
Joint NCC & IIS Bull., Comp. Science, 16 (2001), 141–152
c© 2001 NCC Publisher

Model vs. Algorithm: change of paradigm

in information technology

A. S. Narin’yani

Algorithm is one of the most fundamental concepts in information technology. Its
absolutely dominant position reminds that of programming in machine codes during the
era of the first computers: it appeared to be the only conceivable method to communicate
with a machine, but its fate disproved this axiom. The same future undoubtedly awaits
Algorithms as well, and we want to prove the thesis in this present paper:

(i) Although this notion appears to be natural, Algorithms are natural only for comput-
ers (and for professional programmers, of course). This is result of a fundamental
difference between the traditional algorithmic approach and that based on the no-
tion of a Model, which is the most natural way to work for a problem-oriented
expert (engineer, economist, etc.)

(ii) In the nearest 10–15 years the fate of Algorithm will repeat that of machine-code
programming: it will preserve its place only in the lowest and relatively thin layer
of software technology.

(iii) The technology that will replace the current Algorithm-based paradigm already
exists. It provides the user with qualitatively new capabilities: now the user can
interact with his Models directly, without any mediums from Methods, Algorithms
and Programming. This technology is a part of the constraint programming ap-
proach to the formation of a new IT paradigm.

Introduction

Model and Algorithm are the most fundamental notions not only in math-
ematics but also in the entire modern information technology. Their posi-
tions, however, are quite different. This becomes especially clear if we look
at the example of computational mathematics: while Model is used here
only as a formal description of the object of computations, Algorithm is the
very basis of the computer process.

This is why we have chosen computational mathematics as a basis for
all of the discussions in this paper. We focus on two closely related topics:

• extreme inadequacy of the current, Algorithm-oriented technology, un-
shakable though it seems, and

• the prospect of a cardinal change of paradigms, which transposes
Model and Algorithm in a new concept of information processing, de-
veloped in the constraint programming approach and subdefinite mod-



142 A. S. Narin’yani

els as a branch of constraint programming that was originated by our
team in the early 80s [8, 9].

This paper is a revised version of the publication under the same title in
the “Information Technologies” magazine, Moscow, 4, 1997 (in Russian)

1. A strange world of computational mathematics

1.1. At the beginning of the computer era, before the first high-level lan-
guages appeared, programming in machine codes seemed to be the only one
conceivable way to communicate with computers. But only 10–15 years later
programming in machine codes and assembly language kept their place only
in operating systems, a very thin layer that is closest to the hardware.

The notion of Algorithm is the most fundamental one in the compu-
tational mathematics, data processing and software technology. This is a
“notion forever”: to use a computer means to program, and a program is an
Algorithm. All attempts to rise to a declarative specification of the original
task make this situation even more contrast. A really declarative statement
of a problem has been possible only for problem-oriented packages, which
are libraries of specialized Algorithms, containing sometimes many dozens
of them, like most universal math solvers.

1.2. Thus, the notion of an Algorithm is the alpha & omega of the contem-
porary information technology. There is, however, another notion that is no
less fundamental for the mathematics and applied sciences — the notion of
a formal Model, i.e., a pair of unordered sets: a set of variables-parameters
and a set of relations linking these variables. It is a fundamental concept for
any science using mathematical techniques, because any attempt to work
with a real phenomenon in precise terms should begin with constructing its
formal Model.

The Algorithm is just a tool that implements how when you know the
Method and need to define it for the computer. In the general case, however,
you must decide what before you define how, i.e. you need to build a Model.
This simple truth is obvious for any science that uses mathematics, perhaps
with the exception of computer science. For the latter, the Model is a poor
relative that is almost invisible in the shadow of His Majesty the Algorithm.

It is so understandable: the Algorithm is a practical tool and a key to
computer (maybe even the key). Computational mathematics offers a set
of such tools, which are the Methods it has succeeded to develop, but not
the Problems it should learn to solve. Thus, the Model remains practically
useless in applications, and you cannot apply the computer to Models to
obtain results, except for some very special cases. This situation has led



Model vs. Algorithm 143

to the current state, when Models are met only in theoretical research, and
then as illustrations to the subject at hand.

2. Model vs. Algorithm

2.1. To compare the two notions, we begin with listing the most obvious
differences between them.

MODEL ALGORITHM

Declarative by definition In a sense, an Algorithm is anti-
declarative

Symmetric with respect to its
parameters, because each of its
variables is implicitly expressed
via the other ones.

Divides its parameters into input
and output ones, and the latter
are explicitly computed from the
former.

