
Bull. Nov. Comp. Center, Comp. Science, 27 (2008), 105–117
c© 2008 NCC Publisher

Efficient associative algorithms for implementing
the second group of relational algebra operations

A.S. Nepomniaschaya

Abstract. In this paper, we propose an extended version of the associative graph-
machine. Then we offer efficient algorithms for implementing the second group of
relational algebra operations that consists of operations Product, Join, and Union.
The proposed algorithms are represented as the corresponding procedures for the
AG-machine. We prove their correctness and evaluate their time complexity.

1. Introduction

Associative (content addressable) parallel processors of the SIMD type with
simple processing elements ideally suit for performing fast parallel search
operations being used in different applications such as graph theory, com-
putational geometry, relational database processing, image processing, and
genome matching. In [14], the search and data selection algorithms for both
bit-serial and fully parallel associative processors were described. In [5, 6], an
experimental implementation of a multi-comparand multi-search associative
processor and some parallel algorithms for the search problems in computa-
tional geometry were considered. In [10], a formal model of the associative
parallel processors called associative graph machine (AG-machine) and its
possible hardware implementation were proposed. It performs bit-serial and
fully parallel associative processing of matrices representing graphs as well
as some basic set operations on matrices (sets of columns). The AG-machine
differs from that of [6] due to the presence of built-in operations designed
for associative graph algorithms. In [1, 8, 11, 13], the relational database
processing on conventional associative processors and specialized parallel
processors were discussed. In [7], an experimental architecture, called the
optical content addressable parallel processor for relational database pro-
cessing, was devised. It supports the parallel relational database process-
ing by the full exploitation of the optics parallelism. In [3], different op-
tical and optoelectronic architectures for image processing and relational
database associative processing were reviewed. In [4], the depth search ma-
chines (DSMs) and their applications in computational geometry, relational
databases, and artificial intelligence were investigated. In particular, dif-
ferent associative algorithms for processing databases with characteristic
functions (CF databases) on parallel DSMs were offered. In [12], an efficient
associative algorithm for the multi-comparand search and its applications in

106 A.S. Nepomniaschaya

representing the first group of relational algebra operations on the AG-ma-
chine were proposed.

In this paper, we propose a new version of the AG-machine and show how
this model can efficiently support classical operations in relational databases.
In particular, we design efficient associative algorithms for implementing the
second group of relational algebra operations. These algorithms are given as
corresponding procedures for the AG-machine. We prove their correctness
and evaluate their time complexity.

2. A model of the associative graph machine

In this section, we propose a model of the SIMD type with simple single-bit
processing elements (PEs) called associative graph machine (AG-machine).
It carries out both the bit-serial and the bit-parallel processing. To simulate
the access data by contents, the AG-machine uses both typical operations
for associative systems first presented in Staran [2] and some new operations
to perform bit-parallel processing.

The model consists of the following components:

• a sequential common control unit (CU), where programs and scalar
constants are stored;

• an associative processing unit forming a two-dimensional array of
single-bit PEs;

• a matrix memory for the associative processing unit.

The CU broadcasts each instruction to all PEs in one unit of time. All
active PEs execute it simultaneously while inactive PEs do not perform it.
Activation of a PE depends on the data employed.

Input binary data are loaded in the matrix memory in the form of two-
dimensional tables, where each data item occupies an individual row and
is updated by a dedicated row of PEs. In the matrix memory, rows are
numbered from top to bottom and columns–– from left to right. Both a row
and a column can be easily accessed.

The associative processing unit is represented as a matrix of single-bit
PEs that correspond to the input binary data matrix. Each column in the
matrix of PEs can be regarded as a vertical register that maintains the entire
column of a table. The model runs as follows. Bit columns of tabular data
are stored in the registers which perform the necessary bitwise operations.

To simulate data processing in the matrix memory, we use data types
slice and word for the bit column access and the bit row access, respectively,
and the type table for defining and updating matrices. We assume that any
variable of the type slice consists of n components. For simplicity, let us
call slice any variable of the type slice.

