
Bull. Nov. Comp. Center, Comp. Science, 17 (2002), 75{88c 2002 NCC PublisherAssociative parallel algorithmof checking spanning trees for optimalityA.S. Nepomniaschaya, T.V. BoretsIn this paper, by means of an abstract model of the SIMD type with vertical dataprocessing (the STAR-machine), we present a simple associative parallel algorithmfor implementing the criterion of Chin and Houck to verify minimal spanning treesin undirected graphs. This algorithm is given as the corresponding STAR procedureCST, whose correctness is proved and time complexity is evaluated. We also providean experiment of verifying two spanning trees for optimality in a given undirectedgraph.1. IntroductionAssociative (content-addressable) parallel systems of the SIMD type withvertical processing and simple single-bit processing elements are best suitedto solve non-numerical problems. Such an architecture performs data par-allelism at the basic level, provides massively parallel search by contents,and allows one using two-dimensional tables as basic data structures [1].However, to solve tasks on these systems, it is necessary to construct newapproaches and methods which take into account the advantages of thisarchitecture.To sum up the main results, we have constructed a natural straight for-ward implementation of a group of classical graph algorithms on a model ofassociative parallel systems (the STAR-machine) [2] using simple and natu-ral data structures. For directed graphs, we have proposed associative ver-sions of Warshall's algorithm for �nding transitive closure [3], of Floyd's al-gorithm for �nding the all-pairs shortest paths [3], of Dijkstra's algorithm [4]and the Bellman{Ford one [5] for �nding the single-source shortest paths,and of Edmonds' algorithm for �nding optimum branchings [6]. For undi-rected graphs, we have suggested associative versions of Kruskal's and thePrim{Dijkstra algorithms { one for �nding the minimal spanning tree [7],and of Gabow's algorithm for �nding the smallest spanning tree with a de-gree constraint [8]. The associative versions of algorithms have been given asthe corresponding procedures represented on the STAR-machine, and theircorrectness has been proved.Here, we suggest an associative version of the criterion of Chin andHouck [9] for verifying minimal spanning trees in undirected graphs. In [10],

76 A.S. Nepomniaschaya, T.V. BoretsTarjan proposed a special technique, path compression on balanced trees,to compute functions de�ned on paths in trees under various assumptions.This technique is applied to solve several graph problems. Among themthere is the criterion of Chin and Houck. On sequential computers this al-gorithm takes O(m�(m;n)) time, where n is the number of vertices, m isthe number of edges in the given graph, and � is a functional inverse ofAckermann's function.In this paper, for a given graph represented as a list of triples and for agiven spanning tree, the criterion of Chin and Houck is implemented on theSTAR-machine as procedure CST (checking a spanning tree) which returnstrue if and only if all non-tree edges of the graph satisfy the criterion. Thisprocedure uses a new construction which de�nes for every vertex vi of thegiven graph positions of edges belonging to the tree path from the sourcevertex to the vertex vi. We prove correctness of the procedure CST andevaluate its complexity. We obtain that it takes O(m log n) time assum-ing that each elementary operation of the STAR-machine (its microstep)requires one unit of time.2. Model of associative parallel machineLet us recall our model which is based on a Staran-like associative parallelprocessor [11, 12]. We de�ne it as an abstract STAR-machine of the SIMDtype with bit-serial (or vertical) processing and simple single-bit processingelements (PEs). The model consists of the following components:� a sequential control unit (CU), where programs and scalar constantsare stored;� an associative processing unit consisting of p single-bit PEs;� a matrix memory for the associative processing unit.The CU broadcasts an instruction to all the PEs in unit time. All activePEs execute it in parallel while inactive PEs do not perform it. Activationof a PE depends on the data. It should be noted that the time of performingany instruction does not depend on the number of processing elements [11].Input binary data are loaded in the matrix memory in the form of two-dimensional tables in which each datum occupies an individual row and itis updated by a dedicated processing element. It is assumed that thereare more PEs than data. The rows are numbered from top to bottom andthe columns { from left to right. Both a row and a column can be easilyaccessed. Some tables may be loaded in the matrix memory.The associative processing unit is represented as h vertical registers(h � 4), each consisting of p bits. The vertical registers can be regarded asa one-column array. The bit columns of the tabular data are stored in the

