
Bull. Nov. Comp.Center, Comp. Science, 25 (2006), 37–48
c© 2006 NCC Publisher

An efficient associative algorithm for
multi-comparand parallel searching and

its applications

A.S. Nepomniaschaya

1. Introduction

Associative (content addressable) parallel processors of the SIMD type are
ideally suited for performing fast parallel search operations being used in dif-
ferent applications such as graph theory, computational geometry, relational
database processing, image processing, and genome matching.

In [12], search and data selection algorithms for both bit-serial and fully
parallel associative processors were described. In [5, 6], an experimental im-
plementation of a multi-comparand multi-search associative processor and
some parallel algorithms for search problems in computational geometry
were considered. In [10], a formal model of associative parallel processors
called associative graph machine (AG-machine) and its possible hardware
implementation were proposed. It performs bit-serial and fully parallel as-
sociative processing of matrices representing graphs as well as some basic
set operations on matrices (sets of columns).

The AG-machine differs from [6] due to the presence of built-in oper-
ations designed for associative graph algorithms. We will show that this
model can efficiently support classical operations in relational databases. In
[2, 8, 11], relational database processing on specialized parallel processors
were discussed. In [7], an experimental architecture, called the optical con-
tent addressable parallel processor for relational database processing, was
devised. It supports parallel relational database processing by fully exploit-
ing the parallelism of optics. In [4], different optical and optoelectronic
architectures for image processing and relational database associative pro-
cessing were reviewed.

In this paper, we propose a new associative algorithm for multi-com-
parand searching and its implementation on the AG-machine. Then we
consider applications of this algorithm to representing the classical opera-
tions of relational algebra. Algorithms are given as the corresponding pro-
cedures for the AG-machine. We prove their correctness and evaluate time
complexity.



38 A.S. Nepomniaschaya

2. Model of the associative graph machine

In this section, we propose a model of the SIMD type with simple single-bit
processing elements (PEs) called associative graph machine (AG-machine).
It carries out both the bit-serial and the bit-parallel processing. To simulate
the access data by contents, the AG-machine uses both the typical operations
for associative systems first presented in Staran [3] and some new operations
to perform bit-parallel processing.

The model consists of the following components:

• a sequential common control unit (CU), where programs and scalar
constants are stored;

• an associative processing unit forming a two-dimensional array of
single-bit PEs;

• a matrix memory for the associative processing unit.

The CU broadcasts each instruction to all PEs in one unit of time. All
active PEs execute it simultaneously while inactive PEs do not perform it.
Activation of a PE depends on the data employed.

Input binary data are loaded in the matrix memory in the form of two-
dimensional tables, where each data item occupies an individual row and is
updated by a dedicated row of PEs. In the matrix memory, the rows are
numbered from top to bottom and the columns–– from left to right. Both a
row and a column can be easily accessed.

The associative processing unit is represented as a matrix of single-bit
PEs that correspond to the matrix of input binary data. Each column in the
matrix of PEs can be regarded as a vertical register that maintains the entire
column of a table. Our model runs as follows. Bit columns of tabular data
are stored in the registers which perform the necessary bitwise operations.

To simulate data processing in the matrix memory, we use data types
slice and word for the bit column access and the bit row access, respectively,
and the type table for defining and updating matrices. We assume that any
variable of the type slice consists of n components. For simplicity, let us
call slice any variable of the type slice.

For variables of the type slice, we employ the same operations as in
the case of the STAR-machine along with new operations FRST(Y ) and
convert(Y ).

The new operation FRST(Y ) saves the first (the uppermost) component
′1′ in the slice Y and sets to ′0′ its other components.

The new operation convert(Y ) returns a row whose every i-th component
(bit) coincides with Y (i). It will be used as the right part of the assignment
statement.



Multi-comparand parallel searching and its applications 39

It should be noted that the operation convert(Y ) was implemented in
the Russian associative processor ES-27-20. However, it was not included
before in the STAR-machine in view of absence of its application.

For the sake of completeness, we recall some elementary operations for
slices from [9] being used in the paper:

SET(Y ) sets all components of Y to ′1′;

CLR(Y ) sets all components of Y to ′0′;

FND(Y ) returns the ordinal number of the first component ′1′ of Y ;

STEP(Y ) returns the same result as FND(Y ) and then resets the first ′1′

found to ′0′.

