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How to make self-organizing maps produce
smooth adaptive meshes

Olga Nechaeva

Abstract. The problem of smoothness of adaptive meshes produced by the Self-
Organizing Maps is considered. It is shown that to improve the mesh smoothness,
it is necessary to increase the learning radius. This leads, in turn, to the border
effect. The main goal of this paper is to develop a technique allowing us to use a
large learning radius for obtaining the sufficiently smooth adaptive meshes without
border effect. The technique does not require changing the structure of the SOM
neuron layer, and affects only the way of the SOM learning. In addition, an inher-
ent parallelism of the SOM neural network is preserved in the proposed learning
algorithm and the algorithm is simple to implement.

1. Introduction

The Self-Organizing Maps (SOM) are neural networks used in a wide variety
of areas. In some applications of the SOM, such as image processing, data
compression, surface reconstruction [1], the smoothness of maps produced
by the SOM is important for obtaining qualitative results. Special attention
to map smoothness has to be paid when using the SOM for constructing
adaptive meshes intended for numerical simulation problems [2], because
the accuracy of a solution algorithm and the quality of adaptive meshes
essentially depend on the mesh smoothness. The focus of this paper is
on how to obtain sufficiently smooth adaptive meshes by the SOM-based
method. We believe that the proposed smoothing technique can be applied
not only in the field of mesh construction but in other areas as well.

Within the scope of all kinds of numerical adaptive meshes, there is a
class of meshes in which a mesh is an image under an appropriate mapping
of a fixed mesh. For the first time, some ideas of applying the SOM to the
construction of adaptive meshes from this class are discussed in [3]. But the
most reliable SOM-based method of the adaptive mesh construction is pro-
posed in [4]. This method is performed by the composite algorithm, which
is based on the composition of the SOM algorithms of different dimensional-
ities interacting in a special way during self-organization and typically being
responsible for the border or the interior of a physical domain.

Our experiments have shown that this method allows us to obtain a
good approximation of the border of a physical domain and a mesh density
function even if this domain is non-convex. However, these good results
can be obtained if a learning radius is sufficiently small at the end of the
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learning process. It has been noted that a small learning radius results in
unsmooth adaptive meshes. But when increasing the learning radius in a
composite algorithm, a notorious border effect of the SOM neural network
appears, thus making resulting adaptive meshes inappropriate for numerical
simulations.

The main objective of this paper is to develop a technique that would
allow us to use a large learning radius for obtaining sufficiently smooth
adaptive meshes without the border effect. Counteracting the border effect,
which enormously rises with increasing the learning radius, was the most
challenging task of this investigation.

Some approaches have been proposed to overcome the border effect such
as the heuristic weighting rule method by Kohonen [1] and implementation
of the SOM on a spherical lattice by Ritter [5]. However, the first approach
does not take into account the size of a learning radius, which directly in-
fluences the border effect and is a critical parameter for mesh smoothness;
and the second one is not applicable, because in the field of adaptive mesh
construction it is impossible to change the structure of a given fixed mesh.
The technique proposed in this paper does not require changing the struc-
ture of a fixed mesh, and influences only the way of the SOM learning. In
addition, an inherent parallelism of the SOM neural network is preserved in
the proposed learning algorithm and the algorithm is simple to implement.

The paper is organized as follows. Section 2 describes how to apply the
SOM for the adaptive mesh construction and contains the learning param-
eters definition. In Section 3, a measure of mesh smoothness is proposed,
and the general scheme of the adaptive mesh construction with a smoothing
technique is presented. Section 4 contains the border effect estimation and
the detailed description of its elimination. The algorithm of the smooth-
ing technique and examples of smoothed adaptive meshes are proposed in
Section 5. Section 6 concludes the paper.

2. Adaptive mesh construction based on SOM

Let G be a physical domain in the Euclidean space with the physical coor-
dinates x = (x1, x2), on which an adaptive mesh GN = {x1, . . . , xN} is to
be constructed, where xi = (x1

i , x
2
i ) ∈ G, i = 1, . . . , N are the mesh nodes.

