
Bull. Nov. Comp.Center, Comp. Science, 21 (2004), 85–97
c© 2004 NCC Publisher

A new technique for updating tree paths
on associative parallel processors∗

A.S. Nepomniaschaya

Abstract. In this paper we describe in detail a new technique for updating tree
paths on a model of associative parallel systems with vertical data processing (the
STAR-machine). It includes a new associative parallel algorithm for finding an
MST along with the matrix of tree paths and a new associative parallel algorithm
for updating tree paths after every change in the underlying graph. We prove cor-
rectness of the corresponding procedures and evaluate time complexity. Moreover,
we compare two techniques for updating tree paths on the STAR-machine and the
CREW PRAM machine.

1. Introduction

Associative (content-addressable) processors constitute a prominent sub-
class of fine-grained massively parallel SIMD architectures. Recent ad-
vances in VLSI technology have made large associative processors and other
massively parallel architectures practically realizable [7]. Associative sys-
tems with bit-serial (vertical) data processing are best suited to solve non-
numerical problems. Such an architecture performs data parallelism at the
base level, provides massively parallel search by contents, and allows one
using two-dimensional tables as basic data structures [9].

In this paper, we suggest a new technique for updating tree paths on
associative parallel processors. In particular, such a problem arises when we
perform dynamic edge update of a minimum spanning tree (MST). Dynamic
graph algorithms are designed to handle graph changes. Such algorithms
maintain some property of a changing graph more efficiently than recompu-
tation of the entire graph with a static algorithm after every change. The
problem of edge updating an MST involves reconstructing a new MST from
the current one when an edge is deleted or inserted or its weight changes.

Different techniques are used to solve update problems. In [10], Tarjan
proposes a special technique, path compression on balanced trees, to com-
pute functions defined on paths in trees under various assumptions. This
technique is applied to solve several graph problems. In [3], Frederickson
suggests a graph decomposition and data structures techniques to deal with
the edge update problem. In particular, Frederickson presents an O(m1/2)

∗Partially supported by the Russian Foundation for Basic Research under Grant
03-01-00399.

86 A.S. Nepomniaschaya

sequential algorithm for the edge update problem, where m is the number
of graph edges. In [1], a general technique, called sparsification, for de-
signing dynamic graph algorithms is provided. In particular, the authors
propose a sequential algorithm for edge updating a minimum spanning for-
est in O(n1/2) time, where n is the number of graph vertices. In [8], Pawagi
and Ramakrishnan propose a technique for updating tree paths on paral-
lel random access machines. Their technique is based on representing an
MST in the form of an inverted tree. The corresponding parallel algorithms
for the edge update problem take O(log n) time and use O(n2) processors.
In [6], we briefly consider a new technique for updating tree paths and its
use to solve the edge update problem on a model of associative parallel sys-
tems with vertical data processing (the STAR-machine). The corresponding
parallel algorithms for the edge update problem take O(q log n) time each,
where q is the number of vertices whose tree paths change after deleting
an edge from the MST. We assume that each elementary operation of the
STAR-machine (its microstep) requires one unit of time.

The main goal of this paper is to describe our technique in detail and
to justify its correctness. It includes a new associative parallel algorithm
for finding an MST along with the matrix of tree paths and a new asso-
ciative parallel algorithm for updating tree paths after every change in the
underlying graph. These algorithms are represented as the corresponding
procedures implemented on the STAR-machine. We prove correctness of
these procedures and evaluate time complexity. Moreover, we compare the
technique of Pawagi and Ramakrishnan with ours and analyze the main
advantages.

2. Model of associative parallel machine

We define the model as an abstract STAR-machine of the SIMD type with
vertical processing and simple single-bit PEs. To simulate the access data
by contents, we use some typical operations for associative systems first
presented in Staran [2].

The model consists of the following components:

• a sequential control unit (CU), where programs and scalar constants
are stored;

• an associative processing unit consisting of p single-bit PEs;

• a matrix memory for the associative processing unit.

The CU broadcasts an instruction to all PEs in unit time. All active PEs
execute it simultaneously while inactive PEs do not perform it. Activation
of a PE depends on the data.

Input binary data are loaded in the matrix memory in the form of two-
dimensional tables, where each data item occupies an individual row and it

A new technique for updating tree paths 87

is updated by a dedicated PE. The rows are numbered from top to bottom
and the columns – from left to right. Both a row and a column can be easily
accessed.

The associative processing unit is represented as h vertical registers, each
consisting of p bits. A vertical register can be regarded as a one-column array
that maintains an entire column of a table. Bit columns of tabular data are
stored in the registers which perform the necessary bitwise operations.

To simulate data processing in the matrix memory, we use data types
slice and word for the bit column access and the bit row access, respectively,
and the type table for defining the tabular data. Assume that any variable
of the type slice consists of p components. For simplicity, let us call “slice”
any variable of the type slice.