Associative parallel algorithm of checking spanning trees 77registers which perform the necessary Boolean operations and record thesearch results.The STAR-machine run is described by means of the language STAR [2]which is an extension of Pascal. Let us briey consider the STAR con-structions needed for the paper. To simulate data processing in the matrixmemory, we use data types word, slice, and table. Constants for the typesslice and word are represented as a sequence of symbols of f0; 1g enclosedwithin single quotation marks. The types slice and word are used for thebit column access and the bit row access, respectively, and the type tableis used for de�ning the tabular data. Assume that any variable of the typeslice consists of p components which belong to f0; 1g. For simplicity, let uscall slice any variable of the type slice.Now, we present some elementary operations and predicates for slices.Let X, Y be variables of the type slice and i be a variable of the typeinteger. We use the following operations:SET(Y) sets all the components of Y to 010;CLR(Y) sets all the components of Y to 000;Y (i) selects the i-th component of Y ;FND(Y) returns the ordinal number i of the �rst (or the uppermost) com-ponent 010 of Y , i � 0;STEP(Y) returns the same result as FND(Y) and then resets the �rst com-ponent 010.In the usual way, we introduce the predicates ZERO(Y) and SOME(Y)and the bitwise Boolean operations X and Y , X or Y , not Y , and X xor Y .Let T be a variable of the type table. We employ the following twooperations:ROW(i; T) returns the i-th row of the matrix T ;COL(i; T) returns the i-th column of T .Remark 1. All operations for the type slice can also be performed for thetype word.Remark 2. Note that the STAR statements [2] are de�ned in the samemanner as for Pascal. We will use them later for presenting our procedures.3. PreliminariesAt �rst, let us recall some notions being used in the paper.Let G = (V;E) be an undirected weighted graph with the set of verticesV = f1; 2; : : : ; ng, the set of edges E � V � V , and the function w thatassigns a weight to every edge. We assume that jV j = n and jEj = m.

78 A.S. Nepomniaschaya, T.V. BoretsIn the STAR-machine matrix memory, an undirected weighted graph willbe represented as association of the matrices left, right, and weight, whereeach edge (u; v) 2 E is matched with the triple hu; v; w(u; v)i. Recall thatvertices and weights are integers represented as binary strings.A path from the vertex u to the vertex v in G is a sequence of verticesu = v1; v2; : : : ; vk = v, where (vi; vi+1) 2 E for i = 1; 2; : : : ; k � 1 and k > 0.A spanning tree T = (V;E0) of the given graph G is a connected acyclicsubgraph of G, where E0 � E.A minimal spanning tree (MST) of G is a spanning tree, where the sumof weights of the corresponding edges is minimal.Now, recall three basic procedures implemented on the STAR-machinewhich will be used later on. The �rst two procedures use a global slice Xto select by ones positions of the rows which will be processed.The procedure MATCH(T;X; v; Z) from [13] de�nes in parallel positionsof those rows of the given matrix T which coincide with the given pattern vwritten in binary code. It returns the slice Z, where Z(i) = 010 if and onlyif ROW(i; T) = v and X(i) = 010.The procedure GREAT(T;X; v; Z) from [13] de�nes in parallel positionsof those rows of the given matrix T which are greater than the given patternv written in binary code. It returns the slice Z, where Z(i) = 010 if and onlyif ROW(i; T) > v and X(i) = 010.The procedure CLEAR(k; F) [4] sets zeros in all columns of the matrixF , where k is the number of columns in F .4. Verifying minimal spanning treeson the RAM modelIn [10], Tarjan suggests a special technique, path compression on balancedtrees, being applied to compute functions de�ned on paths in trees. Here,we consider an application of this technique to verify a minimal spanningtree in undirected graphs.Let T be a spanning tree of the given graph G. In [9], Chin and Houckpresents the following criterion of verifying minimal spanning trees in undi-rected graphs.A spanning tree T is optimum if and only if for each edge (vi; vj) 2 E�E0w(vi; vj) � maxfw(x; y): (x; y) is on the tree path joining vi and vjg.Let us shortly consider an implementation of this criterion on sequentialcomputers given in [10]. It uses the following data structures:� a graph G given as a list of m edges and their weights;� an unrooted spanning tree T given as arrays parent and children;� non-tree edges given as an array pairs.

