
Bull. Nov. Comp. Center, Comp. Science, 30 (2010), 53–69
c© 2010 NCC Publisher

Parallel implementation of the Ramalingam
incremental algorithm for dynamic updating

the shortest-paths subgraph

A.S. Nepomniaschaya

Abstract. The paper proposes an efficient implementation of the Ramalingam al-
gorithm for dynamic updating the single-sink shortest-paths subgraph of a directed
weighted graph after insertion of an edge using a model of associative (content
addressable) parallel systems with vertical processing (the STAR-machine). An as-
sociative version of the Ramalingam incremental algorithm is given as the procedure
InsertArc, whose correctness is proved and the time complexity is evaluated. We
compare implementations of the Ramalingam incremental algorithm and its asso-
ciative version and present the main advantages of the associative version.

1. Introduction

In many applications, graphs are subject to discrete changes, such as in-
sertions and deletions of edges or vertices. The objective of a dynamic
algorithm is to efficiently update the solution to a problem after dynamic
changes rather than to recompute the entire graph from scratch each time.

The dynamic version of the single source shortest paths problem consists
in updating the shortest paths information after any change in a graph. The
most general types of updating operations for the single source shortest paths
problem include insertions and deletions of edges and updating operations on
the edge weights. An algorithm is called fully dynamic if arbitrary sequences
of the above operations are allowed, and it is called partially (semi -) dynamic
if only one type of the updating is allowed. A partially dynamic algorithm
is called incremental if it supports only insertions of edges, while it is called
decremental if it supports only deletions of edges.

In the case of arbitrary real edge weights, Ramalingam and Reps [12, 13]
devise fully dynamic algorithms for updating the single source shortest paths
using the output bounded model. In this model, the run time of an algo-
rithm is analyzed in terms of the output change rather than the input size.
The authors assume that the graph has no negative-length cycles before
and after the input updating. Frigioni et al. [3] study the semi-dynamic sin-
gle source shortest paths problem for both directed and undirected graphs
with positive real edge weights in terms of the output complexity. Frigioni
et al. [4] propose fully dynamic algorithms for updating distances and a
single source shortest paths tree (sp-tree) in either a directed or an undi-
rected graph with positive real edge weights under arbitrary sequences of
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the edge updates. The cost of the update operations is given as a func-
tion of the number of output updates by using the notion of k-bounded
accounting function. Frigioni et al. [5] propose the fully dynamic solution
for the problem of updating the shortest paths from a given source in a
directed graph with arbitrary edge weights. The authors devise a new al-
gorithm for performing edge deletions and weight increases that explicitly
deals with zero–length cycles. Algorithms from [3–5, 12, 13] use a dynamic
version of the Dijkstra algorithm [1]. Narváez et al. [6] propose two incre-
mental methods to transform the well-known static algorithms by Dijkstra,
Bellman–Ford, and D’Esopo–Pape to the new dynamic algorithms for up-
dating an sp-tree after changing edge weights. In [10], we propose an efficient
parallel implementation of the Ramalingam decremental algorithm [12] for
the dynamic updating of the shortest-paths subgraph SP(G) that consists
of all the shortest paths from every vertex of a given directed graph G to
the sink. Our computation model (the STAR-machine) simulates the run
of associative (content addressable) parallel systems of the SIMD type with
bit-serial (vertical) processing. The associative version of this algorithm is
given as the procedure DeleteArc whose correctness is proved. We obtain
that this procedure takes the time proportional to the number of vertices,
whose shortest paths to the sink change after deleting an edge from SP(G).
Following [2], it is assumed that each elementary operation of the STAR-
machine (its microstep) takes one unit of time.

In this paper, we first propose an extension of the language STAR. Then,
using the data structure first proposed in [10], we construct an associative
version of the Ramalingam incremental algorithm [12] for the dynamic up-
dating of the shortest-paths subgraph SP(G). The associative version of this
algorithm is given as the procedure InsertArc, whose correctness is proved.
We obtain that this procedure takes O(hk) time, where h is the number
of bits required for coding a maximal weight of the shortest paths to the
sink in SP(G) and k is the number of vertices, whose shortest paths to the
sink change after inserting an edge into the graph G. We also discuss the
main advantages of the associative version of the Ramalingam incremental
algorithm.