Defines implicitly the solutions
to all computational problems re-
lated to the object of the Model.

Defines explicitly the solution
to one problem whose relation
to the real Object is not clear
enough (see below).

May be subdefinite in the general
case.

The notion of “subdefinite” does
not seem to be applicable to the
classical Algorithm.

Determines a space of solutions
rather than one point, as well
as many (not unique) alternative
values for each of its variables.

Only a special form (interval Al-
gorithms) can work with interval
values of numbers.

These five issues reflect only the external, visible distinction between the
two notions, which goes much deeper.

2.2. First of all, a formal Model is a special case of the general notion of a
Model. The very semantics of the latter incorporate the object of modeling.
Without answering the question “The Model of what?” the notion in itself
is simply meaningless.

A mathematical Model of some real phenomenon is its formal approxi-
mation and with certain restrictions can be used instead of the phenomenon
itself, in a computer study or analysis of its nature and behavior. In this
capacity, the Model may serve as a basis in the solution of common compu-
tational problems, for example:



144 A. S. Narin’yani

⇒ how do the given values of some subset of parameters affect the values
of other parameters?

⇒ what values of the parameters satisfy a given set of constraints?

⇒ what combinations of the parameters’ values are optimal under certain
criteria and a given set of constraints?

Any mathematical Model that is not a formalization of some real entity
may only be interesting within mathematics itself, since it is not a tool for
solution of practical problems.

2.3. Conversely, the notion of an Algorithm does not imply existence of
some original; the sole exception is the description of a deterministic process
or procedure. The question “Algorithm of what?” is meaningful only with
respect to a function; moreover, the relation between the two concepts is
rather non-trivial. Indeed,

A. An Algorithm may implement a particular function that maps tuples
of input values into tuples of output values. In this case, the func-
tion is the primary entity and the Algorithm is an explication of its
computational implementation.

B. An Algorithm may be constructed as a formal object that defines
a computational procedure that, in turn, defines some Function. In
this case, the Algorithm is the primary entity and the function is its
abstract equivalent.

When comparing function and Algorithm, the following should be noted:

(i) every Algorithm defines only one function

(ii) each function may be implemented by with a number of different (but
functionally equivalent) Algorithms

(iii) there is no method to construct an Algorithm for any function or,
rather, this problem has been solved only for some special classes of
functions.

3. From Model to Algorithm: six paradoxes

3.1. Thus, an Algorithm has no direct relation to a real entity or phe-
nomenon. The connection between the object of any practical problem and
the computer may be represented by the following scheme:

OBJECT — MODEL — FUNCTION — ALGORITHM — COMPUTATION.



Model vs. Algorithm 145

In what follows, we discuss certain complex dependencies that link the com-
ponents of this scheme and represent the current view of the transition from
a Model to the process that solves a concrete problem on a computer. These
dependencies will be reflected in the form of six paradoxes that illustrate the
process; although it seems well-known and natural, this process borders on
absurdity in many cases.

3.2. Let us assume that we have developed a formal Model of some object,
for example, of an electric transformer or the budget of an organization,
and proved that the Model is adequate by running a series of tests. As
mentioned before, the Model is a pair of sets, a set of parameters of various
types and a set of formal relations between these parameters. We have
created the Model because we need to solve a number of problems related
to the object, each problem based on a set of parameter values that satisfy
a given collection of constraints, specific for the problem.

We recall that every set of k parameters defines a k-dimensional space
which is the Cartesian product of the parameters’ domains. Each point of
the space corresponds to a k-tuple of the parameters’ values. Each Model
defines a body in the space of its parameters’ values (let us call it the solution
body), whose points satisfy all the relations of the Model.

This body may be a single point if the Model is definite. It may be
a set of points, a hypersurface, a system of bodies, etc., if the Model is
subdefinite. At last, it may be empty if the Model is inconsistent. If the
body is not empty, its projections onto each parameter are the parameters’
domains within the Model.

The term constraint is synonymous to relation in our context. Thus,
adding constraints to a Model A produces a Model A′ which obviously de-
fines a body imbedded in the body of the original Model A. Moreover,
the parameters’ domains under constraints A′ are generally narrower (or, at
least, not wider) than in the Model A.

Suppose that our constraints are explicit restrictions on the domains of
the parameters. That means that they cut the space (and the body) with
a corresponding set of (k− 1)-dimensional hyperplanes. This case is typical
for many real applications: the constraints may be technical requirements
for a transformer or financial restrictions for an investment project.