Let Q be a computational domain in a 2D Euclidean space with coordinates
q = (q1, q2) with a fixed mesh QN = {q1, . . . , qN}, where qi = (q1i , q

2
i ) ∈ Q,

i = 1, . . . , N . Let us consider the case when QN is a rectangular uniform
mesh. This means that each node of QN has four neighbors, and the dis-
tances between the neighboring nodes are equal to dQ. Also, the mesh
density function w : G → R+ is given. The density of a desired adaptive
mesh is to be proportional to the values of w.
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To construct an adaptive mesh, it is necessary to find a mapping of Q
onto G, which transforms the mesh QN into the adaptive one GN with a
given mesh density. The method of the mapping determination is required
to assure that the boundary nodes of QN are automatically transformed
into the nodes distributed along the border of G. Let Nb be the number of
boundary nodes, and Nint be the number of the interior ones.

The SOM algorithm can be applied for mesh construction in such a way
that neurons are put into correspondence with mesh nodes [6]. This means
that there are N neurons in a SOM neural network. In the SOM neuron
layer, all the neurons are geometrically located in the same way as in the
computational domain. For each pair of neurons qi and qj , i 6= j, there is a
lateral connection between them with strength being a decreasing function
of a distance between qi and qj .

The weights of the ith neuron are the coordinates xi = (x1
i , x

2
i ) of the

ith mesh node in G. Random points from G serve as input data for the
SOM. The density distribution of the resulting mesh is controlled by the
probability distribution used for random point generation. The probability
distribution can be given by the normalized density function w(x):

p(x) =
w(x)∫

Gw(z) dz
. (1)

At each iteration t of the SOM learning algorithm, a random point y
is generated from G; the winning neuron is selected, which has the weight
vector xm(t) being closest to y; and all the neurons adjust their weights
according to the following rule:

xi(t+ 1) = xi(t) + δ(t) ηqm(t, qi) · (y − xi(t)), (2)

where δ(t) ∈ [0, 1] is responsible for a learning step and ηqm(t, qi) ∈ [0, 1]
is a function that defines the strength of a lateral connection between the
neurons qm and qi. These two functions control the magnitude of nodes
displacements in G, while the nodes move towards the point y, and essen-
tially influence the quality of resulting meshes and the speed of construction
process.

According to [4], a learning step is selected as δ(t) = t−0.2χ(t), where
χ(t) = 1−exp[5(t−T )/T ] and T is a maximum number of iterations that are
fixed beforehand depending on N . Let us denote by Bγ(q) the neighborhood
of a point q in the computational domain, where γ is a radius of the neigh-
borhood, i.e., Bγ(q) = {p ∈ Q | d(p, q) < γ}, where d(·, ·) is the Euclidean
distance. The function for lateral connections is proposed here in the fol-
lowing form: ηqm(t, qi) = s(d(qm,qi)/r(t))

2
, where s ∈ (0, 1) is fixed to be close

to zero, e.g., s = 10−5, and r(t) is a learning radius, which indicates that all
the neurons qi ∈ Br(t)(qm) are connected with qm by a lateral connection of
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the strength being greater than s, i.e. ∀qi ∈ Br(t)(qm)⇒ ηqm(t, qi) > s. The
function ηqm(t, qi) satisfies the following conditions:

• if d(qm, qi) = r(t), then ηqm(t, qi) = s;

• ηqm(t, qi) = ηqi(t, qm), i.e., a lateral connection between qm and qi is
symmetric; and

• ηqm(t, qm) = 1.

Therefore, at each iteration, the winner receives a maximum displacement,
while for other nodes the greater the distance between them, the less their
weights change. The learning radius is changing during the iteration process
as r(t) = r(T ) + χ(t)

(
r(1)0.05t/T − r(T )

)
t−0.25. Here r(1) and r(T ) are the

initial and the final radii, r(1) > r(T ).
Since adaptive meshes are intended for numerical simulations, it is very

important to ensure that the boundary nodes properly approximate the
border of the physical domain. When using the SOM in a pure form, it is
impossible to gain a good border approximation because of the border effect
and the topology preservation failures. Much better results can be obtained
by using the composite algorithm proposed in [4].

The composite algorithm is based on a special composition of the SOM
algorithms of different dimensionalities interacting in a special way during
self-organization, typically applied to the border and the interior of a physi-
cal domain. As a result, boundary nodes are distributed along the border of
the physical domain. At the same time, the composite algorithm essentially
improves the topology preservation of mapping and the quality of meshes
constructed over non-convex domains and, also, overcomes the border effect
for small values of a learning radius. At the end of the iteration process of
mesh construction by the composite algorithm, it is necessary to use a small
learning radius, e.g., r(T ) can be such as only the nearest neighbors, in Q,
are located in the neighborhood, because it makes the mesh be sensitive to
fine details of the border of G and the mesh density function.