Associative algorithms for the second group of relational algebra operations 107

For variables of the type slice, we employ the same operations as in
the case of the STAR-machine along with new operations FRST(Y) and
CONVERT(Y).

The new operation FRST(Y) saves the first (uppermost) component ′1′

in the slice Y and assigns to ′0′ its other components.
The new operation CONVERT(Y) returns a row, whose every ith compo-

nent (bit) coincides with Y (i). It is used as the right part of the assignment
statement.

It should be noted that the operation CONVERT(Y) was implemented
in the Russian associative processor ES-27-20. However, earlier it was not
included into the STAR-machine in view of the absence of its application.

For the sake of completeness, we recall some elementary operations for
slices from [9]:

SET(Y) sets all components of the slice Y to ′1′;

CLR(Y) sets all components of Y to ′0′;

FND(Y) returns the ordinal number of the first component ′1′ of Y ;

STEP(Y) returns the same result as FND(Y) and then resets the first ′1′

found to ′0′;

NUMB(Y) returns the number of components ′1′ in the slice Y ;

MASK(Y, i, j) sets components ′1′ from the ith through the jth positions,
inclusively, and components ′0′ in other positions of the slice Y
(1 ≤ i < j ≤ n);

SHIFTDOWN(Y, k) moves the contents of Y by k positions down, plac-
ing each component from the position i to the position i + k
(i ≥ 1) and setting components ′0′ from the first through the
k-th position, inclusive.

In the usual way, we introduce the predicates ZERO(Y) and SOME(Y)
and the bitwise Boolean operations X and Y , X or Y , not Y , X xor Y .

The above-mentioned operations along with the operation FRST(Y) are
also used for variables of the type word.

For a variable T of the type table, we use the following two operations:

ROW(i, T) returns the ith row of the matrix T ;

COL(i, T) returns the ith column of the matrix T .

Moreover, we use two groups of new operations. One group of such
operations is applied to a single matrix, while the other one is used for
two matrices of the same size. All new operations are implemented in the
hardware.

Now we present the first group of new operations.

108 A.S. Nepomniaschaya

The operation SCOPY(T,X, v) simultaneously writes the given slice X
into those columns of the given matrix T which are marked with ′1′ in the
given comparand v.

The operation RCOPY(T, v,X) simultaneously writes the given word v
into those rows of the given matrix T which are marked with ′1′ in the given
slice X.

The operation not(T, v) simultaneously replaces columns of the given
matrix T , marked with ′1′ in the comparand v, with their negation. It will
be used as the right part of the assignment statement.

The operation FRST(row, T) simultaneously performs the operation
FRST(v) for every row of the matrix T and writes the result into T .

The operation FRST(col, T) simultaneously performs the operation
FRST(Y) for every column of the matrix T and writes the result into T .

The operation or(row, T) simultaneously performs the disjunction in ev-
ery row of the matrix T . It returns a slice, whose every ith component is
equal to ′0′ if and only if ROW(i, T) consists of zeros. It is used as the right
part of the assignment statement.

The operation and(row, T) simultaneously performs the conjunction in
every row of the matrix T . It returns a slice whose every ith component is
equal to ′1′ if and only if ROW(i, T) consists of ones. This operation is used
as the right part of the assignment statement.

The operation or(col, T) simultaneously performs the disjunction in ev-
ery column of the matrix T . It returns a row whose every i-th bit is equal
to ′0′ if and only if COL(i, T) consists of zeros. This operation is used as
the right part of the assignment statement.

The operation SHIFTDOWN(T, k) simultaneously performs the opera-
tion SHIFTDOWN(Y, k) for all columns of the given matrix T .

Now we determine the second group of new operations.
The operation SMERGE(T, F, v) simultaneously writes columns of a

given matrix F that are marked with ′1′ in the comparand v, into the cor-
responding columns of the result matrix T . If the comparand v consists of
′1′, the operation SMERGE copies the matrix F into the matrix T .

The operation op(T, F, v), where op ∈ {or, and, xor}, is simultaneously
performed between those columns of the given matrices T and F that are
marked with ′1′ in the given comparand v. This operation is used as the
right part of the assignment statement, that is, R := op(T, F, v).