Thus, defining the initial conditions for a specific problem in the form
of new constraints added to the original Model determines new domains for
the parameters of the problem, acceptable under the new constraints.

3.3. In the traditional technology, commonly used today, solution of a prob-
lem for an object described by a formal Model should begin with a necessary
“ritual” step: the problem, i.e., a Model with the original constraints, is pre-



146 A. S. Narin’yani

sented to an expert on computational Methods. The relationship between
the parties here is rather peculiar and can be described by the first paradox.

Paradox 1. The more real and natural our Model is, the less natural it is
for the expert.

Indeed, the task of the expert is to find a matching computational Method,
and almost all of the Methods can deal only with homogeneous problems, in
which similar relations link parameters of one type. At the same time, any
Model of a real object includes parameters of different types and a combina-
tion of various relations (linear and non-linear equations, inequalities, logic
expressions, even tabular relations and nomograms). Such a system looks
to the expert as a collage consisting of a chaotic conglomeration of formal
components of various classes.

The expert’s reaction is obvious: he will inform us that our masterpiece
of abstract art cannot be used “as is”; for serious work it should be replaced
with some appropriate normal (i.e. more regular) approximation and, as a
rule, not with a Model but with an Algorithm.

3.4. Thus, the transition from the Model and our problem to an Algorithm
is the next necessary “ritual” step, whose peculiarity is reflected in the
second paradox.

Paradox 2. In order to advance in the computational solution of your prob-
lem, you should divide your parameters into input and output ones.

In many cases this subdivision is quite unnatural and nontrivial, since in
most real problems the solution body is symmetric with respect to all or, at
least, to most of the parameters. Nevertheless, you should divide them in
order for the expert to reconstruct the function that maps the input domain
into the output domain. A precise reconstruction is usually impossible, and
so we have to use an approximation, i.e. a similar function for which a
computational Method is known.

Here we come to the third paradox, which mirrors the close relationship
between the technology discussed here and the good old “scientific” tradi-
tion: to look for a lost key under a street lamp not because it was lost there,
but because one can see better.

Paradox 3. While trying to solve a problem defined in the context of a
Model of a real object, we have to replace it with some different problem,
which has a Method for its solution, but no definite connection with the
original problem.



Model vs. Algorithm 147

3.5. When the expert selects a method to solve your problem, he will advise
you on what coefficient it is necessary to multiply the calculation result with
to make it more reliable as a solution for your problem. Now we have the
fourth paradox.

Paradox 4. While the result is calculated with maximal possible precision
(many orders), it is then multiplied by a rough coefficient to make the solu-
tion more reliable.

However, this is not the last paradox. Recall that as a rule we do not know
the values of the input parameters. We know only the constraints on the
values of some of the parameters and sometimes their types: some of them
are now input parameters and others are output parameters. This means
that the solution of our problem with the help of the selected Algorithm
requires exhaustive testing of all input values to find those that (i) satisfy
the constraints of the problem and (ii) produce the output values that also
satisfy these constraints. This leads to the next paradox.

Paradox 5. Even if we have the Algorithm we cannot always apply it to the
problem directly.

3.6. The sequence of “ritual” steps discussed above may be generalized into
the following concluding paradox:

Paradox 6. Solution of different problems for the same Model employs gen-
erally different approximating functions, hence different solution Methods,
different Algorithms and different correction coefficients.

Of course, this connection to the Model or the object is not quite clear for any
problem. Neither is the relationship with the other Methods and Algorithms
that are chosen for other problems arising for the same Model and object.
Thus, the traditional, Algorithm-based technology of computation turns out
to be utterly inadequate and helpless when it is applied to a Model rather
than to a well-defined and computable function or procedure.

4. New horizons

4.1. However, providing tools for construction of formal Models is the pri-
mary and most important task of mathematics, which makes it the founda-
tion for all applied sciences.

Let us try to come out of the “strange world” of the contemporary in-
formation technologies and imagine an ideal picture. The computer can
interpret Models directly. On receiving a formal Model, the machine auto-
matically contracts its space to a k-dimensional parallelepiped that contains



148 A. S. Narin’yani

the whole solution body. When the user adds more constraints or modi-
fies the Model, the parallelepiped is generally shrunk further or changes its
dimensions in accordance with the parameters’ domains. If it contracts to
an empty set, this means that the Model with the additional constraints is
inconsistent.

Such a technology could work with subdefinite models as well as with sub-
definite values of parameters. It would not require initial approximations.
To find an optimal solution, you should only set the optimized parameter
to its upper or lower limit. The relations of the Model could also be sub-
definite, for example, include subdefinite coefficients or indices in equations
and/or inequalities.