Let X, Y be variables of the type slice and i be a variable of the type
integer. We use the following elementary operations for slices:

SET(Y) sets all components of Y to ′1′;

CLR(Y) sets all components of Y to ′0′;

Y (i) selects the i-th component of Y ;

FND(Y) returns the ordinal number of the first (the uppermost) ′1′ of Y ;

STEP(Y) returns the same result as FND(Y) and then resets the first ′1′

found to ′0′.

In the usual way, we introduce the predicate SOME(Y) and the bitwise
Boolean operations X and Y , X or Y , not Y , and X xor Y .

Let T be a variable of the type table. We use the following two opera-
tions:

ROW(i, T) returns the i-th row of the matrix T ;

COL(i, T) returns the i-th column of the matrix T .

Remark. Note that the STAR statements are defined in the same manner
as for Pascal. They will be used for presenting our procedures.

We will employ the following two basic procedures implemented on the
STAR-machine [4]. They use a global slice X to mark by ′1′ positions of
rows which will be processed.

The procedure MATCH(T,X, v, Z) defines in parallel positions of the
given matrix T rows which coincide with the given pattern v written in bi-
nary code. It returns the slice Z, where Z(i) = ′1′ if and only if ROW(i, T) =
v and X(i) = ′1′.

The procedure MIN(T,X,Z) defines in parallel positions of the given
matrix T rows, where minimum elements are located. It returns the slice

88 A.S. Nepomniaschaya

Z, where Z(i) = ′1′ if and only if ROW(i, T) is the minimum element in T
and X(i) = ′1′.

As shown in [4], the basic procedures run in O(k) time each, where k is
the number of columns in T .

3. Finding MST along with tree paths

Let G = (V,E) denote an undirected graph, where V is a set of vertices and
E is a set of edges. Let w denote a function that assigns a weight to every
edge. We assume that V = {1, 2, . . . , n}, |V | = n, and |E| = m.

A path from v1 to vk in G is a sequence of vertices v1, v2, . . . , vk, where
(vi, vi+1) ∈ E for 1 ≤ i < k. If v1 = vk, then the path is called a cycle.

A minimum spanning tree T = (V,E′) is a connected acyclic subgraph
of G, where E′ ⊆ E and the sum of weights of the corresponding edges is
minimum.

Let every edge (u, v) be matched with the triple 〈u, v, w(u, v)〉. In the
STAR-machine matrix memory, a graph is represented as association of
matrices left, right, and weight, where every triple 〈u, v, w(u, v)〉 occupies an
individual row, and u ∈ left , v ∈ right , and w(u, v) ∈ weight . We will also
use a matrix code, whose every i-th row saves the binary representation of
vertex vi. Let us agree to use a slice Y for the matrix code, a slice S for the
list of triples, and a slice T for the MST.

In [5], we have proposed an associative version of the Prim-Dijkstra al-
gorithm for finding an MST starting at a given vertex v. The corresponding
procedure MSTPD returns a slice T , where positions of edges belonging to
the MST are marked by ′1′.

Dynamic graph algorithms require, in particular, a fast method for find-
ing a tree path between any pair of vertices. To this end, by means of
minor changes in the procedure MSTPD, we build an MST along with a
matrix M , whose every i-th column saves positions of edges belonging to
the tree path from vertex v1 to vertex vi. The corresponding procedure
MSTPaths returns the slice T and the matrix of tree paths M . To define a
tree path joining each pair of vertices, we perform the operation xor between
the corresponding columns of the matrix M .

The procedure MSTPaths runs as follows. Initially, it sets zeros in the
first column of M and saves the root v1 being the first vertex of the fragment
TS . By analogy with MSTPD, at every iteration, it defines both the position
of the current edge (say, γ) and the corresponding new vertex vk being
included in TS . Moreover, it defines end-point vl of γ included in TS before
this iteration. The tree path from v1 to vk is obtained by adding the position
of γ to the tree path from v1 to vl defined before. This path is written in
the k-th column of M .

Now, we propose the procedure MSTPaths.

A new technique for updating tree paths 89

procedure MSTPaths(left,right,weight: table; code: table;
S: slice(left); var T: slice(left);
var M: table);

var i,k,l: integer; S1,N1,N2,X,Z: slice(left);
F,Y: slice(code); node,node1: word;

Begin CLR(N1); CLR(N2); SET(Y);1.

CLR(T); COL(1,M):= N1;2.

node:=ROW(1,code);3.

S1:=S; Z:=S;4.

while SOME(Z) do5.

begin MATCH(left,S1,node,X); N1:=N1 or X;6.

MATCH(right,S1,node,X); N2:=N2 or X;7.

X:=N1 and N2; S1:=S1 and (not X);8.

/* Positions of edges forming a cycle are deleted from the
slice S1. */

Z:=N1 or N2; Z:=Z and S1;9.

/* Positions of candidates for including into TS are selected
by ones in the slice Z. */

if SOME(Z) then10.

begin MIN(weight,Z,X); i:=FND(X);11.

T(i):=’1’; S1(i):=’0’;12.