Remark 1. We will assume that each elementary operation of the AG-ma-
chine (its microstep) takes one unit of time.

Associative algorithms for the second group of relational algebra operations 109

3. Implementation of the second group of relational algebra
operations on the AG-machine

A relational database is defined by analogy with [15]. Let Di be a domain,
i = 1, 2, . . . , k. The relation R is determined as a subset of the Cartesian
product D1 × D2 × . . . × Dk. An element of R is called tuple and has the
form v = (v1, v2, . . . , vk), where vi ∈ Di. Let Ai be the name of the domain
Di which is called attribute. Let R(A1, A2, . . . , Ak) denote a scheme of the
relation R.

On the AG-machine, any relation is represented as a matrix and each
its tuple is allocated to one memory row. Note that any relation consists of
different tuples.

The relational algebra operations are divided into two groups. The first
group consists of the following operations: Intersection, Difference, Semi-
join, Projection, and Division. The resulting relation for these operations is
a subset of the argument relations T and F . The second group consists of
the operations Product, Join, and Union. These operations assemble a new
relation.

To implement the operation Join on the AG-machine, we will use the
basic procedure MATCH(T,X,w,Z). Therefore we first propose an effi-
cient associative algorithm for implementing the procedure MATCH on the
AG-machine.

The procedure MATCH determines positions of the matrix T rows that
coincide with a given pattern w. By means of the slice X, we mark with
′1′ the matrix T rows used for comparison with w. It returns the slice Z,
where Z(i) =′ 1′ if and only if ROW(i, T) = w and X(i) =′ 1′. Notice that
on the STAR-machine, the procedure MATCH requires O(k) time, where k
is the number of columns in the matrix T .

Let us consider implementation of the procedure MATCH on the AG-ma-
chine. This makes use of the following idea. For every 1 ≤ i ≤ |w|, we
simultaneously compare the ith bit of every row of the matrix T with the
ith bit of a given pattern w.

procedure MATCH(T: table; X: slice(T); w: word;
var Z: slice(T));

var A,B: table; u,v: word(T);
Begin SET(u); v:= not w;1.

SCOPY(A,X,u);2.

/* We write the slice X in all columns of the matrix A. */
B:=not(T,v);3.

/* We write the negation of every column of the matrix T that corresponds to ′0′

in the given string w. */
A:=and(A,B,u);4.

110 A.S. Nepomniaschaya

Z:=and(row,A);5.

/* We obtain that Z(i) =′ 1′ if ROW(i, A) consists of ones, that is,
ROW(i, T) = w. */

End;6.

Proposition 1. Let T be a matrix, X be a slice, where positions of the
matrix T rows to be analyzed are marked with ′1′, and w be a pattern. Then
the procedure MATCH(T,X,w,Z) returns the slice Z, where Z(i) = w if
and only if ROW(i, T) = w and X(i) = ′1′.

Proof. We prove this by contradiction. Assume that ROW(j, T) = w,
X(j) = ′1′ but Z(j) =′ 0′. Let us analyze the execution of the procedure
MATCH. After performing lines 1–2, ROW(j, A) consists of ones because
X(j) =′ 1′. After performing line 3, ROW(j, B) also consists of ones because
we write the negation of every bit of ROW(j, T) that corresponds to ′0′ in
the given string w. Therefore after performing lines 4–5, ROW(j, A) consists
of ones and Z(j) =′ 1′. This contradicts to our assumption.

Obviously, on the AG-machine, the procedure MATCH takes O(1) time.

3.1. Implementation of the operation Product on the AG-ma-
chine. Here, we consider the operation Product. Its resulting relation
R(R1, R2) is obtained as concatenation of all combinations of the argument
relations T and F .