Associative parallel algorithm of checking spanning trees 79This algorithm runs as follows.First, it arbitrarily chooses a root r for T . Next, for each edge (vi; vj)from the array pairs by means of the procedure LCA, it computes the leastcommon ancestor ui = LCA(vi; vj). Finally, it computes the maximal weightof edges on the tree paths from ui to vi and from ui to vj. Combining theseresults, we obtain the maximal weight of an edge along the tree path joiningvi and vj for each non-tree edge (vi; vj).The algorithm is realized as the procedure EVALUATE PATHS whichuses virtual trees. A virtual tree contains the same vertices as the real treebut di�erent edges and labels [10]. Note that the root of a virtual tree savesthe maximal weight of the path joining the vertices of the correspondingnon-tree edge.The procedure EVALUATE PATHS initializes virtual trees and an arraybucket. Initially for each vertex vi 6= r, we create a virtual tree with thevertex vi having w(parent (vi); vi) as its label. Then by means of the arraybucket for each pair of vertices (vi; vj), we save its least common ancestor ui,that is, bucket(ui) = f(vi; vj) 2 pairs : LCA(vi; vj) = uig. After that, therecursive procedure SEARCH(r) carries out a depth-�rst search to select themaximal weight on the tree path from the root of the current virtual tree toa vertex. During the search, each pair (vi; vj) is examined twice: once whenthe search is at vi and once when the search is at vj . When we follow parentpointers to the root r, virtual trees are merged by means of the procedureLINK.The procedure LINK(vi; vj) adds the virtual tree with the root vj to thevirtual tree with the root vi and assigns a new label for the vertex vi asmaximum of the labels for vi and vj.5. Verifying minimal spanning treeson the STAR-machineIn this section, we present the implementation of the criterion of Chin andHouck for verifying minimal spanning trees on the STAR-machine. To thisend, we �rst propose the procedure MatrixPath which de�nes for everyvertex vi positions of edges belonging to the tree path from the source vertexto vi. Next, we present the procedure CST which returns true if and onlyif all non-tree edges satisfy the criterion.On the STAR-machine, we represent a graph as association of the matri-ces left, right, and weight, and a spanning tree as a slice T in which positionsof edges belonging to T are selected by ones.5.1. Associative algorithm for �nding tree paths. Here, we �rstpresent the main idea of the procedure MatrixPath. Assume we know po-

80 A.S. Nepomniaschaya, T.V. Boretssitions of edges included into the tree path from the source vertex s to avertex vr. Then we construct a tree path for such a vertex vk which is ad-jacent to vr, the corresponding edge from the spanning tree T connectsthe vertices vr and vk, and the tree path from s to the vertex vk has not yetbeen de�ned. The tree path from s to vk is obtained by adding the positionof the edge to the tree path from s to vr.Explain the meaning of the main variables being used.The procedure MatrixPath uses a global slice Y for the matrices left andright, in which we select by ones positions of edges from the spanning tree Tnot included in any tree path; a global slice U for the matrix code in whoseevery i-th row there is the binary code of the vertex vi; a variable node1(respectively, node2) of the type word for saving the binary code of thevertex for which the tree path from s has been constructed (respectively,has not been constructed) and a variable k (respectively, j) of the typeinteger for storing its decimal code; a slice N1 (respectively, N2) for storingpositions of the tree edges whose left (respectively, right) vertex has beenincluded in the tree path from s.Let us present the procedure MatrixPath.proc MatrixPath(left,right,code: table; T: slice(left);n: integer; var R: table);var U,U1: slice(code); X,Y,Z,N1,N2: slice(left);node1,node2: word; i,j,k: integer;Begin CLR(N1); CLR(N2); SET(U);1. Y:=T; CLEAR(n,R);2. node1:=ROW(1,code);3. /* The binary code of the source vertex is saved by means of node1. */MATCH(left,Y,node1,Z); N1:=N1 or Z;4. MATCH(right,Y,node1,Z); N2:=N2 or Z;5. X:=N1 or N2;6. /* Positions of the tree edges which is incident with the source vertexare selected by ones in the slice X . */while SOME(X) do7. begin i:=STEP(X);8. /* We determine the position of the tree edge which is incidentwith the vertex for which the tree path has been obtained. */if N1(i)='1' then9. begin node1:=ROW(i,left);10. node:=ROW(i,right); N1(i):='0';11. end12. else13.