2. An associative parallel machine model

Here, we propose a brief description of our model. It is defined as an ab-
stract STAR-machine of the SIMD type with the vertical data processing [7].
It consists of the following components (Figure 1):

• a sequential control unit (CU), where programs and scalar constants
are stored;
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Figure 1. The STAR-machine

• an associative processing unit consisting of p single–bit processing el-
ements (PEs);

• a matrix memory for the associative processing unit.

The CU passes an instruction to all PEs in one unit of time. All active
PEs execute it in parallel, while inactive PEs do not. Activation of a PE
depends on data.

The input binary data are given in the form of 2D tables, where each da-
tum occupies an individual row and is updated by a dedicated PE
(Figure 2). In any table, rows are numbered from top to bottom and
columns –– from left to right. Some tables may be loaded into the mem-
ory.

An associative processing unit is represented as h vertical registers, each
consisting of p bits (Figure 3). Vertical registers can be regarded as a one-
column array. The bit columns of the tabular data are stored in the registers
that perform the necessary Boolean operations.

The run is described by means of the language STAR being an extension
of Pascal. Let us briefly consider the STAR constructions needed here. To
simulate data processing in the matrix memory, we use the data types word,
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Figure 2. Data array

R1 R2 . . . Rh

Figure 3. Associative processing unit
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slice, and table. Constants for the types slice and word are represented as
a sequence of symbols of a set {0, 1} enclosed within single quotation marks.
The types slice and word are used for the bit column access and the bit
row access, respectively, and the type table is used for defining the tabular
data. Assume that any variable of the type slice consists of p components,
which belong to {0, 1}. For simplicity, let us call slice any variable of the
type slice.

Let us present some elementary operations and a predicate for slices.
Let X, Y be variables of the type slice and i be a variable of the type

integer. We use the following operations:

SET(Y ) simultaneously sets all components of Y to ′1′;

CLR(Y ) simultaneously sets all components of Y to ′0′;

Y (i) selects the ith component of Y ;

FND(Y ) returns the number i of the first (the uppermost) ′1′ of Y , i ≥ 0;

STEP(Y ) returns the same result as FND(Y ), then resets the first ′1′ found
to ′0′;

CONVERT(Y ) returns a row, whose every ith bit coincides with Y (i). It
is applied when a row of one matrix is used as a slice for another
matrix.

The operations FND(Y ), STEP(Y ), and CONVERT(Y ) are used only
as the right part of the assignment statement, while the operation Y (i) is
used as both the right part and the left part of the assignment statement.

To carry out the data parallelism, we introduce in the usual way the
bitwise Boolean operations: X and Y , X or Y , not Y , X xor Y . We also use
a predicate SOME(Y ) that results in true if there is at least a single bit ′1′

in the slice Y .1

Note that the predicate SOME(Y ) and all operations for the type slice
are also performed for the type word.

The extension of the language STAR concerns variables of the type
word. We will employ the new operation REP(i, j, v, w) that replaces
the substring w(i)w(i + 1) . . . w(j) of the string w with the string v, where
|v| = j − i + 1 and 1 ≤ i < j < |w|.

For the two variables v and w of the type word having the same length,
we will use the new operation ADD(v, w) that performs the addition of the
binary strings v and w. Its result is the arithmetical sum of v and w. Note
that this operation can be used only in the right part of the assignment
statement.

1For simplicity, the notation Y 6= ∅ denotes that the predicate SOME(Y ) results in
true.
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We will also utilize the following predicates for the two variables v and w
of the type word first proposed in [11] by Potter: EQ(v, w), NOTEQ(v, w),
LESS(v, w), LESSEQ(v, w), GREAT(v, w), and GREATEQ(v, w).

Let T be a variable of the type table. We employ the following opera-
tions:

ROW(i, T ) returns the ith row of the matrix T ;

COL(i, T ) returns its ith column.

Note that the STAR statements are defined in the same manner as for Pascal.
Now, we recall a group of basic procedures [8, 9] implemented on the

STAR-machine which will be used later on. These procedures use the given
slice X to indicate with bit ′1′ the row positions used in the corresponding
procedure.

The procedure MATCH(T, X, w, Z) determines positions of the matrix
T rows that coincide with a given pattern w. It returns the slice Z, where
Z(i) = ′1′ if and only if ROW(i, T ) = w and X(i) = ′1′.