Let us explain the main idea of implementing the operation Product on
the AG-machine. Let the relation T consist of p tuples and the relation F
consist of s tuples. We first build the attribute R1, where s copies of every
tuple from T are written. We do this with the use of operations MASK,
RCOPY, and SHIFTDOWN. To build the attribute R2, we first mark with
′1′ in a slice, say Z2, the positions of rows in R2, where p copies of the first
tuple from F are written. Then by means of operations RCOPY and SHIFT-
DOWN, we write the tuples from the relation F into the corresponding rows
of R2.

procedure Product(T: table; F: table; var X: slice(T);
var Y: slice(F); var R(R1,R2): table);

/* The rows of T are marked with ′1′ in the slice X, and the rows of F
are marked with ′1′ in the slice Y . */

var i,j,p,s: integer; Z1,Z2,Z: slice(R);
v: word(T); v1: word(F);

Begin p:=NUMB(X); s:=NUMB(Y);1.

MASK(Z,1,s);2.

/* We set ′1′ in the first s bits of the slice Z. */

Associative algorithms for the second group of relational algebra operations 111

while SOME(X) do3.

begin i:=STEP(X); v:=ROW(i,T);4.

RCOPY(R1,v,Z);5.

/* We copy the string v in the rows of R1 marked with ′1′ in the slice Z. */
SHIFTDOWN(Z,s);6.

end;7.

CLR(Z1); Z1(1):=’1’;8.

CLR(Z2); Z2(1):=’1’;9.

for j:=1 to p-1 do10.

begin SHIFTDOWN(Z1,s);11.

Z2:=Z2 or Z1;12.

end;13.

/* We mark with ′1′ in Z2 positions of the matrix R2 rows, where p copies of
its first string are written. */
while SOME(Y) do14.

begin i:=STEP(Y);15.

v1:=ROW(i,F);16.

RCOPY(R2,v1,Z2);17.

/* We write the string v1 in the rows of R2 marked with ′1′ in Z2. */
SHIFTDOWN(Z2,1);18.

end;19.

End;20.

Proposition 2. Let a relation T have p tuples whose positions are marked
with ′1′ in the slice X. Let a relation F have s tuples whose positions
are marked with ′1′ in the slice Y . Then the procedure Product returns
the relation R(R1, R2), where s copies of any tuple of T are created in
the attribute R1 and p copies of the relation F tuples are created in the
attribute R2.

Proof. (Sketch.) We prove this by contradiction. Let there be such a
tuple v1 in the relation T and a tuple v2 in the relation F that v1v2 does
not belong to the resulting relation R. We will prove this to contradict to
executing the procedure Product.

Really, after performing lines 1–2, the variables p and s save the number
of tuples in the relations T and F , respectively, and the first s bits of the
slice Z are equal to ′1′. After fulfilling lines 3–6, we select the first tuple
in the relation T and simultaneously write it into the rows of the attribute
R1 marked with ′1′ in the slice Z. After that, we shift the contents of the
slice Z down by s bits. Hence, the slice Z will save positions of rows in
R1, where s copies of the next tuple of T will be written. After execution
of the cycle while SOME(X) do (lines 3–7), s copies of every tuple from
T will be written into R1. Hence, s copies of v1 are also written into the

112 A.S. Nepomniaschaya

attribute R1. It is easy to check that after performing lines 8–13, the slice Z2
saves positions of rows in the attribute R2, where p copies of the first tuple
from F are to be written. After execution of the cycle while SOME(Y) do
(lines 14–19), p copies of a group of s tuples from F are written into the
attribute R2. Since the tuple v2 belongs to the relation F , it belongs to
every copy of the group of s tuples in the attribute R2. Let v1 be the kth
tuple in T and v2 be the ith tuple in F . Then the tuple v1v2 has been written
into the (i + (k − 1)s)-th row of the resulting relation R. This contradicts
to our assumption.

Obviously, the time complexity of the procedure Product on the AG-ma-
chine is O(p+ s).

In [11], we proposed implementation of the operation Product on the
STAR-machine. This implementation uses an auxiliary matrix G obtained
by compaction of the relation F . We have also shown how to implement
this operation using a modified version of the STAR-machine joined with
a special hardware support called λ-processor. This processor allows one
to execute the matrix compaction by means of the vertical processing. As
shown above, the efficient implementation of the operation Product on the
AG-machine does not use the compaction of the relation F . We avoid the
compaction of a matrix due to the use of operations SHIFTDOWN and
RCOPY.