This technology could be based on a special, universal engine that would
work with the Model as a whole, rather than with a composition of many
components, which are autonomous and connected only via common vari-
ables used in calculations. Not being based on the imperative style and the
algorithmic mentality, this new computational mechanism would be inher-
ently parallel, decentralized, asynchronous, and hence would allow a natural
implementation on parallel computer architectures.

4.2. To an expert in traditional computation techniques, it is obvious that
such a technology is impossible in principle. However, such a technology does
exist. It provides the user with almost all of the new possibilities described
above: he can interact with the Model directly, without needing intermedi-
aries to apply Methods, Algorithms and Programming. Moreover, it allows
using different formal apparatuses within one Model, such as computational
algebra, logic, set theory, etc., as well as with their combinations.

These new capabilities may be illustrated with a small Model containing
two equations, one inequality and two logic expressions (the “−→” desig-
nates the implication operator, k is integer, x and y are real):

x3 + 10 ∗ x = yx − 2k;
k ∗ x+ 7.7 ∗ y = 2.4;
(k − 1)y+1 < 10;
ln(y + 2.0 ∗ x+ 12.0) < k + 5 or y > k2 −→ x < 0.0 and y < 1.0;
x < 0.0 −→ k > 3;

The system without the last expression has several solutions.

k = [1, 4]
x = [−1.2850,−0.08932]
y = [0.32329, 0.97925]

Adding the last expression provides a unique solution that meets this re-
striction:



Model vs. Algorithm 149

k = 4
x = [−1.285058,−1.2850575]
y = [0.9792507, 0.9792510]

Obviously, there is no general Method within the traditional paradigm to
deal with problems similar to this simple example.

4.3. This approach is twenty years old now. At the very beginning of the
80s our group came to a qualitatively new approach that was named subdef-
inite mathematics [8, 9]. This philosophy very soon developed into a theory
[10, 11] extending various classic formal apparatuses (algebra, logic, set the-
ory, graphs, etc.) with the ability to apply the same operations and relations
to variables with subdefinite values. The approach has been implemented in
a number of software systems and technologies [12, 13, 14, 15, 16, 17, 18].

In the second half of 80s, a similar approach called constraint program-
ming (or constraint satisfaction, constraint propagation, etc.) began to blos-
som into a promising and popular research field at the intersection of AI and
interval mathematics. Independently of our work that was not known out-
side USSR at the time, several new lines of research combined constraints
with subdefinite (interval) numbers [2, 3]. As a result, several new software
systems and technologies were created which expanded the Model-oriented
paradigm to wider applications [5, 6].

5. Conclusion: end of the Algorithm Era

5.1. The comparison of Model and Algorithm, the criticism of the algorith-
mic approach and a brief description of the new paradigm were presented
above on the material of algebraic computation problems. To present a more
general view within the framework of the whole software technology, it is
necessary to mention briefly the following three directions:

A. Differential equations. I have no information about application of the
new paradigm in this domain, except a few interesting experiments of small
scale.

B. Software technology. Although from the very beginning the Algorithm
was the foundation of the programming techniques for computers of von
Neumann architecture, many attempts to develop alternate approaches have
been made. First of all this was related with research on parallel pro-
gramming for multiprocessor computers: for example, the concept of asyn-
chronous programs [4] and many other efforts in the late 60s and early 70s
(see survey [7]).



150 A. S. Narin’yani

However, qualitative progress here was ensured by the apparatus of sub-
definite models and the most recent research in constraint programming,
because they are based on a decentralized, multi-agent data-driven compu-
tational process, which allows implementing any software system in the form
of a structured Model that integrates an hierarchical complex of autonomous
components.

Another important step in the radical transformation of the entire in-
formation technology is the development of the object-oriented philoso-
phy, which started the evolution of the traditional program into a Model.
Presently, however, this approach is only forming the basis of the future
technology by bringing an object-oriented program closer to a structured
Model although leaving unchanged the original algorithmic control of its
realization. One of the research themes in our group is the project TAO
(Technology of Active Objects) [17], which is aimed at integration of the
object-oriented approach with multi-agent constraint programming and sub-
definite models.

C. Artificial Intelligence. The focus of this discipline is in the formal means
for knowledge representation and processing, which is very close to the cen-
tral purpose of the mathematics itself. Their methodological positions differ,
however, in the following very important points:

✸ While concentrating on creation and study of formal apparatuses,
mathematics does not pay much attention to their application to prob-
lems in other disciplines.