The procedure MIN(T, X,Z) defines positions of rows in the given matrix
T where a minimal entry is located. These positions are marked with ′1′ in
the resulting slice Z.

The procedure SETMIN(T, F,X, Z) defines positions of the matrix T
rows that are less than the corresponding rows of the matrix F . It returns
the slice Z, where Z(i) = ′1′ if ROW(i, T ) < ROW(i, F ) and X(i) = ′1′.

The procedure TCOPY1(T, j, h, F ) writes down h columns from the
given matrix T , starting with the (1 + (j−1)h)th column, into the resulting
matrix F (j ≥ 1).

The procedure HIT(T, F,X, Z) defines the positions of the corresponding
identical rows of the given matrices T and F . It returns a slice Z, where
Z(i) = ′1′ if and only if ROW(i, T ) = ROW(i, F ) and X(i) = ′1′.

The procedure TMERGE(T, X, F ) writes down the rows of the matrix
T , that correspond to positions ′1′ in the slice X, into the matrix F . Other
rows of the matrix F are not changed.

The procedure CLEAR(h, T ) writes down zeros into every ith column of
the given matrix T , where 1 ≤ i ≤ h.

The procedure ADDV(T, F,X, R) writes into the matrix R a result of
the parallel addition of the corresponding rows of matrices T and F , whose
positions are selected with ′1′ in the slice X. This algorithm uses Table 5.1
from [2].

The procedure ADDC(T, X, v, F ) adds the binary word v to the rows
of the matrix T selected with ′1′ in X, and writes down the result into the
corresponding rows of the matrix F . Other rows of the matrix F are set to
zero.

The procedure SUBTC(T, X, v, F ) subtracts the binary word v from the
rows of the matrix T selected with bits ′1′ in the slice X, and writes the
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result into the corresponding rows of the matrix F . Other rows of the matrix
F are set to zero.

In [8, 9], we have shown that each basic procedure takes O(r) time, where
r is the number of bit columns in the corresponding matrix.

3. Preliminaries

Let G = (V,E, w) be a directed weighted graph with a set of vertices V =
{1, 2, . . . , n}, a set of directed edges (arcs) E ⊆ V × V and the function
w that assigns a weight to every edge. We will consider graphs with a
distinguished vertex s called sink.

An adjacency matrix Adj = [aij ] of a directed graph G is an n×n Boolean
matrix, where aij = 1 if and only if there is an arc from the vertex i to the
vertex j in the set E.

An arc e directed from i to j is denoted by e = (i, j), where the vertex i
is the head of e (or father) and the vertex j is its tail (or son). We assume
that all arcs have a positive weight and w(u, v) =∞ if (u, v) /∈ E.

The infinity will be implemented with the value
∑n

i=1 ci, where ci is a
maximal weight of arcs outgoing from the vertex i. Let h be the number of
bits for coding this sum.

A path from u to s in G is a finite sequence of vertices u = v1, v2, . . . ,
vk = s, where (vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1 and k > 1. The shortest
path from u to s is the path of the minimal sum of weights of its arcs.

Let dist(u) denote the length of the shortest path from u to s and SP(G)
denote a subgraph of the shortest paths from all the vertices of G to the
sink.

Like Ramalingam, we introduce the following notations.
We denote by OutdegreeSP(v) the number of arcs outgoing from the

vertex v into SP(G).
Let Succ(u) = {z : u→ z ∈ E} and Pred(u) = {x : x→ u ∈ E}.
Let the arc (i, j) be inserted into a subgraph of the shortest paths SP(G).

A vertex u is called affected in SP(G) if and only if dist(u, i) + w(i, j) +
distold(j) < distold(u), where dist(u, i) is the length of the shortest path
from the vertex u to the vertex i in the new graph, w(i, j) is the weight
of the arc (i, j) and distold(j) (distold(u), respectively) is the length of the
shortest path from the vertex j (u, respectively) to the sink before inserting
the edge (i, j).

4. The Ramalingam incremental algorithm for
the single-sink shortest paths problem

The Ramalingam algorithm for the dynamic updating of the shortest-paths
subgraph after inserting an arc into the graph G uses a heap PriorityQueue,
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whose elements are affected vertices with a key. For any affected ver-
tex u, its key is equal to the distance from u to the vertex i. Initially,
PriorityQueue = ∅.