Associative parallel algorithm of checking spanning trees 81begin node1:=ROW(i,right);14. node2:=ROW(i,left); N2(i):='0';15. /* We save the binary code of the vertex for which the tree pathhas been obtained in node1, and the binary code of the vertexfor which the tree path has not been obtained in node2. */end;16. Y(i):='0';17. /* The tree edge from the i-th position is indicated as updated one. */MATCH(code,U,node1,U1); k:=FND(U1);18. MATCH(code,U,node2,U1); j:=FND(U1);19. Z:=COL(k,R); Z(i):='1'; COL(j,R):=Z;20. /* The tree path to the vertex vj is obtained from the tree pathto the vertex vk by adding the position of the edge (vk ; vj). */MATCH(left,Y,node2,Z); N1:=N1 or Z;21. MATCH(right,Y,node2,Z); N2:=N2 or Z;22. X:=N1 or N2;23. end;24. End;25. Correctness of the procedure MatrixPath is established by means of thefollowingTheorem 1. Let an undirected graph be given as association of matrices leftand right. Let code be a matrix in whose i-th row there is the binary repre-sentation of the vertex vi. Let a spanning tree T be given as a slice in whichpositions of edges belonging to it are selected by ones. Then the procedureMatrixPath(left ; right ; code ; T; n;R) returns the matrix R in whose every j-th column positions of edges belonging to the tree path from the source vertexs to the vertex vj are selected by ones.Proof. We prove this by induction on the number of edges r included inthe spanning tree T .Basis is veri�ed for r = 1. One can immediately verify that after per-forming lines 1{3, the slice Y saves the copy of the spanning tree T , thematrix R consists of zeros, and the variable node1 saves the binary code ofthe source vertex s. As a result of performing lines 4{6, we indicate by onein the slice N1 (respectively, N2) position of the edge from T whose left(respectively, right) vertex coincides with the binary code of the vertex s.Therefore by means of the slice X, we save the position of the edge from Tbeing incident with the vertex s. Since X 6= �,� we perform the cycle fromline 7.�The notation X 6= � denotes that there is at least one component 010 in the slice X.

