
Bull. Nov. Comp. Center, Comp. Science, 36 (2014), 65–78
c© 2014 NCC Publisher

Constructions used in associative parallel
algorithms for undirected graphs. Part 2

A.S. Nepomniaschaya

Abstract. This paper selects constructions used in a group of algorithms for
undirected graphs represented as a list of edges and their weights on a model
of associative (content addressable) parallel systems with vertical processing (the
STAR-machine). To this end, the paper first analyzes the implementation of the
Prim–Dijkstra algorithm on the STAR-machine for finding an MST along with the
method of finding the tree paths with respect to a given spanning tree. Then the
paper considers the implementation on the STAR-machine of the dynamic graph al-
gorithms for updating an MST. This group includes associative parallel algorithms
for the dynamic edge update of an MST and for the dynamic reconstruction of an
MST after deleting or after inserting a vertex along with its incident edges.

1. Introduction

Associative processing is a completely different way of storing, manipulating,
and retreiving data as compared to conventional computation techniques.
Of special interest is a class of associative (content addressable) parallel
processors of the SIMD type with bit-serial (vertical) processing and simple
single-bit processing elements [2]. The vertical processing systems are best
suited to solving non-numerical problems. In [3], we propose an abstract
model of the SIMD type (the STAR-machine) that simulates the run of
such systems on micro level. Associative parallel algorithms are represented
as corresponding procedures for the STAR-machine. In [4], we present the
basic associative parallel algorithms that are used to design different asso-
ciative algorithms for different applications. Let us enumerate some results
of solving graph problems. In [3, 5], we construct a natural straightforward
implementation of classical graph algorithms by Dijkstra and Bellman–Ford
on the STAR-machine for finding the single-source shortest paths. In [7],
we propose two associative parallel algorithms for the dynamic edge up-
date of minimum spanning trees of undirected graphs. In [8–9], we propose
associative parallel algorithms for the dynamic reconstruction of an MST
after deleting and after inserting a new vertex along with its incident edges.
In [10], we present the efficient implementation on the STAR-machine of
the Italiano algorithms for the dynamic update of the transitive closure of
directed graphs. In [11–12], we propose the efficient implementation on the
STAR-machine of the Ramalingam algorithms for the dynamic update of
the shortest paths subgraph of a directed graph with a sink. In [13], we

66 A.S. Nepomniaschaya

select a group of constructions used to represent on the STAR-machine the
classical graph algorithms by Prim–Dijkstra, Kruskal, and Gabow, and the
method of finding tree paths with respect to a given spanning tree.

In this paper, we select a group of constructions from the dynamic algo-
rithms on undirected graphs that use a fast method for finding a tree path
between any pair of vertices. This group includes an associative parallel al-
gorithm for finding an MST along with the matrix of tree paths, associative
parallel algorithms for the dynamic edge update of an MST, and the dy-
namic reconstruction of an MST after inserting and after deleting a vertex
along with its incident edges. To represent these algorithms on the STAR-
machine, an undirected graph is given as a list of edges and their weights.
The selected constructions can be used to design new associative parallel
algorithms in graphs.

2. An associative parallel machine model

In this section, we first recall the main operations of the STAR-machine.
The description of the model is given, for example, in [4].

Let us present some elementary operations and a predicate for variables
of the type slice.1

We use the following operations:

SET(Y) simultaneously sets all components of Y to ′1′;

CLR(Y) simultaneously sets all components of Y to ′0′;

Y (i) selects a value of the ith component of Y ;

FND(Y) returns the ordinal number i of the first (the uppermost) bit ′1′

of Y , i ≥ 0;

STEP(Y) returns the same result as FND(Y) and then resets the first found
′1′ to ′0′;

CONVERT(Y) returns a row, whose every ith bit coincides with Y (i). It
is applied when a row of one matrix is used as a slice for another
matrix.

To implement the data parallelism, in the usual way we introduce the
bitwise Boolean operations: X and Y , X or Y , not Y , X xor Y . We also
use the predicate SOME(Y) that results in true if there is at least a single
bit ′1′ in the slice Y . For simplicity, the notation Y 6= ∅ means that the
predicate SOME(Y) results in true.

Note that the predicate SOME(Y) and all operations for the type slice
are also performed for the type word.