The algorithm runs as follows.
First, the arc (i, j) is inserted into G. If w(i, j) + dist(j) = dist(i), then

the arc (i, j) is inserted into SP(G) and OutdegreeSP(i) is increased by one.
If w(i, j) + dist(j) < dist(i), then dist(i) := w(i, j) + dist(j) and the

vertex i is inserted into the heap PriorityQueue with the key that is equal
to zero.

The affected vertices are updated as follows.
At each iteration, an affected vertex (say u) with the minimal key is

deleted from the current heap. Then all the arcs outgoing from the vertex
u are deleted from SP(G) and OutdegreeSP(u) := 0.

For every vertex x ∈ Succ(u), we check whether w(u, x) + dist(x) =
dist(u). If this is true, the arc (u, x) is inserted into SP(G) and
OutdegreeSP(u) is increased by one.

For every vertex y ∈ Pred(u), we check whether w(y, u) + dist(u) =
dist(y). If it is true, the arc (y, u) is inserted into SP(G) and OutdegreeSP(y)
is increased by one. Otherwise, we check whether w(y, u)+dist(u) < dist(y).
If this is true, then dist(y) := w(y, u) + dist(u), and the vertex y is inserted
into the heap PriorityQueue with the key that is equal to the distance from
the vertex y to the vertex i. If y ∈ PriorityQueue, then its previous key is
replaced with a smaller value.

We observe that the Ramalingam incremental algorithm builds a tree
with the root i consisting of affected vertices and every edge is directed
from the son to the father. In addition, in this tree, there is a single path
from every affected vertex to the vertex i. Initially, the tree consists of a
single vertex i. At every iteration, a new affected vertex l is inserted into
the current tree if and only if dist(l)− dist(i) has the minimal value.

Let Ti denote a tree that is built in the process of updating the shortest-
paths subgraph after insertion of the arc (i, j) into the graph G.

5. An associative version of the Ramalingam incremental
algorithm

To design an associative version of the Ramalingam incremental algorithm,
we employ the following data structure first proposed in [10]:

• an n × n adjacency matrix G whose every ith column saves with ′1′

the tails of arcs outgoing from the vertex i;

• an n× n adjacency matrix SP whose every ith column saves with ′1′

the tails of arcs outgoing from the vertex i that belong to the shortest-
paths subgraph;
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• an n × hn matrix Weight that contains the arc weights as entries.
It consists of n fields having h bits each. The weight of an arc (i, j) is
written down in the jth row of the ith field;

• an n×hn matrix Cost that contains the arc weights as entries. It con-
sists of n fields having h bits each. The weight of an arc (i, j) is written
down in the i-th row of the j-th field;

• an n×h matrix Dist, whose every ith row saves the shortest distance
from the vertex i to the sink s.

We observe that the ith field of the matrix Weight saves the weights of
arcs outgoing from the vertex i, while the ith field of the matrix Cost saves
the weights of arcs entering the vertex i.

We will use the following property of the matrices G and SP :

In every ith row of the matrices G and SP , the heads of arcs entering
the vertex i are marked with ′1′.

Algorithm A (associative parallel algorithm for updating the arcs outgoing
from an affected vertex k):

1. With a slice (say Z), save positions of arcs outgoing from the vertex
k in G.

2. Compute in parallel the distances from the vertex k to s for every path
in the matrix G that includes the arc marked with ′1′ in the slice Z.

3. With a slice (say Y ), save positions of those arcs (k, l), for which
dist(k) = w(k, l) + dist(l).

4. Include the positions of arcs marked with bits ′1′ in the slice Y into
the matrix SP .

On the STAR-machine, this algorithm is implemented as the procedure
UpdateOutgoingArcs.

Algorithm B (associative parallel algorithm for updating the arcs entering
an affected vertex k):

1. With a slice (say Z), save the heads of arcs entering the vertex k in
the graph G.

2. For all the vertices l marked with bits ′1′ in the slice Z, compute in
parallel the distances from l to the sink s in every path in the matrix
SP that starts from the arc (l, k).

3. Include into the matrix SP the positions of arcs (r, k) for which
dist(r) = w(r, k) + dist(k).
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4. With a slice (say Y ), save the positions of those vertices r marked
with bits ′1′ in the slice Z for which distnew(r) < distold(r). After
that, write distnew(r) in the corresponding rows of the matrix Dist.