3.2. Implementation of the operation Join on the AG-machine.
Recall the operation Join. Let A(A1, A2) and B(B1, B2) be two relations.
Let attributes A2 and B2 be drawn from the same domain. The operation
Join performs concatenation in every group of attributes A1 and B1 for
which the corresponding values of attributes A2 and B2 are equal.

Explain the main idea of implementing the operation Join on the AG-ma-
chine. Let C(C1, C2) be the result relation of the operation Join. Initially,
we set zeros in the attributes C1 and C2. Then we select the current tu-
ple v in the attribute A2 and determine all its occurrences both in A2 and
in B2. If v belongs to B2, we fulfil the procedure Product between the
corresponding rows of attributes A1 and B1 and include the result in the
corresponding rows of C1 and C2. Otherwise, we analyze the next tuple
in A2. We do this with the use of basic operations of the AG-machine and
procedures MATCH and Product.

procedure Join(A(A1,A2): table; B(B1,B2): table; Y: slice(B);
var X: slice(A); var C(C1,C2): table);

var X1: slice(A); Y1: slice(B); Z: slice(C);
v: word(A2); v1: word(A1); v2: word(B1);
i,s1,r1,t: integer; E1,E2: table;

Begin t:=0; CLR(Z);1.

Associative algorithms for the second group of relational algebra operations 113

SET(v1); SET(v2);2.

SCOPY(C1,Z,v1);3.

SCOPY(C2,Z,v2);4.

/* We set zeros in the attributes C1 and C2. */
while SOME(X) do5.

begin i:=FND(X); v:=ROW(i,A2);6.

MATCH(A2,X,v,X1);7.

/* Positions of the attribute A2 rows that coincide with v are marked with ′1′

in the slice X1. */
X:=X and (not X1);8.

/* We mark with ′0′ in the slice X positions of the attribute A2 rows
that coincide with v. */

MATCH(B2,Y,v,Y1);9.

/* We mark with ′1′ in the slice Y 1 positions of the attribute B2 rows
that coincide with v. */

if SOME(Y1) then10.

begin r1:=NUMB(X1); s1:=NUMB(Y1);11.

Product(A1,B1,X1,Y1,E1,E2);12.

SHIFTDOWN(E1,t);13.

SHIFTDOWN(E2,t);14.

C1:=or(C1,E1,v1);15.

C2:=or(C2,E2,v2);16.

/* We include the result of shifting the matrix E1 (respectively, E2)
in the attribute C1 (respectively, C2). */

t:=t+r1*s1;17.

end;18.

end;19.

End;20.

Proposition 3. Let two argument relations A(A1, A2) and B(B1, B2) be
given. Let a slice X save positions of tuples that belong to A, and a slice
Y save positions of tuples that belong to B. Let the attributes A2 and B2
be drawn from the same domain. Then the procedure Join returns the con-
catenation of those rows from the attributes A1 and B1, for which the cor-
responding values of A2 and B2 are equal.

Proof. (Sketch.) We prove this by induction on the number of different
tuples l that belong to the attributes A2 and B2.

Basis is checked for l = 1, that is, only a single tuple belongs to A2 and
B2. After performing lines 1–4, we set zeros in the attributes C1 and C2.
After performing lines 6–9, we select the first tuple v in the attribute A2.
Then with the slice X1, we save positions of all occurrences of v in A2 and

114 A.S. Nepomniaschaya

delete them from the slice X. Without loss of generality we assume that
v is a single tuple that belongs to A2 and B2. Therefore after performing
lines 9–10, with the slice Y 1, we save positions of all occurrences of v in the
attribute B2. Since Y 1 6= Θ*, we determine the number of tuples r1 in the
attribute A1 and the number of tuples s1 in the attribute B1 (line 11). Since
A is a relation, the rows in the attribute A1 that correspond to the same
tuple v in A2 are different. The same we have for the relation B. Moreover,
the attributes A1 and B1 are drawn from different domains. Therefore we
apply the procedure Product (line 12). Since initially t = 0, after performing
lines 13–16, we obtain the attributes C1 and C2. After that we determine
a new value for t (line 17) and terminate the conditional statement from
line 10.