1For simplicity let us call slice any variable of the type slice.

Constructions for associative parallel algorithms for undirected graphs 67

Let T be a variable of the type table. We employ the following elemen-
tary operations:

ROW(i, T) returns the ith row of the matrix T ;

COL(i, T) returns its ith column.

Note that the STAR statements are defined in the same manner as for
Pascal. They are used for presenting the procedures.

Now, let us recall a few basic procedures [4] implemented on the STAR-
machine. They use a given slice X to indicate with ′1′ the row positions
employed in the corresponding procedure. In [4], we have shown that the
basic procedures take O(r) time each, where r is the number of bit columns
in the corresponding matrix.

The procedure MATCH(T,X,w,Z) determines the positions of the rows
of the matrix T that coincide with the given pattern w. It returns the slice
Z, where Z(i) = ′1′ if and only if ROW(i, T) = w and X(i) = ′1′.

The procedure MIN(T,X,Z) finds the positions of rows in the given
matrix T , where a minimum entry is located. These positions are marked
with ′1′ in the result slice Z.

The procedure MAX(T,X,Z) is defined by analogy with MIN(T,X,Z).

3. Preliminaries

Let G = (V,E) be an undirected weighted graph with the set of vertices
V = {1, 2, . . . , n}, the set of edges E and the function wt that assigns a
weight to every edge. We assume that |V | = n and |E| = m.

In the STAR-machine matrix memory, a graph will be represented as
association of the matrices Left, Right, and Weight, where each edge (u, v)
is matched with the triple 〈u, v, wt(u, v)〉.

A path from v1 to vk in G is a sequence of the vertices v1, . . . , vk, where
(vi, vi+1) ∈ E for 1 ≤ i < k. If v1 = vk, then the path is said to be a cycle
or a circuit.

A spanning tree T = (V,E′) of the given graph G is a connected acyclic
subgraph of G, where E′ ⊆ E. Each edge e ∈ E \ E′ is called a chord of G
with respect to the spanning tree. Adding a chord to a spanning tree creates
precisely one circuit.

Let δT (v) be the number of edges of T incident on v.

A minimum spanning tree (MST) of G is a spanning tree, where the sum
of weights of the corresponding edges is minimal.

A connected component is a maximal connected subgraph.

68 A.S. Nepomniaschaya

4. Updating tree paths

In this section, we first enumerate constructions that are used to obtain an
MST along with the matrix of tree paths. Then we select constructions that
are used to update the matrix of tree paths.

In [6], we propose an associative version of the Prim–Dijkstra algorithm
for finding an MST starting with a given vertex v. The corresponding pro-
cedure MSTPD returns a slice Tree, where positions of edges belonging to
the MST are marked with bits ′1′. In [13], we select constructions used to
represent the procedure MSTPD on the STAR-machine. Moreover, we extract
constructions that are used to describe the method of finding tree paths
with respect to a given spanning tree.

The dynamic graph algorithms for updating an MST require a fast
method for finding a tree path between any pair of vertices. In [7], by means
of minor changes in the procedure MSTPD, we build an MST along with a
matrix TPaths, whose every ith column saves positions of edges belonging
to the tree path from the root v1 to the vertex vi. As input parameters, the
corresponding procedure MSTPaths uses the matrices Left, Right, Weight,
and Code, and a global slice S. It returns the slice Tree and the matrix
of tree paths TPaths. The procedure MSTPaths runs as follows. Initially,
it sets zeros in the first column of the matrix TPaths and saves the root
v1 being the first vertex of the fragment TS . By analogy with MSTPD, at
every iteration, it defines both the position of the current edge γ and the
corresponding new vertex vk being included in TS . Moreover, it defines the
endpoint vl of γ included in TS before this iteration. The tree path from
v1 to vk is obtained by adding the position of γ to the tree path from v1
to vl defined before. This path is written in the kth column of the matrix
TPaths.

By analogy with the procedure MSTPD, it uses Construction 1 to deter-
mine positions of edges forming a cycle. By analogy with the procedure
MatrixPaths, it uses Construction 3 to determine binary codes of the end-
points of the current edge included into the building path at the current
iteration. Then by means of Construction 5, it determines decimal numbers
of the endpoints of the current edge included into the fragment of TS . Fi-
nally, by means of Construction 4, it builds a path from v1 to the new vertex
included into TS .