82 A.S. Nepomniaschaya, T.V. BoretsHere, on performing line 8, by means of the operation STEP(X), wede�ne the position i of the edge selected by one in the sliceX. On performinglines 9{16, we �rst de�ne whether the position of the selected edge belongsto the slice N1. If it is true, the right vertex of the selected edge has notbeen updated. In this case, we save the binary code of the left vertex innode1 and the binary code of the right vertex in node2, and perform thestatement N1(i) := 000. Otherwise, we save the binary code of the rightvertex in node1 and the binary code of the left vertex in node2, and ful�lthe statement N2(i) := 000.On performing line 17, the position of the edge incident with s is selectedby zero in the slice Y . Therefore, Y = �. On ful�lling lines 18{19, thevariable k saves the result of decoding node1 and the variable j saves theresult of decoding node2. On performing line 20, there is a unique 010 inthe j-th column of the matrix R located in the i-th position. Hence, theposition of the edge from T which connects the vertices s and vj is selectedby one in the j-th column of the matrix R.Finally on performing lines 21{22, we obtain N1 = N2 = � becauseY = � and N1(i) = N2(i) = 000. Therefore in view of the statementX := N1 or N2 (line 23), we obtain X = �. Hence, the cycle terminates.Step of induction. Let the assertion be true for 1 � r � n � 2. Wewill prove it for spanning trees with r + 1 edges. By inductive assumptionfor each l (1 � l � r) in the l-th column of the matrix R, we select byones positions of the tree edges which belong to the tree path joining thevertices s and vl. Moreover, positions of updated edges in the slice Y areselected by zero. Since r � n� 2 and Y 6= �, on performing lines 21{23, weobtain X 6= �. Therefore, we ful�l the current iteration starting from line 7.Using the same line of reasoning as in the basis, position of the last updatedtree edge is selected by zero in the slice Y . Moreover, we obtain that thevariable k saves the result of decoding node1 and the variable j saves theresult of decoding node2. In addition, node2 saves the last vertex for whichthe tree path from s will be constructed. On performing line 20, we appendthe edge (vk; vj) to the tree path from s to the vertex vk. Therefore in thej-th column of the matrix R, positions of edges belonging to the tree pathfrom s to vj are selected by ones.This completes the proof. 2Let us evaluate time complexity of the procedure MatrixPath. In view ofbasic procedures CLEAR and MATCH, execution of lines 1{6 takes O(n) +O(log n) time. The cycle while SOME(X) do is performed n � 1 timesbecause it updates each edge of the spanning tree. Since the basic procedureMATCH takes O(log n) time inside the cycle, we obtain that the procedureMatrixPath requires O(n log n) time.

Associative parallel algorithm of checking spanning trees 835.2. Associative algorithm for verifying minimal spanning trees.Here, we �rst present the main idea of representing the criterion of Chinand Houck on the STAR-machine. For every non-tree edge (vi; vj) by meansof the auxiliary procedure MatrixPath, we determine positions of edges in-cluded into the tree path joining the vertices vi and vj. Then by means ofthe basic procedure GREAT, we verify whether there is such an edge in thispath whose weight is greater than the weight of the non-tree edge (vi; vj).Let us explain the meaning of the main variables being used.The procedure CST uses a global slice U for the matrix code; a slice Z {for saving positions of non-tree edges; a matrix R { for saving the result ofthe procedure MatrixPath; the variables node1, node2 and w of the typeword { for selecting the left vertex, the right vertex, and the weight of thecurrent non-tree edge.proc CST(left,right,weight,code: table; T: slice(left);n: integer; var result: boolean);var R: table; U,U1: slice(code); X,Y,Z: slice(left);node1,node2,w: word; i,j,k: integer;Begin result:=true; SET(U); Z:= not T;1. /* Positions of non-tree edges are selected by ones in the slice Z. */MatrixPath(left,right,code,T,n,R);2. while SOME(Z) do3. begin i:=STEP(Z);4. /* We select the position of the uppermost unexamined non-treeedge in the slice Z. */node1:=ROW(i,left);5. node2:=ROW(i,right);6. w:=ROW(i,weight);7. /* By means of node1, node2, and w, we save the binary codes of the leftvertex, the right one, and the weight of the selected non-tree edge . */MATCH(code,U,node1,U1);8. k:=FND(U1); X:=COL(k,R);9. /* Positions of edges which belong to the tree path from sto the left vertex of are saved in the slice X . */MATCH(code,U,node2,U1);10. j:=FND(U1); Y:=COL(j,R);11. /* Positions of edges which belong to the tree path from sto the right vertex of are saved in the slice Y . */X:=X xor Y;12.