In the usual way, we introduce predicates ZERO(Y ) and SOME(Y ) and
the bitwise Boolean operations X and Y , X or Y , not Y , and X xor Y .

The above-mentioned operations along with the operation FRST(Y ) are
also used for variables of the type word.

For a variable T of the type table, we use the following two operations:

ROW(i, T ) returns the i-th row of the matrix T ;

COL(i, T ) returns the i-th column of the matrix T .

Moreover, we use two groups of new operations. One group of such
operations is applied to a single matrix, while the other one is used for two
matrices of the same size. All new operations are implemented in hardware.

Now, we present the first group of new operations.
The operation SCOPY(T,X, v) simultaneously writes the given slice X

in those columns of the given matrix T which are marked by ones in the
given comparand v.

The operation not(T, v) simultaneously replaces the columns of the given
matrix T , marked by ones in the comparand v, with their negation. It will
be used as the right part of the assignment statement.

The operation FRST(row, T ) simultaneously fulfils the operation FRST
for every row of the matrix T and writes the result in T .

The operation FRST(col, T ) simultaneously fulfils the operation FRST
for every column of the matrix T and writes the result in T .

The operation or(row, T ) simultaneously performs disjunction in every
row of the matrix T . It returns a slice whose every i-th component is equal
to ′0′ if and only if ROW(i, T ) consists of zeros.

The operation or(col, T ) simultaneously performs disjunction in every
column of the matrix T . It returns a row whose every i-th bit is equal to ′0′

if and only if COL(i, T ) consists of zeros.
Now, we determine the second group of new operations.
The operation SMERGE(T, F, v) simultaneously writes the columns of

the given matrix F , that are marked by ones in the comparand v, in the



40 A.S. Nepomniaschaya

corresponding columns of the result matrix T . If the comparand v consists
of ones, the operation SMERGE copies the matrix F into the matrix T .

The operation op(T, F, v), where op ∈ {or , and , xor}, is simultaneously
performed between those columns of the given matrices T and F that are
marked by ones in the given comparand v. This operation is used as the
right part of the assignment statement, that is, R := op(T, F, v).

Remark 1. We will assume that each elementary operation of the AG-ma-
chine (its microstep) takes one unit of time.

We will employ the basic procedure MATCH(T,X,w,Z) [9]. It deter-
mines positions of the matrix T rows that coincide with the given pattern
w. By means of the slice X, we mark by ones the matrix T rows being used
for comparison with w. The procedure returns the slice Z, where Z(i) =′ 1′

if and only if ROW(i, T ) = w and X(i) =′ 1′.
In [10], we have proposed an efficient implementation of this procedure on

the AG-machine that takes O(1) time. Notice that on the STAR-machine,
it requires O(k) time [9], where k is the number of columns in the matrix T .

3. Performing multi-comparand searching in parallel

In [1], Falkoff proposed an associative algorithm for selecting rows in the
given matrix T that coincide with the given pattern w. This algorithm runs
as follows: at every i-th step of computation, it saves the matrix T rows
whose first i bits are the initial part of the pattern w. In [9], we suggested
an implementation of this algorithm on the STAR-machine as procedure
MATCH(T,X,w,Z).

Here, we generalize Falkoff’s algorithm. Let T be a given matrix con-
sisting of n rows and k columns and F be a given matrix of patterns or
comparands consisting of m rows and k columns, where m ≤ n. We will
select in parallel the matrix T rows that coincide with the given set of m
patterns. Our algorithm uses the following idea: at every i-th step of com-
putation, we store in parallel m groups of the matrix T rows such that each
group stores positions of those rows whose first i bits are the initial part of
a concrete pattern.

Before presenting the procedure MultiMatch, let us explain the imple-
mentation of the procedure MATCH(T,X,w,Z) on the STAR-machine. Ini-
tially, the result slice Z coincides with the given global slice X, that is, rows
of T , marked by ′1′ in the slice X, are candidates for analysis. At every i-th
step of computation (i ≥ 1), we first write the i-th column of the matrix T
in a slice Y . Then we examine the i-th bit of the pattern w. If w(i) =′ 1′,
we perform the statement Z := Z and Y . Otherwise, to save positions of
rows whose i-th bit is ′0′, we fulfil the statement Z := Z and (not Y ).