✸ Artificial Intelligence has the opposite orientation: from studying var-
ious forms of knowledge to developing a complex of formal means that
attempts to cover the whole spectrum of activities.

Thus, from the very beginning of Artificial Intelligence the Model and
direct interaction to it had been the principal goal. And a natural result of
that orientation was the need to break out of the Algorithm paradigm in
all possible directions: Lisp, Prolog, frames, production rules, multi-agent
systems and, finally, constraint programming.

It seems that the new paradigm should be formed through integration
of mutually complimentary constituents of all of the above directions of the
information technology development.

5.2. The number of researchers working on the new paradigm is insignif-
icant compared to the immense professional manpower involved in further
development of the traditional paradigm (in particular, in the computational
mathematics) over many decades. In spite of that, however, the results ob-
tained by now are obvious enough: in many applications the novel paradigm



Model vs. Algorithm 151

is capable to demonstrate its advantages even now. Its fast progress and
wide adoption as a general information technology are making its superior-
ity over Algorithms more and more obvious, and so we take seriously the
forecast that in the nearest 10–15 years Algorithm will repeat the fate of
programming in machine codes and assembly languages: it will keep its
place only in a relatively thin, lowest level in the software technology of the
next generation.

References

[1] Borning A., The programming language aspects of ThikLab, a constraint-
oriented simulation laboratory. ACM Trans.Progr.Lang.Syst., 1981, 3(4).

[2] Davis E., Constraint propagation with interval labels. Artificial Intelligence,
1987, V32.

[3] Hyvonen E., Constrain reasoning based on interval arithmetic: the tolerance
propagation approach. Artificial Intelligence, 1992, V.58.

[4] Kotov V.E., Narin’yani A. S., Asynchronous computing processes over mem-
ory. Kibernetika, 1966, N 3 (in Russian)

[5] Kumar Vipin, Algorithms for constraint-satisfaction problems: a survey. AI
Magazine.-1992, Spring.

[6] Mayoh B., Tyugu E., Uustalu T., Constraint Satisfaction and Constraint Pro-
gramming: A Brief Lead-In. Constraint Programming. Berlin, Springer-Verlag,
1994.

[7] Narin’yani A. S., Looking for an approach to a theory of models of parallel
computation. — In: International Symposium on Theoretical Programming,
Springer Verlag, Berlin, 1974.

[8] Narin’yani, A. S., Subdefinite sets — new data type for knowledge represen-
tation. Preprint N 232 of Comp.Center of Siberian Div. of USSR Acad.Sci.,
1980 (in Russian).

[9] Narin’yani, A. S., Sub-definite models and operations over subdefinite values.
Preprint No. 400, Computer Center of the Siberian Div. of the USSR Acad.
Sci., Novosibirsk, 1982 (in Russian).

[10] Narin’yani, A. S., Sub-definiteness, Over-definiteness and Absurdity in Knowl-
edge Bases (some formal aspects). Computers and Artificial Intelligence. —
Bratislawa, 1986.

[11] Narin’yani, A. S., Subdefiniteness in knowledge representation and processing.
Technical Cybernetics, Moscow, No. 5, 1986 (in Russian).

[12] Narin’yani, A. S., Intelligent software technology for the new decade. Commu-
nications of the ACM, v. 34, No. 6, 1991.



152 A. S. Narin’yani

[13] Narin’yani A. S., Borde S. B., Ivanov D.A., Subdefinite mathematics and novel
scheduling technology. Artificial Intelligence in Engineering, v.11, N1, February
1997 (Published in 1996)

[14] Shvetsov I., Kornienko V., Preis S., Interval spreadsheet for problems of finan-
cial planning. Proc. of the 3rd Intern. Conf. on the Practical Application of
Constraint Technology PACT‘97, England, London, April 1997.

[15] Shvetsov I., Nesterenko T., Starovit S., Technology of Active Objects. Proc.
of AAAI Workshop on Constraints and Agents, Providence, USA, July 1997.

[16] Shvetsov I. E., Telerman V.V., Ushakov D.M., NeMo+: Object-Oriented Con-
straint Programming Environment Based on Subdefinite Models. 3rd Intern.
Conf. on Principles and Practice of Constraint Programming CP’97, Linz,
Austria, October 1997. — Lecture Notes in Computer Science, No. 1330.

[17] Sussman G. J., Steele G. L. Jr., CONSTRAINTS — a language for expressing
almost-hierarchical descriptions. Artificial Intelligence, v. 14, 1980.

[18] Tyugu E.H., Conceptual Programming. Moscow, Nauka, 1984 (in Russian).