84 A.S. Nepomniaschaya, T.V. Borets/* Positions of edges which belong to the tree path that jointhe vertices of are selected by ones in the slice X . */GREAT(weight,X,w,Y);13. /* We select by ones in the slice Y positions of the edges from the tree path,that join the vertices of , whose weights are larger than w(). */if SOME(Y) then14. begin result:=false; exit15. end;16. end;17. End;18. Theorem 2. Let an undirected weighted graph be given as association ofthe matrices left, right, and weight. Let code be a matrix in whose i-th rowthere is the binary representation of the vertex vi. Let a spanning tree Tbe given as a slice in which positions of edges belonging to it are selected byones. Then the procedure CST(left; right ;weight ; code ; T; n; result) returnsthe value true if and only if T is a minimal spanning tree.Proof. We prove this by induction on the number of edges r not includedin the spanning tree T .Basis is veri�ed for r = 1. First after initializing, the variable result hasthe value true, the slice U consists of ones and positions of non-tree edgesare selected by ones in the slice Z (line 1). After performing the auxiliaryprocedure MatrixPath (line 2), we construct the matrix R, in whose everyj-th column positions of edges belonging to the tree path from the sourcevertex s to the vertex vj are selected by ones. Since Z 6= �, we perform thecycle from line 3.Here, on ful�lling line 4, we determine the position i of the unique edgeselected by one in Z. Then on performing lines 5{7 by means of node1(respectively, node2), we save the binary code of the left (respectively, right)vertex of this edge, and by means of w its weight. As a result of performinglines 8{9, the variable k saves the result of decoding node1, and positionsof edges which belong to the tree path from s to the vertex vk are selectedby ones in the slice X. Similarly, on performing lines 10{11, the variable jsaves the result of decoding node2 and positions of the edges, which belongto the tree path from s to vj , are selected by ones in the slice Y .On performing the statement X := X xor Y (line 12), we select by onespositions of edges from the tree path joining the vertices vk and vj.Finally, on ful�lling the basic procedure GREAT(weight;X;w; Y) po-sitions of the tree edges joining the vertices vk and vj whose weights aregreater than w are selected by ones in the slice Y . If there is such an edge(that is, Y 6= �), the procedure CST returns false, otherwise it returns

Associative parallel algorithm of checking spanning trees 85true (lines 1, 16). Since Z = �, the procedure terminates.Step of induction. Let the assertion be true for r � n � 2. We willprove it for r + 1. By inductive assumption after updating the �rst r non-tree edges selected by ones in the slice Z, the procedure CST returns falseif and only if for a non-tree edge there is such an edge � in the tree pathjoining the vertices of , for which w(�) > w(). Without loss of generalityit is su�cient to consider the case when the criterion of Chin and Houckis ful�lled for the �rst r non-tree edges. Then after updating these edgesposition of the last non-tree edge is selected by one in the slice Z. SinceZ 6= �, we perform the current iteration starting from line 4. In the samemanner as shown in the basis, we verify the criterion for the tree path whichjoins the vertices of the last non-tree edge. Since now Z = �, the procedureCST terminates and returns either the result true if the criterion is ful�lledfor the last (r + 1)-th non-tree edge or the result false otherwise.This completes the proof. 2Let us evaluate time complexity of the procedure CST. In view of theprocedure MatrixPath, execution of lines 1{2 takes O(n log n) time. Thecycle while SOME(Z) do is performed for all edges not included in thespanning tree, that is, m� n+ 1 times. Since the basic procedure MATCHtakes O(log n) time inside the cycle, we obtain that the procedure CST takesO(m log n) time on the STAR-machine having no more than m processingelements.6. ExperimentsIn this section, we provide two examples to illustrate the implementation ofthe procedure CST(left ; right ;weight ; code ; T; n; result) of verifying spanningtrees T1 and T2 for optimality in an undirected graph.The original graph G is given in Figure 1 while the spanning trees aregiven in Figures 2 and 3. In the procedure CST, the graph G is representedas association of matrices left, right, and weight, the spanning tree is givenas a slice T1 or T2, and n = 6.