On the STAR-machine, this algorithm is implemented as the procedure
UpdateIncomingArcs.

Now let us proceed to an associative parallel algorithm for the dynamic
updating of the shortest-paths subgraph after insertion of a new arc (i, j)
with the weight v0 into the graph G. Let the variable v2 save the shortest
distance from the vertex i to the sink in the source matrix SP . The algo-
rithm makes use of a slice Z to save positions of the current affected vertices
and an n×h matrix Queue, whose every lth row saves the distance from the
vertex l to the vertex i:

1. Insert the position of the arc (i, j) into the matrix G and insert its
weight v0 into the matrices Weight and Cost.

2. Determine the distance (say v3) from i to the sink s of the path that
starts from the arc (i, j).

3. If v2 = v3, insert the position of the arc (i, j) into SP and go to exit.

4. If v3 < v2, write down the value v3 in the ith row of the matrix Dist,
then assign the maximal priority in the matrix Queue for the vertex i
and finally save the vertex i in a slice (say Z1).

5. While Z1 6= ∅, update the affected vertices with allowance for their
new distances to the sink as follows:

• select the vertex (say k) with the maximal priority in the matrix
Queue and remove it from the slice Z1;
• delete in parallel the arcs outgoing from the vertex k in the matrix

SP ;
• with Algorithm A, determine in parallel the positions of those

arcs (k, l) for which dist(k) = w(k, l) + dist(l) and insert them
into the matrix SP ;
• with Algorithm B, determine in parallel the positions of those

arcs (r, k), for which dist(r) = w(r, k) + dist(k) and insert them
into the matrix SP . Then determine in parallel the positions
of the new affected vertices l and write down distnew(l) in the
corresponding rows of the matrix Dist;
• for the new affected vertices l determine in parallel the values

dist(l) − dist(i) and write them down in the corresponding rows
of the matrix Queue;
• include the new affected vertices into the slice Z1.

On the STAR-machine, this algorithm is implemented as the procedure
InsertArc.
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6. Representation of the associative version of the
Ramalingam incremental algorithm on the
STAR-machine

Here, we first provide two auxiliary procedures for implementing Algorithms
A and B. Then we propose the main procedure for the dynamic updating
of the shortest-paths subgraph after insertion of a new arc into the source
graph.

Let us consider the procedure UpdateOutgoingArcs. Knowing the cur-
rent updated vertex k, the number of bits h for coding the infinity, and
the current matrices G, SP , Weight, and Dist, the procedure returns the
updated matrix SP .

procedure UpdateOutgoingArcs(h,k: integer; G: table;
Weight: table; Dist: table; var SP: table);

/* Here h is the number of bits for coding the infinity and k is
an updated vertex. */

var W1,W2: table; v: word(Dist); Y,Z: slice(G);
Begin Z:=COL(k,G);1.

TCOPY1(Weight,h,k,W1);2.

/* The matrix W2 saves different distances from the vertex k to the sink. */
ADDV(W1,Dist,Z,W2);3.

/* The row v saves a distance from the vertex k to s. */
v:=ROW(k,Dist);4.

/* In the slice Y , we save those vertices l of G for which
dist(k) = w(k, l) + dist(l). */
MATCH(W2,Z,v,Y);5.

/* Positions of arcs (k, l) are inserted into SP . */
COL(k,SP):=Y;6.

End;7.

Claim 1. Let h be the number of bits for coding the infinity and k be the
current updated vertex. Let the current matrices G, Weight, Dist, and SP
be given. Then after performing the procedure UpdateOutgoingArcs, the
positions of arcs (k, l) for which dist(k) = w(k, l) + dist(l) are included into
the matrix SP .

This claim is proved by contradiction. Let an arc (k, r) belong to G
and dist(k) = w(k, r) + dist(r). However, after performing the procedure
UpdateOutgoingArcs, the arc (k, r) does not belong to SP . We prove that
it contradicts the execution of this procedure.

Now, we propose the procedure UpdateIncomingArcs. Knowing the
current updated vertex k, the number of bits h for coding the infinity, and



Parallel implementation of the Ramalingam incremental algorithm 63

the current matrices G, SP , Cost, and Dist, the procedure returns the slice
Y and the updated matrices Dist and SP .

procedure UpdateIncomingArcs(h,k: integer; G: table;
Cost: table; var Y: slice(G); var Dist: table;
var SP: table);

var X, Z: slice(G); v: word(G); v1: word(Dist); W, W1: table;
Begin v:=ROW(k,G);1.