In [7], we have shown that the procedure MSTPaths takes the same time
O(n log n) as the procedure MSTPD for finding an MST in undirected graphs.
Without loss of generality, we will assume that initially an MST is always
given along with the matrix TPaths.

Let a new MST be obtained from the underlying one by deleting an edge,
say, γ, and inserting an edge, say, δ. Let Y 1 be a connected component of
G obtained after deleting γ.

Constructions for associative parallel algorithms for undirected graphs 69

Construction 11 (Finding the row where the edge (vi, vj) is located in the
graph representation). We first define binary codes node1 and node2 of the
vertices vi and vj , respectively. Then with a slice, we determine positions of
edges in the graph representation, whose left vertex coincides with node1.
Further among these edges, we select the position l of the edge whose right
vertex coincides with node2.

To perform this construction, we use the basic procedure MATCH and
the operation FND.

Construction 12 (Finding a connected component Y1 obtained after delet-
ing an edge from the lth row). We first save the lth row of the matrix
TPaths. Then we write the convertation of this row into the slice Y 1.

In [7], we propose an associative parallel algorithm for updating tree
paths. It determines new tree paths for all vertices from Y 1. Let vdel and
vins be the endpoints of the corresponding edges γ and δ that belong to Y 1.
Let P be a slice that saves positions of tree edges joining vins and vdel.

Construction 13 (Finding vertices vdel and vins that belong to Y 1). Let a
connected component Y 1 be given. Let an edge γ from the lth row of the
graph representation be deleted from the MST, and the edge δ from the kth
row be inserted into the MST. Then we determine decimal numbers of the
endpoints of the edge γ (respectively, δ). The vertex vdel (respectively, vins)
is the endpoint of γ (respectively, δ) that belongs to Y 1.

To perform this construction, we first define decimal numbers of the
endpoints of the edges γ and δ using Construction 5. Further we check
which endpoint of γ (respectively, δ) corresponds to bit ′1′ in the slice Y 1.

To select the next two constructions, we recall an example from [7].
Let a new MST be obtained from the underlying one after deleting the

edge (v4, v8) (Figure 1) and inserting a new edge (v7, v14) (Figure 2). Here,
the connected component Y 1 consists of the vertices v8, . . . , v18; del = 8
and ins = 14.

The algorithm starts with the vertex v14. Then the new tree paths are
recomputed for the vertices v15, v16, v17, and v18 from the subtree rooted at
v14. Further, a new tree path is first defined for v13 and then for v8. Finally,
new tree paths are recomputed for the vertices v9, v10, v11, and v12 from the
subtree rooted at v8.

Let us agree, for convenience, that a tree path from v1 to any vertex vr is
denoted by pr before updating the MST and by p′r after updating the MST.

The associative parallel algorithm starts with the vertex vins. Note that
p′ins is known.

70 A.S. Nepomniaschaya

Figure 1. The MST before deleting the edge (v4, v8)

Figure 2. The MST after inserting the edge (v7, v14)

Construction 14 (Finding positions of edges belonging to the tree path from
vins to vdel). Knowing the matrix TPaths, we first save the paths pins and
pdel. The tree path P from vins to vdel is obtained by means of the operation
xor between the corresponding slices.

Construction 15 (Finding a new tree path to a vertex from the subtree
rooted at the path P). We determine vertices not belonging to P that form
a subtree of the MST with the root vr if any. For every vj 6= vr from this
subtree, we compute p′j as follows: p′j := (pj and (not pr)) or p′r.

To perform this construction, we first determine the position i of an edge
from P incident on vr. By means of Construction 12, we find all vertices
from the subtree rooted at vr. Among them we exclude the vertices being
updated before.

Constructions for associative parallel algorithms for undirected graphs 71

On the STAR-machine, the associative parallel algorithm for updating
tree paths is implemented as procedure TreePaths which uses the following
input parameters: matrices Left, Right, and Code, vertices vins and vdel,
the number of graph vertices n and the position l of the deleted edge. This
returns the matrix TPaths for the new MST and the slices W and P . In [7],
we have shown that the procedure TreePaths takes O(h log n) time, where
h is the number of vertices in the connected component Y 1.

