(i, j) is the brightness of the pixel at the point (i, j) of the sliding window;
N is the number of gradations in the brightness of the image;
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F (g) is the number of pixels with brightness g; and
µ is average in the window T 1

mom1

The analysis shows that the texture estimates given above and calculated
with respect to a one-dimensional frequency histogram do not take into
account the relative positions of adjacent pixels in the sliding window and
allow us to estimate only the group properties of the pixels that make up a
particular landscape object in the aerospace image. Thus, these estimates
are effective only for describing textures with not clearly expressed spatial
regularity.

2.2. Features taking into account the relative position

To define the textural features that take into account mutual arrangement
of pixels within the sliding window, an approach based on the use of an ad-
jacency matrix (also called the gradient distribution matrix [4]) was applied.
In what follows, we shall use the name of the adjacency matrix.

Let the analyzed image be a rectangle and have elements horizontally Nx

and vertically Ny. Also, G = {1, 2, ..., N} is a set of N quantized brightness
values from a set. Then the image is described by a function of the bright-
ness values from the set G, that is f : Lx×Ly → G, where Lx = {1, 2, ..., Nx}
and Ly = {1, 2, ..., Ny} are the horizontal and vertical spatial regions, re-
spectively. The adjacency matrix contains the relative Pij frequencies of the
presence of adjacent elements located at a distance d from each other in
the image with luminances i, j ∈ G. Usually, horizontal (α = 0◦), vertical
(α = 90◦) and cross-diagonal (α = 45◦) and (α = 135◦) pairs of elements
are distinguished. It should be noted that these matrices are symmetric,
i.e., P (i, j, d, α) = P (j, i, d, α)

On the basis of calculated adjacency matrices, it is possible to calculate
directly the numerical estimates of a number of textural features [4]:

average

T5 = µi = µj =
N−1∑
i=0

[i
N−1∑
j=0

P (i, j)];

energy

T6 =
N−1∑
i=0

N−1∑
j=0

[P (i, j)]2;

variation

T7 = σ2
i =

N−1∑
i=0

[(i− µ2)
2
N−1∑
j=0

P (i, j)]; and

homogeneity
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T8 =

N−1∑
i=0

N−1∑
j=0

P (i, j)/(1 + |i− j|),

where P (i, j) is the frequency of the appearance of two pixels in a sliding
window with the brightness i and j at an angle α at a distance d.

σi is a square deviation of brightness in a sliding window.
Statistical moments allow the formation of textural features that take

into account the relative position of neighboring pixels in a sliding window
and are accordingly effective for describing the textures with pronounced
spatial regularity.

The second angular momentum

T9 =
N∑
i=1

N∑
i=1

(P (i, j)/M)2,

where M is the total number of pairs of adjacent elements (for example, for
d = 1,α = 0,M = 2Ny(Nx − 1)) is a measure of homogeneity of the image
and it takes in this case a minimum value.

The contrast, T10 =
N−1∑
n=0

n2[
N∑
i=1

N∑
i=1

P (i, j)/M ], |i − j| = n, is defined by

the magnitude of the local variations in the brightness of the image. As the
number of local variations increases, the contrast increases.

The coefficient of correlation T11 =

∑N
i=1

∑N
j=1[ij(P (i, j)/M)−mxmy]

σ−1
x σ−1

y
,

where mx, my, σx,σy mean the values and root-mean-square deviations for

px(i) =

N∑
j=1

P (i, j)/M and py(j) =

N∑
j=1

P (i, j)/M , respectively. T11 serves as

a measure of the linearity of the regression dependence of brightness on the
image.

The dispersion (variance) T12 =
N∑
i=1

N∑
j=1

(i −m)2(P (i, j)/M) determines

the brightness variations relative to the mean value.

The moment of the inverse difference

T13 =

N∑
i=1

N∑
j=1

[1 + (i− j)2]−1(P (i, j)/M)

is closely related to the contrast and reflects the degree of scatter of the
elements of the gradient matrix around the main diagonal. This feature is
an alternative to the contrast in the case of the influence of edge structures,



6 G.B. Abdikerimova, A.L. Bychkov, Wei Xin Yu, F.A. Murzin et al.

since relatively large differences in brightness values contribute minimally
to the final result.