Figure 1. Graph G Figure 2. Spanningtree T1 Figure 3. Spanningtree T2

86 A.S. Nepomniaschaya, T.V. BoretsTable Sliceleft right weight T1 T21 001 010 010 1 12 001 011 111 0 03 010 011 100 1 14 010 100 110 0 15 011 100 110 0 06 100 101 011 1 17 011 101 100 1 08 100 110 111 1 1
Code1 0012 0103 0114 1005 1016 110

In the �rst test, we consider the spanning tree T1. After performing theprocedure MatrixPath, we obtain the matrix R1 as shown below. Positionsof non-tree edges are selected by ones in the slice Z. Since the slice Z doesnot consist of zeros, the procedure CST continues its run, until all ones willbe deleted from Z. Table R1 Slice1 2 3 4 5 6 Z X1 X2 X31 0 1 1 1 1 1 0 1 0 02 0 0 0 0 0 0 1 0 0 03 0 0 1 1 1 1 0 1 1 04 0 0 0 0 0 0 1 0 0 05 0 0 0 0 0 0 1 0 0 06 0 0 0 1 0 1 0 0 1 17 0 0 0 1 1 1 0 0 1 18 0 0 0 0 0 0 0 0 0 0The �rst non-zero element in the slice Z corresponds to the non-treeedge (1,3) having weight 7 and located in the second row of the graphrepresentation. Positions of edges which belong to the path joining vertices1 and 3 are saved in the slice X1. The weights of edges belonging to this pathare not larger than the weight of edge (1,3). Since Z 6= �, the procedurecontinues its run.The position of the next non-zero element in Z corresponds to the fourthedge (2,4) with weight 6. Positions of tree edges belonging to the pathjoining vertices 2 and 4 are saved in the slice X2. Again the weights of edgesbelonging to this path are not larger than the weight of the edge (2,4).The last non-tree edge is the �fth edge (3,4). Positions of tree edgesbelonging to the path joining vertices 2 and 4 are saved in the slice X3.The weight of the edge (3,4) is larger than the weights of edges belongingto this path. After updating the last non-tree edge, the slice Z consists ofzeros. Therefore, the procedure CST stops with the result true. Hence, thespanning tree T1 is minimal.

Associative parallel algorithm of checking spanning trees 87In the second test, we consider the spanning tree T2. After performing theprocedure MatrixPath, we obtain the matrix R2 as shown below. Positionsof non-tree edges are selected by ones in the slice Z.Table R2 Slice1 2 3 4 5 6 Z X1 X2 X31 0 1 1 1 1 1 0 1 0 02 0 0 0 0 0 0 1 0 0 03 0 0 1 0 0 0 0 1 1 14 0 0 0 1 1 1 0 0 1 15 0 0 0 0 0 0 1 0 0 06 0 0 0 0 1 0 0 0 0 17 0 0 0 0 0 0 1 0 0 08 0 0 0 0 0 1 0 0 0 0The �rst non-tree edge (1,3) was considered in the �rst test.The next non-tree edge is the �fth edge (3,4) with weight 6. Positions oftree edges belonging to the path between vertices 3 and 4 are saved in theslice X2. Again the weights of edges belonging to this path are not largerthan the weight of edge (3,4).The last non-tree edge is edge (3,5) with weight 4. Positions of tree edgesbelonging to the path between vertices 3 and 5 are saved in the slice X3.However, the weight of the fourth edge (2,4) is greater than the weight ofedge (3,5). Therefore the procedure CST stops with the result false.7. ConclusionsWe have presented a natural matrix implementation of the criterion of Chinand Houck for verifying a spanning tree to be a minimal one by means ofthe STAR-machine which is a model of associative parallel systems withvertical processing. To this end, for a graph given as a list of triples and fora spanning tree T given as a slice, we have suggested a simple associativeparallel algorithm which constructs the Boolean matrix in whose each i-thcolumn positions of edges included in the tree path from the source vertex tothe vertex vi are selected by ones. We have also presented implementationof the criterion of Chin and Houck using Tarjan's technique for path com-pression on balanced trees. Our result illustrates that associative parallelsystems with vertical processing allows one to use both a simple and naturaldata structure and a simple algorithm for implementing criterion of Chinand Houck.We are planning to employ our construction for designing new associativeparallel algorithms which utilize tree paths. In particular, it will be used to�nd a fundamental set of cycles in undirected graphs relatively to a givenspanning tree.