5. Dynamic edge update of a minimum spanning tree

In [7], we present associative parallel algorithms for the dynamic edge dele-
tion from the MST and for the dynamic edge insertion into the MST. In
this section, we will select constructions that are used to implement these
algorithms on the STAR-machine.

Let vi and vj be endpoints of the edge that is deleted from a minimum
spanning tree given as a slice Tree. The associative parallel algorithm first
determines the position of the edge (vi, vj) in the graph representation and
deletes it from further consideration. Then, it defines the connected com-
ponent Y 1 that consists of vertices not reachable from the source vertex v1
after deleting this edge. Further, it determines positions of edges joining
two connected components. Among these edges, a minimum weight edge is
selected and its position is saved in the slice Tree. Finally, tree paths for
vertices from Y 1 are recomputed as shown in the previous section.

Construction 16 (Finding positions of edges joining two connected com-
ponents). First, by means of slice N1 (respectively, N2), we accumulate
positions of edges not included into the MST, whose left (respectively, right)
endpoint belongs to Y 1. Then using operation N1 or N2, we determine po-
sitions of edges having at least one endpoint from Y 1. After that, by means
of operation N1 and N2, we define positions of edges whose both endpoints
belong to Y 1. Knowing the disjunction of slices N1 and N2 and their con-
junction, we easily determine a slice that saves positions of edges having
a single endpoint from the connected component Y 1. Obviously, this slice
saves positions of edges joining two connected components.

To perform this construction, we use the basic procedure MATCH.
So, the associative parallel algorithm for dynamic edge deletion from the

MST uses Construction 11 to determine the position of the edge (vi, vj) in
the graph representation, Construction 12 to find the connected component
Y 1, Construction 16 to determine positions of edges joining two connected
components, Constructions 13–15 to recompute tree paths for vertices from
the connected component Y 1.

On the STAR-machine, this algorithm is implemented as procedure
DelEdge that uses the following input parameters: matrices Left, Right,

72 A.S. Nepomniaschaya

Weight, and Code, a slice Y for the matrix Code, and endpoints vi and vj
of the deleted edge. This returns the current slice S for the graph G, the
current MST Tree, and the current matrix of tree paths TPaths.

Now we will select constructions that are used in the associative parallel
algorithm for the dynamic update of the current MST after insertion of an
edge in the underlying graph G [7]. As is shown in [1] if a new edge is added
to G, then the new MST is obtained by adding the new edge to the current
MST and deleting the largest edge in the cycle created.

Let vi and vj be endpoints of an edge being inserted in G. The associative
parallel algorithm runs as follows. It first determines the position k of an
edge being added to G. Then, it defines positions of tree edges joining
endpoints of this edge. Further, it determines position l of a maximum
weight edge in the cycle created. If k 6= l, the algorithm first deletes the
position of a maximum weight edge from the slice Tree and adds to it the
position k of the new edge. Further, it defines the connected component Y 1
whose vertices are not reachable from v1 after deleting an edge from Tree.
Finally, it recomputes tree paths for vertices from Y 1.

The associative parallel algorithm for the dynamic update of the current
MST after insertion of an edge to G uses Construction 11 to determine the
position of the edge (vi, vj) in the graph representation, Construction 6–– to
find a tree path joining the vertices vi and vj , Construction 12 to find the
connected component Y 1, Constructions 13–15 –– to recompute tree paths
for vertices from Y 1.

On the STAR-machine, this algorithm is implemented as procedure
InsertEdge that uses the following input parameters: matrices Left, Right,
Weight, and Code, endpoints vi and vj of the inserted edge, and the number
of graph vertices n. It returns the current MST Tree and the current matrix
of tree paths TPaths.

In [7], we have shown that the procedures DelEdge and InsertEdge take
O(h log n) time each, where h is the number of vertices in the connected
component Y 1. The factor log n arises due to the use of the basic procedure
MATCH.

6. Dynamic reconstruction of an MST after deleting
a vertex

In [8], we proposed an associative parallel algorithm for the dynamic update
of an MST after deletion of a vertex along with its incident edges. In this
section, we select costructions that are used to implement this algorithm on
the STAR-machine.

Let G \ v denote a graph after deleting the vertex v and its incident
edges. We assume that G \ v is a connected graph and has an MST. The

Constructions for associative parallel algorithms for undirected graphs 73

associative parallel algorithm for the dynamic update of the MST from [8]
runs as follows.