Now, we propose the following procedure:



Multi-comparand parallel searching and its applications 41

procedure MultiMatch(T: table; X: slice(T); F: table;
k: integer; var A: table);

/* Every i-th column of the matrix A saves by ′1′ positions of those rows of T
that coincide with the i-th pattern of F . */

var B: table; u,w1,w2: word(A);
Y: slice(T); Z: slice(F);

Begin SET(w1); SCOPY(A,X,w1);1.

for i:=1 to k do2.

begin Y:=COL(i,T);3.

SCOPY(B,Y,w1);4.

/* The current column of T is written to the matrix B. */
Z:=COL(i,F);5.

w2:=convert(Z);6.

u:= not w2; B:= not(B,u);7.

/* The columns of the matrix B marked by ′1′ in the row u are replaced
with their negation. */

A:=and(A,B,w1);8.

end;9.

End;10.

Remark 2. The number of columns in matrices A and B is equal to the
number of rows in F .

Correctness of the MultiMatch procedure is established by means of the
following

Theorem. Let T be a matrix consisting of n rows and k columns and F
be a matrix of patterns consisting of m rows and k columns, where m ≤ n.
Let the selected rows of the matrix T be marked by ′1′ in the given slice X.
Then the procedure MultiMatch(T,X, F, k, A) returns a matrix A consisting
of n rows and m columns whose every i-th column stores positions of those
matrix T rows that coincide with the pattern written in the i-th row of the
matrix F .

Proof. We prove this by induction on the number of columns k in the
matrix T .

Basis is checked for k = 1. Then maximum two patterns ′0′ and ′1′

belong to F and m = 2. After performing line 1, the given slice X is written
in both columns of the matrix A. After fulfilling lines 3–7, we first write
the single column of the matrix T in the slice Y . Then we store this slice in
both columns of the matrix B. Further, the column of B, that correspond
to the pattern ′0′, is replaced by not Y . Therefore after performing line
8, one column of the matrix A stores positions of the matrix T rows that



42 A.S. Nepomniaschaya

coincide with the pattern ′1′ and its another column saves positions of rows
that coincide with the pattern ′0′.

Step of induction. Let the assertion be true for k ≥ 1. We will prove
it for k + 1. To this end, we represent matrices T and F as T = T1T2,
F = F1F2, where T1 consists of the first k columns of T and T2 is its (k+1)-
th column. In the same manner, we determine F1 and F2. After performing
line 1, the given slice X will be written in k + 1 columns of the matrix
A. By inductive assumption, the assertion is true for T1 and F1, that is,
after updating the first k columns of T , every l-th column of the matrix A
(1 ≤ l ≤ m) saves by ′1′ positions of the matrix T rows which have the
first k bits of the l-th pattern as their initial part. Now, we perform the
(k+1)-th iteration. Here, we reason by analogy with the basis. Hence, after
performing this iteration, every l-th column of the result matrix A saves by
′1′ positions of the matrix T rows which coincide with the l-th pattern of F .

Let us evaluate time complexity of the procedure MultiMatch. We obtain
that on the AG-machine, it takes O(k) time, where k is the number of
columns in the matrix T . On the STAR-machine, such an algorithm can be
implemented by fulfilling the procedure MATCH for every pattern in turn.
Since the procedure MATCH takes O(k) time on the STAR-machine, the
procedure MultiMatch requires O(km) time.

Now, we enumerate two properties of the matrix A being used below.

Property 1. The i-th row of the matrix A (1 ≤ i ≤ n) consists of zeros if
and only if the i-th row of T does not belong to F .

Property 2. The j-th column of the matrix A (1 ≤ j ≤ m) consists of
zeros if and only if the j-th pattern from F does not belong to T .

Remark 3. In the procedure MultiMatch, all patterns of the matrix F are
analyzed. In a general case, a global slice (say, L) for the matrix F may be
used. To take into account this case, we perform the following statements
immediately after line 8:

v:=convert(L); u:= not v; CLR(Z); SCOPY(A,Z,u).