88 A.S. Nepomniaschaya, T.V. BoretsReferences[1] Potter J.L. Associative Computing: a Programming Paradigm for MassivelyParallel Computers. { New York and London: Kent State University, PlenumPress, 1992.[2] Nepomniaschaya A.S. Language STAR for associative and parallel compu-tation with vertical data processing // Proc. of the Intern. Conf. \ParallelComputing Technologies". Singapure: World Scienti�c. { 1991. { P. 258{265.[3] Nepomniaschaya A.S. Solution of path problems using associative parallel pro-cessors // Proceedings of the International Conference on Parallel and Dis-tributed Systems, ICPADS'97, December 10{13, 1997. { Seoul, Korea: IEEEComputer Society Press, 1997. { P. 610{617.[4] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra'sshortest path algorithm on associative parallel processors // Fundamenta In-formaticae. { Amsterdam: IOS Press, 2000. { Vol. 43. { P. 227{243.[5] Nepomniaschaya A.S. An associative version of the Bellman{Ford algorithmfor �nding the shortest paths in directed graphs // Proceedings of the 6-thIntern. Conf. PaCT-2001. Lect. Notes in Comp. Sci. { Berlin: Springer-Verlag,2001. { Vol. 2127. { P. 285{292.[6] Nepomniaschaya A.S. E�cient implementation of Edmonds' algorithm for�nding optimum branchings on associative parallel processors // Proc. of theEighth Intern. Conf. on Parallel and Distributed Systems (ICPADS'01). { Ky-ongJu City, Korea: IEEE Computer society Press, 2001. { P. 3{8.[7] Nepomniaschaya A.S. Comparison of performing the Prim{Dijkstra algorithmand the Kruskal algorithm by means of associative parallel processors // Cy-bernetics and System Analysis. { 2000. { ü 2. { P. 19{27 (in Russian); Englishtranslation by Plenum Press.[8] Nepomniaschaya A.S. Representation of the Gabow algorithm for �ndingsmallest spanning trees with a degree constraint on associative parallel proces-sors // Euro-Par'96 Parallel Processing. Second Intern. Euro-Par Conf. Lyon,France. Proceedings, Lect. Notes in Comp. Sci. { Berlin: Springer-Verlag,1996. { Vol. 1123. { P. 813{817.[9] Chin F., Houck D. Algorithms for updating minimal spanning trees // J. ofComputer and System Sciences. { 1978. { Vol. 16. { P. 333{344.[10] Tarjan R.E. Applications of path compression on balanced trees // J. of theACM. { 1979. { Vol. 26, ü 4. { P. 690{715.[11] Foster C.C. Content Addressable Parallel Processors. { New York: Van Nos-trand Reinhold Company, 1976.[12] Mirenkov N. The Siberian approach for an open-system high-performance com-puting architecture // Computing and Control Engineering J. { 1992. { Vol. 3,ü 3. { P. 137{142.[13] Nepomniaschaya A.S. Investigation of associative search algorithms in verticalprocessing systems // Proc. of the Intern. Conf. \Parallel Computing Tech-nologies". { Obninsk, Russia, 1993. { Vol. 3. { P. 631{642.