/* The slice Z saves the heads of the arcs entering k. */
Z:=CONVERT(v);2.

/* The row v1 saves a distance from the vertex k to s. */
v1:=ROW(k,Dist);3.

/* The matrix W1 saves the kth field of the matrix Cost. */
TCOPY1(Cost,k,h,W1);4.

/* Every lth row of the matrix W marked with ′1′ in Z saves a new distance
from l to s. */
ADDC(W1,Z,v1,W);5.

/* The slice X saves the positions of the matrix Dist rows where
dist(l) = w(l, k) + dist(k). */
HIT(W,Dist,Z,X);6.

/* Positions of the arcs (r, k) for which dist(r) = w(r, k) + dist(k)
are included into the matrix SP . */
v:=CONVERT(X);7.

ROW(k,SP):=v;8.

/* With the slice Y , we save the positions of arcs whose new distances
to s are decreased. */
SETMIN(W,Dist,Z,Y);9.

/* We write the new value dist(l) in the lth row of the matrix Dist
if and only if Y (l) = ′1′. */
TMERGE(W,Y,Dist);10.

End;11.

Claim 2. Let h be the number of bits for coding the infinity and k be a
current updated vertex. Let the current matrices G, SP , Cost, and Dist be
given. Then the procedure UpdateIncomingArcs returns the slice Y and the
updated matrices Dist and SP . In addition, the positions of the arcs (l, k),
for which dist(l) = w(l, k) + dist(k), are included into the matrix SP , the
slice Y saves the heads of the arcs (r, k), for which distnew(r) < distold(r),
and the new distances distnew(r) are written in the corresponding rows of
the matrix Dist.

This claim is proved by contradiction. We first assume that an arc (l, k)
belong to the graph G and dist(l) = w(l, k) + dist(k). However, the arc
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(l, k) does not belong to the matrix SP after performing the procedure
UpdateIncomingArcs. We prove that this contradicts the execution of our
procedure. Then we assume that an arc (r, k) belong to G and distnew(r) <
distold(r). However, after performing the procedure UpdateIncomingArcs,
the rth row in the matrix Dist does not change. We also prove that this
contradicts the execution of this procedure.

Now we proceed to the procedure InsertArc. Let an arc (i, j) with the
weight v0 be inserted into the graph G.

procedure InsertArc(h,i,j: integer; v0: word(Dist);
var Weight,Cost: table; var G,SP: table;
var Dist: table);

/* Here v0 is the weight of the arc (i, j) and h is the number of bits
for coding the infinity. */

var v1,v2,v3: word(Dist); v4: word(Weight); k: integer;
X,Y,Y1,Z1,Z2: slice(G); W1,W2, Queue: table;

Begin CLR(Z1); CLR(Y1);1.

CLEAR(h,Queue);2.

/* Insert position of the arc (i, j) into G. */
X:=COL(i,G); X(j):=’1’; COL(i,G):=X;3.

/* Insert the weight of the arc (i, j) into the matrix Weight. */
v4:=ROW(j,Weight);4.

REP(1+(i-1)h,ih,v0,v4);5.

ROW(j,Weight):=v4;6.

/* Insert the weight of the arc (i, j) into the matrix Cost. */
v4:=ROW(i,Cost);7.

REP(1+(j-1)h,jh,v0,v4);8.

ROW(i,Cost):=v4;9.

/* Save distold(j) and distold(i) in v1 and v2. */
v1:=ROW(j,Dist); v2:=ROW(i,Dist);10.

/* Calculate in v3 a distance from the vertex i to s when the path
starts from the arc (i, j). */
v3:=ADD(v0,v1);11.

if EQ(v3,v2) then12.

/* Insert the arc (i, j) into the matrix SP . */
begin13.

X:=COL(i,SP); X(j):=’1’; COL(i,SP):=X;14.

end;15.

/* Set a maximal priority in the matrix Queue for the vertex i. */
if LESS(v3,v2) then16.

begin ROW(i,Dist):=v3; Z1(i):=’1’;17.
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end;18.

/* Cycle for updating vertices. */
while SOME(Z1) do19.

begin MIN(Queue,Z1,Z2);20.