At first, it determines connected components obtained after deleting the
vertex v and its incident edges from a given MST. Then it determines posi-
tions of chords and deletes positions of edges incident on v from the current
MST. After that the algorithm determines positions of edges being included
into the new MST and saves their endpoints. Finally, it recomputes the
matrix of tree paths TPaths.

Construction 17 (Finding positions of edges from the MST incident on the
vertex v). We first determine the binary code node1 of vertex v. Then we
define positions of edges from the MST having an endpoint that coincides
with node1.

To perform this construction, we apply the basic procedure MATCH.

In [8], there is an example of finding two connected components obtained
after deleting a vertex and its incident edges. The next construction will
consider a general case when the number of connected components l ≥ 2.
Knowing the given MST, the vertex v, and the matrix of tree paths TPaths,
it builds a matrix of connected components Comp, consisting of n bit columns
and δT (v) rows. Its every row saves a separate connected component.

Construction 18 (Finding connected components after deleting the ver-
tex v). Let a slice (say, X) save positions of edges from the MST incident
on the vertex v. We update these edges as follows. We delete the position
i of a current updated edge from the slice X. By means of a variable (say,
w1), we save the ith row of the matrix TPaths and verify whether the vertex
v belongs to w1. If v /∈ w1, in the current row of the matrix Comp, we write
w1. Otherwise, we write not w1.

Really, if v ∈ w1, then all vertices from the subtrees with the root v
also belong to w1. Therefore the corresponding connected component will
consist of the vertices not included into w1.

Construction 19 (Finding the endpoint of an edge incident on v). Let a
row (say, node1) save the binary code of a given vertex v and an integer i
save the position of an edge (say, γ) incident on v in the graph represen-
tation. Then by means of a row (say, w2), we save the binary code of the
left endpoint of γ. If node1 = node2, then node2 is assigned to the right
endpoint of γ. Finally, by means of the matrix Code, the decimal number
of node2 is determined.

74 A.S. Nepomniaschaya

To perform this construction, we apply the basic procedure MATCH and
the operation FND.

On the STAR-machine, the associative parallel algorithm for finding con-
nected components [8] is implemented as procedure Subtrees. It returns
the matrix Comp, a variable vdel to save vertices adjacent to the vertex v, a
slice S to save positions of edges remaining after deleting vertex v and all its
incident edges, a slice Y to save positions of edges from the MST incident
on the vertex v.

From constructing the matrix Comp, it is seen to consist of δT (v) different
rows, and there is a unique bit ′1′ in its every column.

Let us enumerate a few constructions used to build a new MST after
deleting vertex v and all its incident edges.

Construction 20 (Finding the connected component including vertex i).
Let the matrix Comp and a vertex having the decimal number i be given. To
determine the connected component that includes vertex i, we find the ith
column of the matrix Comp and select the row, whose ith bit is equal to ′1′.

Construction 21 (Checking whether endpoints of a chord belong to the
same connected component). Let the matrix Comp and a chord (say (i, j)) be
given. To determine whether vertices i and j belong to the same connected
component of the matrix Comp, we find the row that includes vertex i, and
then check whether the jth bit of this row is equal to ′1′.

Construction 22 (Merging two connected components). Let the matrix
Comp and a chord (say γ = (i, j)) be given. Let endpoints of γ belong to
different connected components of the matrix Comp. Then a new connected
component is obtained by including the connected component containing its
right endpoint (vertex j) into the connected component containing its left
endpoint (vertex i). Then we write zeros in the matrix Comp row, where the
connected component including the vertex j has been written.

Knowing connected components obtained after deleting the vertex v from
the MST and positions of edges incident on v, the associative parallel algo-
rithm determines a new MST, positions of chords joining different connected
components and their endpoints. This algorithm simulates the run of the
Kruskal algorithm on the STAR-machine. Initially, it acts on δT (v) con-
nected components each being an MST on the corresponding graph induced
by its vertices. At every iteration when the current selected chord of a min-
imum weight connects two different connected components, it unites them
together with this chord forming a single connected component. The process
continues until all connected components are united in a single connected
component.