If X 6= Θ, we select by ′1′ positions of all occurrences of the next tuple
in A2 and delete them from X as shown above. We continue this process
while X 6= Θ. After that we go to the procedure end.

Step of induction. Let the assertion be true when l ≥ 1 different
tuples belong both to the attribute A2 and the attribute B2. We prove
the assertion for the case when l + 1 different tuples belong to A2 and
B2. By the inductive assumption, after selecting the first l different tuples,
their positions are selected by ′1′ in the slice X. After that, these positions
are deleted from the slice X (line 8). Each time when a selected group of
the same tuple belongs to B2, we perform the procedure Product which is
applied to the corresponding attributes A1 and B1. Since a new value for
t is computed after every execution of the procedure Product (line 17), a
new result of this procedure is written into the corresponding rows of the
attributes C1 and C2. Further we reason by analogy with the basis when
a single tuple belongs to A2 and B2. As soon as we select positions of all
occurrences of this tuple (lines 6–10), we perform the procedure Product for
the corresponding rows of the attributes A1 and B1 and write the result into
the matrices E1 and E2. After performing lines 13–16, the result of shifting
the contents of the matrices E1 and E2 are written into the attributes C1
and C2. As soon as the slice X = Θ, we run to the procedure end.

Let k be the number of different tuples that belong both to A2 and to
B2. Let us denote by pi and si the number of different occurrences of the
i-th tuple that belong to A2 and B2, respectively. Then the procedure Join
takes O

(∑k
i=1(pi + si)

)
time.

3.3. Implementation of the operation Union on the AG-machine.
The operation Union is applied to the argument relations T and F with the
same number of bit columns k. The resulting relation P is assembled from
the relation T and those tuples of the relation F , which do not belong to T .

*The notation Y 1 6= Θ denotes that there is at least one component ′1′ in the slice Y 1.

Associative algorithms for the second group of relational algebra operations 115

To implement the operation Union on the AG-machine, we use the proce-
dure Differ(F, Y, T, k, Y 1) from [12]. It returns a slice Y 1 that saves positions
of the relation F tuples not belonging to the relation T . In [12], we have
shown that the procedure Differ takes O(k) time.

Explain the main idea of implementing the operation Union on the
AG-machine. We first copy the relation T into the relation P . Then we
perform the procedure Differ and save positions of the relation F tuples
that do not belong to the relation T . Further we include into P every tuple
v from the relation F that does not belong to the relation T . Moreover, the
position of the tuple v in the relation P is marked with ′1′ in the slice Z.

procedure Union(T: table; F: table; X: slice(T); Y: slice(F);
k: integer; var P: table; var Z: slice(P));

var Z1: slice(P); Y1: slice(F); v,w: word(T); i,j: integer;
Begin SET(v); Z:=X;

SMERGE(T,P,v);

/* We copy the relation T into P . */
Differ(F,Y,T,k,Y1);

/* The slice Y 1 saves positions of the relation F rows that do not belong to T . */
while SOME(Y1) do
begin i:=STEP(Y1); w:=ROW(i,F);

Z1:= not Z; j:=FND(Z1);
ROW(j,P):=w; Z(j):=’1’;

end;
End;

Proposition 4. Let two argument relations T and F be given. Let a slice
X save positions of tuples that belong to T , and a slice Y save positions of
tuples that belong to F . Then the procedure Union returns the relation P
that consists of different tuples from relations T and F , and a slice Z that
saves positions of the tuples from P .

The correctness of the procedure Union is proved by induction on the
number of tuples l of the relation F that do not belong to the relation T .

Let l be the number of tuples of the relation F that do not belong to the
relation T . Then the procedure Union takes O(k + l) time because every
operation of the AG-machine takes one unit of time and the procedure Differ
from [12] takes O(k) time. Notice that on the STAR-machine, this procedure
takes O(kr) time, where r is the number of tuples in the relation F , because
for every tuple from the relation F one has to check whether it belongs to
the relation T .