The total average

T14 =

2N∑
n=2

np+(n),

where p+(n) =
N∑
i=1

N∑
j=1

P (i, j)/M for i + j = n, n = 2, 3, ..., 2N is the his-

togram of the sums of brightness values. T14 is determined by a histogram
of sums of brightness p+(n) values over pairs of image elements, which is
directly related to the adjacency matrix.

The total variance serves T15 =

2N∑
n=2

(n− T14)
2p+(n) as a measure of the

brightness variation relative to the total average.

The total entropy for the histogram of sums of the brightness

T16 =

2N∑
n=2

p+(n) log p+(n)

values is determined by the classical measure of statistical information the-
ory and expresses the uneven distribution of the brightness properties of
image elements.

The entropy T17 = −
N∑
i=1

N∑
j=1

P (i, j)/M)logP (i, j)/M is defined in the

same way as the total entropy, but only for the adjacency matrix.

The differential dispersion T18 =

N−1∑
i=1

[n−
N−1∑
m=0

p−(m)]2p−(n) is expressed

by means of a histogram of differences in the brightness

p−(n) = −
N∑
i=1

N∑
j=1

P (i, j)/M

values over pairs of image elements.

The differential entropy T19 = −
N−1∑
n=0

p−(n)logp−(n) is calculated as the

total entropy and the entropy for the adjacency matrix, but for the histogram
of differences in brightness values.

3. Orthogonal transformations

The spectral analysis is a powerful tool for analyzing signals and images, as
it has long been noted that the spectrum is very sensitive to various changes
in the structure of signals and images.
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To perform the spectral analysis, it is necessary to decompose a sig-
nal or image over frequencies. For this, different sets of basic functions
are used. The corresponding algorithms are called transformations: cosine,
Hadamard, Haar, slant, etc. We note that the Haar and Daubechies trans-
forms are the simplest wavelet transforms. These methods, according to
the signal processing theory, can be applied to stationary random processes,
but we do not always have them. However, it is possible to choose the
areas to be analyzed that can be considered conditionally stationary (in
other words, quasi-stationary) and whose size is sufficient to obtain statis-
tically reasonable results.

Another feature found in experiments with such algorithms is that the
estimate is qualitative rather than quantitative, which also represents a cer-
tain value. Often there are no regulatory tables for the main parameters of
signals or images, as is the case of cardiography, for example.

The use of decomposition algorithms for various basic functions can be
considered a transition from one form of information display to another,
more convenient, compact and informative.

In the one-dimensional case, the spectral transformation can be writ-
ten in the form H−→u = −→α , where H is the transformation matrix whose
rows form an orthonormal basis in the corresponding linear space; −→u is a
vector, which is the sampling of the original signal; −→α is a vector of spec-
tral coefficients that characterize how a certain basic function (harmonic) is
represented in the vector −→u (i.e., in the original signal).

In the two-dimensional case, i.e., for images, the spectral transformation
is written in the form HUHT = A, where HT is the transposed matrix, U
is the square fragment of the original image, is the matrix containing the
spectral coefficients. That is, we suppose that the transformation is applied
to a fragment of the image.

Usually various remarkable bases, i.e., matrices, are used. They allow you
to “uncover” accurately the nature of signals and images, i.e., to understand
their structure. Below is a list of the most interesting transformations.

3.1. Cosine transform

The discrete two-dimensional (matrix) cosine transform DCT is usually
given by the formula [10]:

Gij =
1√
2n

CiCj

n−1∑
x=0

n−1∑
y=0

pxy cos(
(2y + 1)jπ

2n
) cos(

(2x+ 1)iπ

2n
),

Cf =

{
1/

√
2, f = 0

0, f > 0.

Here pxy is the brightness of the pixel with the coordinates x, y . That
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is, this formula immediately represents a record of the multiplication result
for the matrices HUHT .

3.2. The Hadamard transform

The papers [11, 12] describe the methods for constructing normalized Hada-
mard matrices known as Paley constructions.

Definition 1. Let p be a prime number, p ̸= 2, α, and n be an arbitrary
integer not divisible by p. The Legendre symbol (α/p) is put to be equal to
1 if the equation x2 ≡ α(modp) has a solution; and 1, otherwise [11].