On the other hand, a small radius leads to unsmooth adaptive meshes,
and this usually causes a decrease in accuracy of numerical simulations on
these meshes. The aim of this paper is to develop the technique allowing
us to use a large learning radius for obtaining sufficiently smooth adaptive
meshes without the border effect.

3. Measure of mesh smoothness

To measure the smoothness of a quadrilateral adaptive mesh, let us consider
the polygonal lines, which are images under the SOM mapping of vertical
and horizontal lines of the fixed mesh QN . Segments of these polygonal lines
connect the corresponding nodes of GN . The smoothness of a polygonal line
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Figure 1. The measure of mesh smoothness: (a) the mesh obtained by the com-
posite algorithm with artificially small final radius r(T ) = 1; (b) the result of
application of the SOM procedure to the mesh (a) with constant learning parame-
ters r = 15 and δ = 0.005; (c) illustration of how to measure the mesh smoothness;

(d) diagram of sine values for the meshes (a) (thin line) and (b) (thick line)

can be measured by sine values of the angles between segments in a sense
that the less the quantity of sign inversions and the amplitude of these values,
the smoother the line. Figure 1(c) illustrates this smoothness criterion.

Our experiments have shown that the mesh smoothness depends on the
relation between a learning step and a radius. Given a fixed learning step,
the larger the radius, the smoother the mesh. This can be clearly seen from
the example below. In Figure 1(a), the mesh constructed by the composite
algorithm with an artificially small final radius r(T ) is shown. This mesh
is unsmooth even visually, and a grey line in the diagram of Figure 1(d)
indicates large values with many sign inversions for a middle polygonal line
of the mesh.

For comparison, the SOM procedure with a large learning radius was
performed during certain amount of iterations starting with the mesh in
Figure 1(b). The learning radius and the learning step were unchanged in
the course of the iteration process. The radius was 15 times greater than
r(T ) and the step was close to zero and equal to δ = 0.005. The boundary
nodes did not move in this experiment, but were allowed to become a winner.
As is shown in Figure 1(d), by the black line in the diagram, the smoothness
of the last mesh is much better because the sine values are comparatively
small and have less sign inversions. But the resulting mesh is inappropriate
for the use in numerical simulations because of a poor approximation of the
physical domain border.
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This experiment is a bright demonstration of the border effect in the
SOM, which appears when a learning radius is large. Since the necessary
condition for obtaining sufficiently smooth adaptive mesh is a large learning
radius, the main problem while smoothing is to handle the border effect.

A general scheme of the adaptive mesh construction with employment
of the smoothing technique proposed below is as follows. An adaptive mesh
is constructed by the composite algorithm with a learning radius suitable
for a proper mesh nodes distribution. The boundary nodes of this mesh
are distributed along the border of G. Starting from this mesh, a SOM-like
procedure is applied during a fixed number of iterations with a constant
learning rate, i.e., r(t) = r, δ(t) = δ, ηqm(t, qi) = ηqm(qi), where the learning
radius r is comparatively large and the learning step δ is small. This proce-
dure adjusts locations only of the interior mesh nodes and can be regarded
as the last stage of the composite algorithm.

4. Border effect elimination

After termination of the composite algorithm, all mesh nodes are distributed
over the physical domain according to a given mesh density function. Conse-
quently, we here assume that for this mesh the following condition of equal
winning percentage (EWP) is satisfied (at least approximately) [7]: each
neuron has the same chance to be a winner for a randomly generated input
point. The probability to be a winner is equal to 1/N . In the theory of
self-organizing neural networks, this condition serves as a quality criterion
for the mapping produced by the SOM.

Let us consider an interior neuron qi, for which a distance to the border
of the computational domain is greater than the learning radius r. Since the
mesh QN is a rectangular uniform, all the neurons qj from Br(qi) as well as
all strengths of the lateral connections ηqj (t, qi) are symmetrically located
around qi. Therefore, as follows from the EWP condition, the neuron qi
has the same probability to be influenced by any other neuron qj . In the
physical domain, this means that the node xi has the same probability to
move symmetrically in all directions being guided by neurons from Br(qi).
Since s is close to zero, then the mutual influence between neurons qi and
qj /∈ Br(qi) is assumed to be negligibly small.