Therefore the rows of F marked by ′0′ in the slice L will correspond to
columns consisting of zeros in the result matrix A.

The procedure MultiMatch can be generalized as follows. Let T and F
be two matrices. Let k be the number of columns in T , r be the number
of columns in F , and j = k − r. For every row v in F , we want to check
whether there exists such a row w in T that v is the tail of w, that is,
v = w(j +1)w(j +2) . . . w(k). Such a checking can be done in parallel for all



Multi-comparand parallel searching and its applications 43

rows from F by means of the procedure MultiSelect. The procedure head
has the following form:

procedure MultiSelect(T: table; X: slice(T); F: table;
j,k: integer; var A: table);

Every i-th column of the matrix A will store positions of those matrix T
rows whose tail coincides with the i-th row of the matrix F .

The procedure MultiSelect runs by analogy with MultiMatch. We have
only to change the following two lines in MultiMatch:

Line 2: for i:=j+1 to k do
Line 5: Z:=COL(i-j,F);

4. Applications of multi-comparand searching to relational
algebra

A relational database is defined as in [13]. Let Di be a domain, i =
1, 2, . . . , k. The relation R is determined as a subset of the Cartesian
product D1 × D2 × . . . × Dk. An element of R is called tuple and has
the form v = (v1, v2, . . . , vk), where vi ∈ Di. Let Ai be the name of the
domain Di which is called attribute. Let R(A1, A2, . . . , Ak) denote a scheme
of the relation R.

On the AG-machine, any relation is represented as a matrix and each
its tuple is allocated to one memory row. Note that any relation consists of
different tuples.

We will consider applications of multi-comparand searching to the follow-
ing relational algebra operations: Intersection, Difference, Semi-join, Pro-
jection, and Division. The result relation for these operations is a subset of
the argument relations T and F . The corresponding procedures will use a
global slice X to select by ones the positions of tuples in the relation T .

The Intersection operation has two argument relations T and F . The
result relation consists of those tuples that belong to T and F .

On the AG-machine, this operation is implemented as follows.

procedure Inters(T: table; X: slice(T); F: table; k: integer;
var Y: slice(T));

var A: table;
Begin MultiMatch(T,X,F,k,A);1.

Y:=or(row,A);2.

Y:=Y and X;3.

End;4.

Correctness of this procedure is checked as follows. Since T and F are
relations, there is at most a single bit ′1′ both in every column and in every



44 A.S. Nepomniaschaya

row of the matrix A (line 1). Therefore, after performing lines 2–3, Y (i) = ′1′

if and only if the i-th row of T is a tuple of the relation F .
Consider the operation Difference of relations T and F . The result rela-

tion consists of those tuples of T that do not belong to F .

procedure Differ(T: table; X: slice(T); F: table; k: integer;
var Y: slice(T));

var Z: slice(T);
Begin Inters(T,X,F,k,Z);

Y:=X and (not Z);
End;

Consider the operation Semi-join of relations T (T1, T2) and F . We
assume that the attribute T2 of the relation T and the relation F are
drawn from the same domain. The result relation consists of those tuples
ROW(i, T ) for which there exists such j that ROW(i, T2) = ROW(j, F ).
Positions of the result tuples are marked by ′1′ in the slice Y .

procedure Semi-join(T(T1,T2): table; X: slice(T); F: table;
k: integer; var Y: slice(T));

/* Here, k is the number of columns in the relation F . */
Begin Inters(T2,X,F,k,Y);
End;

It should be noted that the attribute T2 is not a relation. Therefore a
tuple of F may coincide with a few rows of T2. However, the result tuples
form a relation as a subset of T .

Correctness of procedures Differ and Semi-join is evident.
Consider the operation Project2 of the relation T having two attributes

T1 and T2. The result relation consists of the tuples from the relation T
having only different values of the second attribute. The operation Projec-
tion1 is determined in the same manner.

procedure Project2(T(T1,T2): table; X: slice(T); k: integer;
var Y: slice(T));

/* Here, k is the number of columns in the attribute T2. */
Begin MultiMatch(T2,X,T2,k,A);1.

FRST(col,A);2.