As is known [13], the following formula is valid:

(α/p) = −1M ,M =

pi∑
x=1

[
2αx

p
], p1 =

1

2
(p− 1).

Here the square brackets denote the integer part of division.

Definition 2. If A = (aij) is an (n×n) – matrix and B = (bks) is an (m×m)
– matrix, then the Kronecker product (A×B) is called an (nm×nm) matrix

A×B =


a00B a01B · · · a0n−1B
a10B a11B · · · a1n−B
...

...
. . .

...
an−1,0B an−1,1B · · · an−1,n−1B

 .

Further, we give a brief description of the two classes of matrices:

1) The matrices of the order n = 2k are determined by induction.
For k = 1 we set

H1 =

(
1 1
1 −1

)
.

If Hk it is already defined, then let

Hk+1 = H1 ×Hk

2) Matrices of the order n = p+1, where p ≡ 3(mod4) is a prime number.
We set χ(k) = (k/p) and
αij = +1, (i = 0 or j = 0)
αij = χ(j − i), (1 ≤ i, j ≤ p, i ̸= j)
αii = −1, (1 ≤ i ≤ p)

Proposition. The following relations hold:
a)αij = −αij , (i, j ≥ 1, i ̸= j),
b)αij = αi+k,j+k, (i, j ≥ 1, i ̸= j),
c)αi,i+k = χ(k), (i, k ≥ 1),
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d)αi,i+k = −αi,i+p−k, (i, k ≥ 1).

The proof follows directly from the well-known properties [13] of the
Legendre symbol.

The first equality in this sentence means that the matrix A is antisym-
metric. The second shows that, on any line parallel to the main diagonal, all
elements are equal. The third equality gives, in particular, the structure of
the first line: ⟨1,−1, χ(1), χ(2), ...⟩. From the fourth equality, it follows that
the segment of the first line ⟨α12, α13, ..., α1,p−1⟩, lying above the main diag-
onal, has the antisymmetry property. Thus, the whole segment is restored
along its half.

3.3. The Haar transformation

The Haar transformation is based on the orthogonal Haar matrix [13]. Below
is an example of the eighth order orthonormal Haar matrix

H8 =
1√
8



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2

√
2 −

√
2 −

√
2 0 0 0 0

0 0 0 0
√
2

√
2 −

√
2 −

√
2

2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2


Higher-order Haar matrices are constructed according to the same rules

as matrices H4 and H8. The Haar transformation can be considered as a
process of discretization of the original signal, in which the step of digitiza-
tion is halved with the transition to the next block of lines.

3.4. Slant transformation

SN =
1√
2



1 0 1 0
0 0

aN bN −aN bN
0 EN/2−2 0 EN/2−2

0 1 0 −1
0 0

−bN aN bN aN
0 EN/2−2 0 EN/2−2


(
SN/2 0
0 SN/2

)
,

where EK is the unit matrix of the K-th order.
The constants aN and bN can be found from the recurrence relations
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a2 = 1

bN = (1 + 4(aN/2)
2)

−
1

2

aN = 2bNaN/2

or by the formulas

a2N = (
3N2

4N2 − 1
)

1

2

b2N = (
N2 − 1

4N2 − 1
)

1

2 .

3.5. Transformation of Daubechies-4

The Daubechies-4 transformation is given (see [13, 14]) by means of the
following matrix

M =
√
2



h0 h1 h2 h3
h0 h1 h2 h3

h0 h1 h2 h3
h2 h3 h0 h1
h3 −h2 h1 −h0

h3 −h2 h1 −h0
h3 −h2 h1 −h0

h1 −h0 h3 −h2


.

The elements of the matrix are calculated by the formulas given below:

h0 = (1 +
√
3)/8, h1 = (3 +

√
3)/8, h2 = (3−

√
3)/8, h3 = (1−

√
3)/8.