/* Delete in SP arcs outgoing from the vertex k. */
k:=FND(Z2); Z1(k):=’0’;21.

COL(k,SP):=Y1;22.

/* Insert positions of the arcs (k, l) for which dist(k) = w(k, l) + dist(l)
into the matrix SP . */

UpdateOutgoingArcs(h,k,G,Weight,Dist,SP);23.

UpdateIncomingArcs(h,k,G,Cost,Y,Dist,SP);24.

/* Save in v2 the current distance from i to s. */
v2:=ROW(i,Dist);25.

/* Save the value dist(l)− dist(i) in the matrix W2 for every lth row
marked with ′1′ in the slice Y . */

SUBTC(Dist,Y,v2,W2);26.

/* Write priorities for the new affected vertices to the matrix Queue. */
TMERGE(W2,Y,Queue);27.

/* Mark the new affected vertices in Z1 with bits ′1′. */
Z1:=Z1 or Y;28.

end;29.

End;30.

Theorem. Let a directed weighted graph be given as an adjacency matrix
G and a matrix Weight. Let the matrices Cost, SP , and Dist be given.
Let h be the number of bits for coding the infinity. Let an arc (i, j) be
inserted into the graph. Then after performing the procedure InsertArc

the arc (i, j) is inserted into the matrix SP and its weight is inserted into
the matrices Weight and Cost. Moreover, the matrices SP and Dist are
updated according to Algorithms A and B.

Proof. (Sketch.) We prove this by induction in terms of the number q of
the affected vertices that appear when a tree with the root i is constructed.

Basis is proved for q ≤ 1, that is, there is no arc entering the vertex i
in G. One can immediately check that after performing lines 1–9, the arc
(i, j) is inserted into the graph G and its weight is included into the matrices
Weight and Cost. After performing lines 10–11, the variable v3 saves a new
distance from the vertex i to s when the path starts from the arc (i, j).
Now we compare the new distance to the previous distance v2 from i to s.
If v3 > v2, nothing needs to be done. Therefore, we have to consider the
following two cases.
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Case 1. Let v3 = v2. Then there is no current tree. After performing
lines 13–15, the position of the arc (i, j) is inserted into the matrix SP .
Then we execute line 19. Since after performing line 1, slice Z1 consists of
zeros and does not change before line 19, we do not carry out the vertices
updating cycle (lines 19–29). Therefore, we go to the procedure end.

Case 2. Let v3 < v2. Then the tree consists of a single vertex i. After
performing lines 17–18, the new distance from i to s is written in the ith
row of the matrix Dist and Z1(i) = ′1′. After that, we fulfil the cycle for
updating vertices (lines 19–29).

One can immediately verify that, after performing lines 20–21, we ob-
tain k = i, and slice Z1 consists of zeros. After performing line 22, the ith
column of the matrix SP consists of zeros due to execution of the operation
CLR(Y 1) in line 1. This means that the positions of arcs outgoing from
the vertex i are deleted from the matrix SP . In view of Claim 1, after per-
forming the auxiliary procedure UpdateOutgoingArcs (line 23), positions
of arcs (i, l) for which dist(i) = w(i, l) + dist(l) are inserted into the matrix
SP . In particular, the arc (i, j) is inserted into SP because a new dis-
tance v3 coincides with the current distance from i to s that was previously
written in the ith row of the matrix Dist. By assumption, there is only
a single affected vertex. Therefore, after performing the auxiliary proce-
dure UpdateIncomingArcs (line 24), the resulting slice Y consists of zeros.
Therefore we do not execute lines 27–28. Since after performing line 29,
slice Z1 consists of zeros, and we go to the exit of the procedure InsertArc.

Hence, if l = 1 and v3 < v2, we first write a new distance v3 from i to
s into the ith row of the matrix Dist. Then we delete the positions of arcs
outgoing from the vertex i in the matrix SP . After that, we insert into the
matrix SP the positions of arcs (i, p) for which dist(i) = w(i, p) + dist(p).

Step of induction. Let the assertion be true when no more than q ≥ 1
affected vertices are deleted from the current tree T . We will prove the
assertion for q + 1 affected vertices.