If a distance from qi to the border of the computational domain is less
than r, then there is not enough neurons in Br(qi) for symmetry. In this
case, most of the neurons in Br(qi) make the neuron qi move mainly to the
center of the physical domain. To balance the asymmetry, the neuron qi
needs to move aside the border of G.

To evaluate the asymmetry, let us consider the following characteristic
of the neuron qi:
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αi =
N∑
j=1

ηqj (qi). (3)

For each node, this characteristic is a sum of lateral connection strengths
with all other nodes. If qi is near the border of Q, then there is not enough
terms in sum (3). Therefore, αi is decreasing near the border of Q. It can be
clearly seen from the diagram in Figure 2(c) (a dashed line). All the nodes
located at a distance greater than r from the border have the same value of
this characteristic.

To eliminate the border effect, it is necessary to balance this asymmetry
and to achieve the same value of αi for all the neurons. We propose the
technique that allows us to use the boundary nodes as representatives of
missing neurons near the border of Q.

Let us imagine that for each boundary neuron, there are K virtual neu-
rons located outside the computational domain. These virtual neurons do
not exist in the algorithm but will help to understand the underlying idea
of the proposed technique. The exact locations of virtual neurons are un-
known. The only available information is that a distance between the k-th
virtual neuron and the corresponding boundary neuron qm is equal to kdQ,
k = 1, . . . ,K, where K = dr/dQe is the smallest integer not less than r/dQ.

To involve the virtual neurons into the learning process, the following
questions are to be resolved:

1. In what conditions a virtual neuron becomes a winner?

2. What are the strengths of lateral connections between the neurons qi,
i = 1, . . . , N , and the virtual ones?

3. What are directions and magnitudes of the mesh nodes displacements
in the physical domain when the winner is a virtual neuron?

(a) (b) (c)

Figure 2. Characteristic of lateral connections symmetry; (a) values of αi without
virtual neurons; (b) values of ᾱi with virtual neurons; (c) the cut of diagrams of (a)

(dashed grey line) and (b) (solid black line)
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Answer to the question 1. In the case of the presence of virtual neurons,
the winner selection cannot be based only on closeness to a random point,
because there are no points outside the physical domain. Therefore, at each
iteration, it is first of all necessary to decide from what kind of neurons
the winner is to be selected. Since the EWP condition is assumed to be
satisfied, virtual neurons have the same probability to become a winner as
all other neurons. The probability of virtual neurons to become a winner is
equal to NbK/(NbK+Nint), and hence, an interior neuron can be a winner
with probability 1−NbK/(NbK +Nint). To select a winner among virtual
neurons, a random point y is generated on the border of G, a boundary
node which is the closest one to y is determined, and then the kth virtual
neuron randomly selected from a set of virtual neurons, which correspond
to the determined boundary node, is assigned to be the winner.

Answer to the question 2. To define the lateral connections strengths
between virtual and ordinary neurons, it is necessary to know distances
between them in the computational domain. A distance between the k-th
virtual neuron and the neuron qi is assumed to be equal to d(qm, qi) + kdQ,
where qm is the boundary neuron corresponding to the virtual neuron. This
distance is approximate, because the exact location of this virtual neuron in
the computational domain is unknown. The lateral connection between the
kth virtual neuron of the boundary neuron qm and the neuron qi is taken to
be equal to: ηqm,k(qi) = s((d(qm,qi)+kdQ)/r(t))2 .

Answer to the question 3. To specify the directions and magnitudes of
the mesh nodes displacements in the physical domain, when the winner is a
virtual neuron, it is proposed to use a random point y on the border of G,
which has been generated for the winner selection among virtual neurons.
Let us remind that only the interior mesh nodes can move at the smoothing
stage. For each interior node xi, the direction of its displacement is given by
the vector y − xi(t), i.e., the node xi moves toward the point y located on
the border of G. The magnitude of the displacement is equal to δηqm,k(qi) ·
vi(t) · d(y, xi(t)), where vi(t) = 1 + kdQ/d(qm, qi) and qm is the boundary
neuron which corresponds to the virtual winner. This value was found on
the ground of the assumption that the ratio between d(qm, qi) and d(y, xi(t))
is equal to the ratio between the d(qm, qi) + kdQ and vi(t) · d(y, xi(t)). Since
the rule is applied only to the interior nodes, then d(qm, qi) 6= 0.