116 A.S. Nepomniaschaya

4. Conclusions

In this paper, we propose a new version of the associative graph machine.
We have also offered efficient associative algorithms for implementing the
relational algebra operations Product, Join, and Union on this model. On
the AG-machine, these algorithms are represented as the corresponding pro-
cedures and their correctness is justified. We have also compared implemen-
tations of these operations on the AG-machine and on the STAR-machine.
We have shown that efficient implementations of operations Product and
Join on the AG-machine do not use the compaction of a relation. There-
fore there is no need of using a special hardware support for compaction of
a relation as in the case of the STAR-machine. We have shown that the
estimations obtained for the AG-machine are optimal.

We are planning to study an application of the AG-machine to perform-
ing the genome matching.

References

[1] Fernstrom C., Kruzela J., Svensson B. LUCAS associative array processor. De-
sign, programming and application studies. –– Berlin: Springer, 1986. –– (Lect.
Notes Comp. Sci.; 216).

[2] Foster C.C. Content Addressable Parallel Processors. –– New York: Van Nos-
trand Reinhold Company, 1976.

[3] Irakliotis L.J., Betzos G.A., Mitkas P.A. Optical associative processing //
Associative Processing and Processors / A. Krikelis, C.C. Weems (eds). ––
IEEE Computer Society Press, 1997. –– P. 155–178.

[4] Kapralski A. Sequential and Parallel Processing in Depth Search Machines. ––
Singapore: World Scientific, 1994.

[5] Kokosiński Z. An associative processor for multi-comparand parallel search-
ing and its selected applications // Proc. Int. Conf. on Parallel and Dis-
tributed Processing Techniques and Applications, PDPTA’97. Las Vegas,
USA.–– 1997. –– P. 1434–1442.

[6] Kokosiński Z., Sikora W. An FPGA implementation of multi-comparand multi-
search associative processor // Proc. 12th Int. Conf. FPL’2002. –– Berlin:
Springer, 2002. –– P. 826–835.–– (Lect. Notes Comp. Sci.; 2438).

[7] Louri A., Hatch J.A. An optical associative parallel processor for high-speed
database processing // Computer. –– 1994. –– Vol. 27, No. 11. –– P. 65–72.

[8] Muraszkiewicz M.R. Cellular array architecture for relational database imple-
mentation // Future Generations Computer Systems.–– 1988.–– Vol. 4, No. 1.––
P. 31–38.

Associative algorithms for the second group of relational algebra operations 117

[9] Nepomniaschaya A.S. Language STAR for associative and parallel compu-
tation with vertical data processing // Proc. of the Intern. Conf. “Parallel
Computing Technologies”. –– Singapore: World Scientific, 1991. –– P. 258–265.

[10] Nepomniaschaya A.S., Kokosiński Z. Associative graph processor and its pro-
perties // Proc. of the Intern. Conf. PARELEC’2004.–– Dresden: IEEE Com-
puter Society Press, 2004. –– P. 297–302.

[11] Nepomniaschaya A.S., Fet Y.I. Investigation of some hardware accelerators
for relational algebra operations // Proc. of the First Aizu Intern. Symp. on
Parallel Algorithms / Architecture Synthesis, Aizu-Wakamatsu, Fukushima,
Japan.–– IEEE Computer Society Press, 1995. –– P. 308–314.

[12] Nepomniaschaya A.S. An efficient associative algorithm for multi-comparand
parallel searching and its applications // Bull. Novosibirsk Comp. Center. Ser.
Computer Science. –– Novosibirsk, 2006. –– Iss. 25. –– P. 38–49.

[13] Ozkarahan E. Database Machines and Database Management.–– Prentice-Hall,
Inc., 1986.

[14] Parhami B. Search and data selection algorithms for associative processors
// Associative Processing and Processors / A. Krikelis, C.C. Weems (eds). ––
IEEE Computer Society Press, 1997. –– P. 10–25.

[15] Ullman J.D. Principles of Database Systems.–– Computer Science Press, 1980.

118