By analogy with the proof of Case 2, after performing lines 1–11 and
16–18, the position of the arc (i, j) is inserted into the matrix SP , its weight
being inserted into the matrices Weight and Cost, a new distance v3 from i
to s is written in the ith row of the matrix Dist, and a maximal priority in
the matrix Queue is set for the vertex i.

After performing lines 20–22, we obtain k = i, Z1 = ∅, and the arcs
outgoing from the vertex i are deleted from the matrix SP .

In view of Claim 1, after performing the procedure UpdateOutgoingArcs
(line 23), the positions of arcs (i, p) for which dist(i) = w(i, p) + dist(p) are
inserted into the matrix SP .

In view of Claim 2, after performing the procedure UpdateIncomingArcs
(line 24), the slice Y saves the heads of the arcs (r, i), for which distnew(r) <
distold(r), new distances distnew(r) are written in the corresponding rows
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of the matrix Dist and the positions of arcs (r, i), for which dist(r) =
w(r, i) + dist(i), are inserted into the matrix SP .

By the inductive assumption, after updating the first q affected vertices
in the tree T , for every affected vertex r, the positions of arcs (p, r), for which
dist(p) = w(p, r) + dist(r), and positions of arcs (r, l) for which dist(r) =
w(r, l) + dist(l) are inserted into the matrix SP , and a new distance from r
to s is written in the rth row of the matrix Dist.

After updating the qth vertex in the matrix Queue, there is a single bit
′1′ in slice Z1 that corresponds to the (q+1)th affected vertex. Since Z1 6= ∅,
we update the (q + 1)th affected vertex in the same manner as in the basis.
Now slice Z1 consists of zeros. Therefore we go to the exit of the procedure
InsertArc.

Let us evaluate the time complexity of the procedure InsertArc. Let
h be the number of bits required for coding the maximal weight of the
shortest paths to the sink in SP and k be the number of affected vertices
that appear after inserting the arc (i, j) into the graph G. One can im-
mediately verify that the auxiliary procedures UpdateOutgoingEdges and
UpdateIncomingEdges take O(h) time each. As shown in [8, 9], the ba-
sic procedures used in the procedure InsertArc, also take O(h) time each.
Since the main cycle (lines 19–29) is performed k times, we obtain that the
procedure InsertArc takes O(kh) time.

Now we compare implementations of the Ramalingam incremental algo-
rithm and its associative version:

• the Ramalingam incremental algorithm uses a heap whose elements
are affected vertices with their keys. An associative version employs
the matrix Queue, whose every rth row saves the current distance from
the affected vertex r to the vertex i;

• for every affected vertex u, the Ramalingam incremental algorithm de-
termines successively every arc outgoing from the vertex u and deletes
it from SP(G). The associative version simultaneously determines the
positions of all arcs outgoing from u and simultaneously deletes them
from SP(G);

• for every vertex x ∈ Succ(u), the Ramalingam incremental algorithm
includes the arc (u, x) into SP(G) if and only if dist(u) = w(u, x) +
dist(x). The associative version simultaneously inserts the positions
of such arcs into the matrix SP ;

• for every vertex y ∈ Pred(u), the Ramalingam incremental algorithm
includes the vertex y into the heap PriorityQueue if and only if
w(y, u) + dist(u) < dist(y). The associative version simultaneously
determines the heads of arcs entering the vertex u that satisfy this
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inequality. Such vertices are simultaneously included into a set of af-
fected vertices and their priorities are simultaneously written in the
corresponding rows of the matrix Queue;

• for every vertex y ∈ Pred(u), the Ramalingam incremental algorithm
inserts the arc (y, u) into SP(G) if and only if w(y, u) + dist(u) =
dist(y). The associative version simultaneously determines the po-
sitions of arcs entering the vertex u that satisfy this property and
simultaneously includes the positions of such arcs into SP(G).

7. Conclusion

We have proposed an efficient implementation of the Ramalingam incre-
mental algorithm on the STAR-machine having no less than n PEs. The
associative version of the Ramalingam incremental algorithm is represented
as the procedure InsertArc, whose correctness is proved. We have obtained
that this procedure takes O(kh) time per an insertion, where h is the number
of bits for coding the infinity and k is the number of affected vertices that
appear in SP(G) after inserting an arc. It is assumed that each microstep
of the STAR-machine takes one unit of time. We have also compared im-
plementations of the Ramalingam incremental algorithm and its associative
version and presented the main advantages of the associative version.
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