Y:=or(row,A);3.

End;4.

Let us justify correctness of this procedure. After performing line 1,
every i-th column of the matrix A (1 ≤ i ≤ k) stores by ′1′ positions of
rows of T2 that coincide with the pattern ROW(i, T2). Note that T2 is not
a relation in general case. However, after performing line 2, in every i-th



Multi-comparand parallel searching and its applications 45

column of A, a single representative is saved. Notice that after performing
line 2 the matrix A may include some identical columns. Nevertheless, after
performing line 3, the slice Y saves positions of tuples from the relation T
having different values of the attribute T2.

Now, we consider the Division operation. Let the relation T be a dividend
having attributes T1 and T2 and the relation F be a divisor. Let the values
of T2 and F are drawn from the same domain. Then T div F = {u ∈ T1 |
∀v ∈ F, uv ∈ T}. On the AG-machine, this operation is implemented by
analogy with the STAR-machine [9].

procedure Division(T(T1,T2): table; X: slice(T); F: table;
Y: slice(F); k: integer; var Z: slice(T));

/* Here, k is the number of columns in the attribute T1. */
var L,M,Q: slice(T); P: slice(F);

w: word(F); i: integer;
Begin L:=X; P:=Y;1.

while SOME(P) do2.

begin i:=STEP(P); w:=ROW(i,F);3.

MATCH(T2,L,w,Q);4.

Inters(T1,Q,T1,L,k,M);5.

L:=M;6.

end;7.

Z:=M;8.

End;9.

Correctness of the procedure Division is checked by induction on the
number of tuples in the relation F .

Let us evaluate time complexity of the considered procedures. We obtain
that on the AG-machine, procedures Inters, Differ, Semi-join, and Project2
take O(k) time each, where k is the number of columns in the corresponding
relation. On the STAR-machine, these procedures take O(kn) time [9],
where n is the number of tuples in the relation T and k is the number of
columns in T or in F .

On the AG-machine, the procedure Division takes O(km) time, where
m is the number of tuples in the relation F and k is the number of columns
in the attribute T1. On the STAR-machine, this procedure takes O(kmn)
time [9], where n is the number of tuples in the relation T and parameters
m and k have been determined above.

It should be noted that more complicated operations of the relational al-
gebra Product and Join assemble a new relation. However, these operations
do not use the multi-comparand searching.



46 A.S. Nepomniaschaya

5. Application of multi-comparand searching to finding
the set inclusion

Here, we propose an efficient implementation of finding the set inclusion
on the AG-machine. In [5], a specification of this task for a specialized
multi-comparand associative processor was presented.

Let two sets of integers T = {x1, x2, . . . , xn} and F = {y1, y2, . . . , ym},
where m ≤ n, be given. We have to check whether for every element xi ∈ T
there exists an element yj ∈ F such that xi = yj , that is, whether T ⊆ F .

To this end, we propose the following procedure:

procedure Subset(T: table; F: table; k: integer;
var res: boolean);

var A: table; X,Y,Z: slice(T);
Begin SET(X); res:=true;1.

MultiMatch(T,X,F,k,A);2.

/* Every i-th row of the matrix A stores positions of the matrix T
rows that coincide with the i-th pattern of F . */
Y:=or(row,A);3.

/* Y (i) = ′0′ if and only if the i-th row of T does not belong to F . */
Z:=not Y;4.

/* We check whether there is at least one bit ′0′ in the slice Y . */
if SOME(Z) then res:=false;5.

End;6.

Correctness of this procedure is checked by contradiction.
Let the procedure Subset return the true value, that is, T ⊆ F . However,

let there exist such an l-th row of T that doesn’t belong to F . We will prove
that this assumption cotradicts to performing our procedure. Really, in this
case, the l-th row of the matrix A consists of zeros in view of Property 1.
Therefore after performing lines 3–5, the procedure Subset returns the value
false. This contradicts to the given condition.

Remark 4. In the same manner, we can also check whether F ⊆ T . In this
case, we will use two variables v and w of the type word instead of slices Y
and Z. In view of Property 2, we have to check whether there is a column
in the matrix A that consists of zeros.

It is obvious that the procedure Subset takes O(k) time.