4. Program for calculation of textural features

The goal of the program is to carry out computer experiments and accumu-
late quantitative data (for example, textural attribute values) for different
sections of the images of cell walls treated at different temperatures. At the
input, the program receives the image in any of the standard formats (bmp,
jpeg, tiff, png), and a dialog box opens allowing you to select rectangular
areas of an arbitrary size of interest. The coordinates and sizes of the se-
lected areas of interest and the values of texture attributes are written to
the csv file. The developed program allows you to calculate 19 features (de-
scribed in Section 2) in the selected window. The program has two modes of
processing the image. The first mode allows marking an image highlighting
a few areas of interest; each area is limited to a fixed rectangle whose border
is indicated by a unique color. In this case, the pop-up windows display
the values of the texture attributes for the selected area of the image. The
second mode allows working with one limiting contour and changing the
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size of the contour dynamically or moving it to follow the changes in the
characteristic values. The image areas are selected with a computer mouse
when the left mouse button is pressed. Figure 1 shows how the program
works.

Figure 1. Selection of multiple image areas. The diagrams show the values of the
corresponding textural features

5. Program for calculation of orthogonal transformations

The program is implemented in the Matlab environment and allows us to
calculate spectral transformations of six types: 1) cosine, 2) Hadamard of
the order 2n, 3) Hadamard of the order n = p + 1, p ≡ 3(mod4) is a
prime number, i.e., based on the Legendre symbol, 4) Haar, 5) slant, and 6)
Daubechies 4.

Before starting the main program with the help of an auxiliary program,
a working window is selected (Figure 2). Namely, a small window appears on
the image under study. It can be moved where necessary with the help of a
mouse, but its size cannot be changed, that is, we cannot compress or expand
it. At the top, when the window is moving, four numbers are displayed in
rectangular brackets. These are the coordinates of the bottom left corner
and the size of the window. Then you can take the first two numbers (the x
and y coordinates) and manually enter them into the second program that
will perform the calculation. The main program is called main.m.

All the code of the main program can be manually inserted into the
working environment of Matlab, and immediately the results – graphs and
seven text files will appear. The graphs of the results of the transformations
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Figure 2. A screen of the auxiliary program

Figure 3. The graph of the original brightness function in the window and the
result of the Haar transformation

will be presented each in a separate window (Figure 3) and all simultaneously
in one window. Matlab allows the graphics to be rotated and viewed from
different angles. In the text files, the original data and the results of the
above six transformations are automatically saved.

Conclusion

The work was carried out for the Institute of Solid State Chemistry and
Mechanochemistry of the SB RAS. The work is devoted to the study of
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texture images. The source data are microphotos of plant raw materials
ground in special mills. The ultimate goal of the work is to determine their
porosity, chemical reactivity and other parameters. This paper does not
solve this task completely because it requires more in-depth studies. Here,
we are talking about the computation of various kinds of textural features
and other characteristics of images. In the future, the feature vectors can be
“linked” to chemical reactivity and a software system can be trained using
various machine-learning algorithms, such as the neurocomputing approach.
A large set of methods for studying textures have been analyzed, and the
most informative ones have been selected.

The main goal of our work is the creation of software tools and the result
is presented below.

1. A program for calculating various textural features. The program
is intended to conduct computer experiments and accumulate quantitative
data (the values of textural features) for different sections of images of cell
walls treated at different temperatures. The program has feature-rich graph-
ical user interfaces and allows us to select rectangular areas of interest of
an arbitrary size for which the values of texture attributes are displayed in
the form of diagrams in separate pop-up windows. A total of 19 texture
attributes can be calculated and the results of calculations can be saved.

2. A program implemented in the Matlab environment that allows spec-
tral transformations of six types: 1) cosine, 2) Hadamard of the order 2n,
3) Hadamard of the order n = p+1, where p ≡ 3(mod4) is a prime number,
i.e., based on the Legendre symbol, 4) Haar, 5) slant, and 6) Daubechies-4.
The mathematical part is implemented, but the program has no GUI yet.
Later, it will be built into the first program, and corresponding interfaces
will appear.

3. The prototypes of programs intended to perform R / S analysis and
fractal analysis [7–9]. The initial experiments have shown interesting results
that can be used in practice, namely, to support research in chemistry. Note
that similar statements are found in the scientific literature devoted to the
study of lignin [5, 6] but these results are not reflected in this paper.
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