Constructions for associative parallel algorithms for undirected graphs 75

The associative parallel algorithm for recomputing the matrix of tree
paths TPaths uses the following main idea.

First, this algorithm selects the connected component w1 including the
root v1. Tree paths for vertices from w1 do not change. Then it selects the
connected component w2 which is connected with w1 by means of a chord.
After that, the algorithm determines new tree paths for all vertices from w2

using the procedure TreePaths. Further, it unites connected components w1

and w2 and builds a new connected component w1. The process continues
until all connected components are included in w1.

The associative parallel algorithm for recomputing tree paths is imple-
mented as procedure ChangePaths. It uses the following input parameters:
matrices Comp and Endpoints, and the above-described slice Y . The pro-
cedure returns a slice Rep, a variable vdel, and the recomputed matrix
TPaths.

On the STAR-machine, the associative parallel algorithm for updating an
MST after deleting a single vertex is represented as procedure DeleteVert.
As is shown in [8], it takes O(h log n) time, where h is the number of vertices
whose tree paths change after deleting a vertex.

7. Dynamic reconstruction of an MST after inserting
a vertex

In [9], we proposed an associative parallel algorithm for the dynamic update
of an MST after insertion of the vertex vr along with its incident edges. In
this section, we select costructions that are used to implement this algorithm
on the STAR-machine.

In [9], a given graph is written in the first m rows of the association of
the matrices Left, Right, and Weight, and the new edges are written in
the next k rows. It is assumed that every new edge is given in the form
(vr, vi, wt(vr, vi)), where vi is adjacent to vr. Initially, the last k rows of the
given matrix TPaths consist of zeros.

As is shown in [14], if a new vertex with k incident edges are added to a
given MST, then C2

k cycles are formed. However, only k − 1 different edges
will be deleted from these cycles. It is assumed that in every selected cycle
a new edge of a maximal weight is deleted first.

The associative parallel algorithm from [9] is performed in two stages.
At the first stage, it builds a new MST and gathers some information for
the next stage. At the second stage, it recomputes the matrix of tree paths.

To perform the first stage, the following two constructions are used.

Construction 23 (Finding candidates for the new MST). Let a slice (say,
Tree) save positions of edges from the MST, and a slice (say, X) save po-
sitions of edges incident on the vertex vr. We first determine a maximal

76 A.S. Nepomniaschaya

weight of edges (say, w) belonging to the MST. Then we save positions of
those edges from the slice X, whose weight is less than w. If there are not
any new edges, then the position of the new edge of a minimal weight is
saved in the slice X.

On the STAR-machine, this construction is implemented as procedure
Candidates. Knowing the matrix Weight and the MST Tree, the above
construction defines the new content of the slice X. Initially, this slice saves
positions of new edges incident on the vertex vr.

The next construction is applied after performing the previous procedure.

Construction 24 (Finding different cycles). Let a slice (say, Tree) save
positions of edges from the MST, and a slice (say, X) save positions of
new edges that are candidates for including in the new MST. We select the
uppermost new edge (say, γ1) and determine the tree path P1 from the root
v1 to vr including the edge γ1. While X 6= ∅, we select the current uppermost
new edge (say γ2) and determine the tree path P2 from v1 to vr that includes
the edge γ2. The cycle Ci is obtained by means of the operation P1 xor P2.
In this cycle, we determine positions of edges of a maximal weight. If among
them there is a new edge, it is deleted from the cycle Ci and its position is
marked with ′0′ in the slice X. Otherwise, the uppermost edge of a maximal
weight is deleted from Ci and its position is marked with ′0′ in the slice Tree.

To perform the next construction, we use a matrix Q that consists of
two columns of the length m+ k.

Construction 25 (Saving the new edge from the tree path used for the next
cycle). Let in the current cycle Ci the tree path P1 include the new edge γ
and the tree path P2 include the new edge δ. Let in the cycle Ci an edge be
deleted from the path P2. Then the first column of the matrix Q saves the
position of the new edge γ from the path P1 and the second column of Q
saves the decimal number of its right endpoint.

On the STAR-machine, the associative parallel algorithm for updating an
MST after inserting a new vertex is represented as procedure InsertVert.
As is shown in [9], it takes O(h log n) time, where h is the number of vertices
whose tree paths change after inserting a new vertex.