6. Conclusions

In this paper, we have shown how to efficiently implement the classical
operations of the relational algebra using the associative graph machine. To



Multi-comparand parallel searching and its applications 47

this end, we first propose a new associative algorithm for performing multi-
comparand searching in parallel. On the AG-machine, this algorithm is im-
plemented as procedure MultiMatch whose correctness is proved. We have
shown that this procedure takes O(k) time, where k is the number of columns
in the given matrix T . Note that on the bit-serial associative processor such
a procedure takes O(km) time, where m is the number of patterns in the
relation F . We also propose applications of multi-comparand searching to
perform the following classical operations of the relational algebra: Inter-
section, Difference, Semi-join, Projection, and Division. These operations
are represented as the corresponding procedures on the AG-machine and
their correctness is justified. We have shown that the procedure Division
takes O(km) time, where m is the number of tuples in the divisor and k
is the number of columns in the attribute T1 of the divident T (T1, T2).
Other procedures take O(k) time each, where k is the number of columns
in the corresponding relation. We have shown that all these estimations are
optimal. Moreover, we have proposed an efficient implementation on the
AG-machine of finding the set inclusion.

We are planning to study an application of the AG-machine to perform-
ing the image processing.

References

[1] Falkoff A.D. Algorithms for parallel-search memories // J. ACM. –– 1962. ––
Vol. 9, No. 10. –– P. 448–510.

[2] Fernstrom C., Kruzela J., Svensson B. LUCAS Associative Array Processor.
Design, programming and Application Studies. –– Berlin: Springer, 1986. ––
(Lect. Notes in Comp. Sci.; 216).

[3] Foster C.C. Content Addressable Parallel Processors. –– New York: Van Nos-
trand Reinhold Company, 1976.

[4] Irakliotis L.J., Betzos G.A., Mitkas P.A. Optical associative processing //
Associative Processing and Processors / A. Krikelis, C.C. Weems eds. IEEE
Computer Society Press. –– 1997. –– P. 155–178.

[5] Kokosiński Z. An associative processor for multi-comparand parallel search-
ing and its selected applications // Proc. Int. Conf. on Parallel and Dis-
tributed Processing Techniques and Applications, PDPTA’97. Las Vegas,
USA.–– 1997.–– P. 1434–1442.

[6] Kokosiński Z., Sikora W. An FPGA implementation of multi-comparand multi-
search associative processor // Proc. 12-th Int. Conf. FPL’2002. –– Berlin:
Springer, 2002. –– P. 826–835. –– (Lect. Notes in Comp. Sci.; 2438).

[7] Louri A., Hatch Jr. J.A. An optical associative parallel processor for high-speed
database processing // Computer. –– 1994.–– Vol. 27, No. 11. –– P. 65–72.



48 A.S. Nepomniaschaya

[8] Muraszkiewicz M.R. Cellular array architecture for relational database imple-
mentation // Future Generations Computer Systems.–– 1988.––Vol. 4, No. 1.––
P. 31–38.

[9] Nepomniaschaya A.Sh. A language STAR for associative and bit–serial pro-
cessors and its application to relational algebra. // Bull. Novosibirsk Comp.
Center. Ser. Computer Science. –– Novosibirsk, 1993. –– Iss. 1. –– P. 23–36.

[10] Nepomniaschaya A.S., Kokosiński Z. Associative graph processor and its pro-
perties // Proc. of the Intern. Conf. PARELEC’2004. Dresden, Germany /
IEEE Computer Society Press. –– 2004. –– P. 297–302.

[11] Nepomniaschaya A.S., Fet Y.I. Investigation of some hardware accelerators
for relational algebra operations // Proc. of the First Aizu Intern. Symp. on
Parallel Algorithms / Architecture Synthesis. Aizu-Wakamatsu, Fukushima,
Japan / IEEE Computer Society Press. –– 1995.–– P. 308–314.

[12] Parhami B. Search and data selection algorithms for associative processors //
Associative Processing and Processors / A. Krikelis, C.C. Weems eds. IEEE
Computer Society Press. –– 1997.–– P. 10–25.

[13] Ullman J.D. Principles of Database Systems.–– Computer Science Press, 1980.