Taking into account virtual neurons, characteristic (3) changes and is
equal to:

ᾱi =
N∑
j=1

ηqj (qi) +
K∑
k=1

Nb∑
m=1

ηqm,k(qi), (4)

where m = 1, . . . , Nb is an index of a boundary node.
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In Figure 2(c), the diagrams of αi and ᾱi for a middle mesh line are
shown. It can be seen that ᾱi is almost constant for all neurons. Therefore,
the proposed technique balances the asymmetry of a lateral connection near
the border.

5. Smoothing stage algorithm

In this section, the algorithm of the smoothing stage is proposed. This
algorithm is a SOM-like procedure with constant learning parameters. The
learning radius r is chosen to be comparatively large, but it is bounded by
the curvature of the border of G. The learning step is to be small, because
a fine tuning is needed for smoothing and it does not essentially impair the
mesh density approximation.

In addition, when a virtual neuron is a winner, an imaginary random
point is outside the physical domain, which can lead to the mesh nodes
crossing the border of G. To exclude this effect, a learning step should
satisfy the following condition: δ(1 + kdQ/d(qm, qi)) < 1 for any boundary
neuron qm and interior neuron qi. This means that

δ < min
m,i,k

d(qm, qi)
d(qm, qi) + kdQ

=
dQ

dQ +KdQ
=

1
1 +K

.

Algorithm. Repeat the following operations during a fixed number of it-
erations:

1. Generate a random number α from [0,1] with uniform probability dis-
tribution.

2. If α ∈ [0, NbK/(NbK + Nint)], then perform a SOM-like procedure
which consists in the following:

a) Generate a random point y from G using the probability distri-
bution p(x).

b) Select a winner node xm(t) among all the neurons. If xm(t) is a
boundary neuron, then replace a random point with the weights
of the winning neuron: y := xm(t).

c) Adjust the weights only of the interior neurons according to the
rule

xi(t+ 1) = xi(t) + δηqm(qi)(y − xi(t)).

3. If α ∈ [NbK/(NbK +Nint), 1], then perform the following operations:

a) Generate a random point y from the border of G with the prob-
ability distribution p(x)|∂G.

b) Select the boundary node xm(t) which is closest to the point y.
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c) Choose randomly the number k from {1, . . . ,K}.
d) Adjust the weights only of the interior neurons according to the

rule

xi(t+ 1) = xi(t) + δηqm,k(qi)(1 + kdQ/d(qm, qi))(xm(t)− xi(t)).

Figure 3 shows examples of adaptive meshes constructed by the compos-
ite algorithm and then smoothed by the proposed algorithm at the smooth-
ing stage.

It has again to be pointed out that virtual neurons do not exist, and
thus, there is no need to change the structure of a fixed mesh when coun-
teracting the border effect. Additionally, our efforts have been directed to-
wards making the learning rule as simple as possible because of the following
reasons:

Figure 3. Examples of adaptive meshes constructed by the composite algorithm
and then smoothed by the proposed technique
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• to save an inherent parallelism of the SOM algorithm which consists in
that all neurons are processed according to the same rule independent
of each other;

• to avoid problems when constructing a mesh on a complex multiply-
connected domain, i.e., the ones with a single or multiple holes, since
the border effect is to be controlled at each of the borders.

6. Conclusion

In this paper, smoothness of the adaptive meshes produced by the SOM-
based composite algorithm has been studied. The technique which allows
us to use a large learning radius without border effect and, thus, to obtain
sufficiently smooth adaptive meshes is proposed. This technique counteracts
the border effect without changing the structure of a neuron layer and with
preservation of the inherent parallelism of a SOM neural network.

In the future, the proposed smoothing stage is to be integrated in the
composite algorithm and studied thoroughly in 3D case, where the problem
of smoothness and appearance of the border effect is even more important.
We believe that the proposed technique is applicable in other areas of SOM
applications where the smoothness of maps and the border effect are critical
for obtaining the qualitative results.
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