Conclusion

In this paper, we select constructions used to represent on the STAR-
machine the Prim–Dijkstra algorithm for finding an MST along with the
matrix of tree paths and a group of dynamic graph algorithms that require

Constructions for associative parallel algorithms for undirected graphs 77

a fast method for finding a tree path between any pair of vertices. It in-
cludes the associative parallel algorithms for updating an MST such as,
the dynamic edge update of an MST and the dynamic reconstruction of an
MST after deleting and after inserting a vertex along with its incident edges.
The associative parallel algorithm for finding an MST takes O(n log n) time.
Since associative parallel algorithms for updating an MST take O(h log n)
time each, the best gain is received when h� n.

The selected constructions can be used to design new associative paral-
lel algorithms and to better understand the run of the vertical processing
systems.

References

[1] Chin F., Houck D. Algorithms for updating minimum spanning trees // J.
Computer and System Sciences. –– 1978. –– Vol. 16. –– P. 333–344.

[2] Foster C.C. Content Addressable Parallel Processors. –– New York: Van Nos-
trand Reinhold Company, 1976.

[3] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. –– Amsterdam: IOS Press, 2000. –– Vol. 43. –– P. 227–243.

[4] Nepomniaschaya A.S. Basic associative parallel algorithms for vertical process-
ing systems // Bul. Novosibirsk Comp. Center.–– Novosibirsk, 2009.–– IIS Spe-
cial Iss. 29. –– P. 63–77.

[5] Nepomniaschaya A.S. An associative version of the Bellman–Ford algorithm
for finding the shortest paths in directed graphs // Proc. 6th Intern. Conf.
PaCT-2001. –– Springer, 2001. –– P. 285–292.–– (LNCS; 2127).

[6] Nepomniaschaya A.S. Comparison of performing the Prim–Dijkstra algorithm
and the Kruskal algorithm by means of associative parallel processors // Cy-
bernetics and System Analysis. –– Kiev: Naukova Dumka, 2000. –– No. 2. ––
P. 19–27 (In Russian). (English translation by Plenum Press).

[7] Nepomniaschaya A.S. Associative parallel algorithms for dynamic edge update
of minimum spanning trees // Proc. 7th Int. Conf. PaCT-2003. –– Springer,
2003. –– P. 141–150. –– (LNCS; 2763).

[8] Nepomniaschaya A.S. Associative parallel algorithm for dynamic reconstruct-
ing a minimum spanning tree after deletion of a vertex // Proc. 8th Int. Conf.
PaCT-2005. –– Springer, 2005. –– P. 151–173.–– (LNCS; 3606).

[9] Nepomniaschaya A.S. Associative parallel algorithm for the dynamic update
of a minimum spanning tree after insertion of a new vertex // Cybernetics and
System Analysis. –– Kiev: Naukova Dumka, 2006.–– No. 1.–– P. 19–31 (In Rus-
sian). (English translation by Plenum Press).

78 A.S. Nepomniaschaya

[10] Nepomniaschaya A.S. Efficient implementation of the Italiano algorithms for
updating the transitive closure on associative parallel processors // Funda-
menta Informaticae. –– IOS Press, 2008. –– Vol. 89, No. 2, 3. –– P. 313–329.

[11] Nepomniaschaya A.S. Associative version of the Ramalingam decremental al-
gorithm for dynamic updating the single-sink shortest paths subgraph // Proc.
10th Int. Conf. PaCT-2009, Novosibirsk, Russia. –– Springer, 2009. –– P. 257–
268.–– (LNCS; 5698).

[12] Nepomniaschaya A.S. Associative version of the Ramalingam algorithm for the
dynamic update of the shortest paths subgraph after inserting a new edge //
Cybernetics and System Analysis. –– Kiev: Naukova Dumka, 2012. –– No. 3. ––
P. 45–57 (In Russian). (English translation by Springer).

[13] Nepomniaschaya A.S. Constructions used in associative parallel algorithms for
undirected graphs. Part 1 // Bul. Novosibirsk Comp. Center. –– Novosibirsk,
2013. –– IIS Special Iss. 35. –– P. 69–83.

[14] Pawagi S., Ramakrishnan I.V. An O(log n) algorithm for parallel update of
minimum spanning trees // Information Processing Letters.–– 1986.––No. 22.––
P. 223–229.