/* The edge from the i-th position is added to TS. */
if N1(i)=’1’ then13.

begin node:=ROW(i,right);14.

node1:=ROW(i,left);15.

end16.

else begin node:=ROW(i,left);17.

node1:=ROW(i,right);18.

end;19.

/* The variable node saves a new vertex. */
MATCH(code,Y,node,F); k:=FND(F);20.

MATCH(code,Y,node1,F); l:=FND(F);21.

X:=COL(l,M); X(i):=’1’;22.

COL(k,M):=X;23.

end;24.

end;25.

End;26.

Now, we explain the construction allowing one to obtain the current column
of the matrix M .

At any iteration of the procedure MSTPaths by means of the slice N1
(respectively N2), we accumulate positions of edges whose left (respectively
right) vertex belongs to the fragment TS . After selecting the position of the

90 A.S. Nepomniaschaya

current new edge γ being included into TS , we determine whether it belongs
to N1. If it is true, the right end-point of γ (say, vk) is the new vertex
included in TS and its left end-point (say, vl) has been included in TS before.
Otherwise, we determine vertices vk and vl using the slice N2. Knowing the
tree path from v1 to vl, we obtain the tree path from vertex v1 to vertex vk

by adding the position of γ to it.
Correctness of the procedure MSTPaths is proved by induction on the

number of tree edges.
It is easy to check that this procedure takes the same time O(n log n) as

the procedure MSTPD for finding an MST in undirected graphs.
Without loss of generality, we will assume that initially an MST is always

given along with the matrix of tree paths.

4. Updating tree paths

Let a new MST be obtained from the underlying one by deleting an edge
(say, γ) located in the l-th position and inserting an edge (say, δ) located
in the k-th position. Let Y 1 be a connected component of G obtained after
deleting γ. The algorithm for updating tree paths will determine new tree
paths for all vertices from Y 1.

Let vdel and vins be end-points of the corresponding edges γ and δ that
belong to Y 1. Let P be a slice that saves positions of tree edges joining vins

and vdel. Obviously, directions of edges on the path [vdel → vins] will be
reversed in the new MST.

Let us agree, for convenience, that a tree path from v1 to any vertex vs is
denoted by ps before updating the MST and by p′

s after updating the MST.
The associative parallel algorithm starts at vertex vins. Note that p′

ins

(the slice W) is known.
The algorithm carries out the following stages.
At the first stage, make a copy of the matrix of tree paths M , namely

M1. The matrix M1 will save tree paths before updating the current MST.
Write p′

ins in the corresponding column of M . Mark vertex vins by ′0′ in the
slice Y 1. Then fulfil the statement r := ins.

While P is a non-empty slice, repeat stages 2 and 3.
At the second stage, determine vertices not belonging to P that form a

subtree of the MST with root vr if any. For every vj 6= vr from this subtree,
compute p′

j as follows:

p′
j := (pj and (not pr)) or p′

r. (1)

Write p′
j in the corresponding column of M . Mark vj by ′0′ in the slice Y 1.

At the third stage, select position i of an edge from P incident on vertex
vr. Then define its end-point (say, vq) being adjacent with vr. Further,
determine the new tree path p′

q and write it in the corresponding column of

A new technique for updating tree paths 91

M . Now, mark the edge position i by ′0′ in the slice P and vertex vq by ′0′

in the slice Y 1. Finally, perform the statement r := q.
At the fourth stage, since P is an empty slice, the vertices marked by ′1′

in the slice Y 1 form a subtree of the MST with root vr determined just now.
For every vj 6= vr from this subtree, define p′

j using formula (1). Write p′
j in

the corresponding column of M. Then mark vertex vj by ′0′ in the slice Y 1.
The algorithm terminates when slices P and Y 1 become empty.
In [6], we illustrate the run of this algorithm.
On the STAR-machine, it is implemented as procedure TreePaths which

uses the following input parameters: matrices left, right, and code, vertices
vins and vdel, the number of graph vertices n and the position l of the deleted
edge. It returns the matrix M for the new MST and slices W and P .

Initially, the slice W saves the new tree path from v1 to vins, the slice
P saves positions of edges from the tree path joining vins and vdel, and the
slice Y 1 saves vertices whose tree paths will be recomputed.

We first propose the auxiliary procedure Update. Using formula (1), it
recomputes tree paths for any subtree whose vertices are adjacent with root
vr and do not belong to the path from P . In this procedure, vertices of the
subtree are marked by ′1′ in node1, the slice W saves p′

r and the slice Z
saves pr.

procedure Update(M1: table; W,Z: slice(left); var node1: word;
var M: table);

var Z1: slice(left); j: integer;
Begin while SOME(node1) do

begin j:=STEP(node1);
Z1:=COL(j,M1);

/* The old path from v1 to vj is saved in Z1. */
Z1:=Z1 and (not Z);

/* We delete the old path from v1 to vr from Z1. */
Z1:=Z1 or W;

/* The new path from v1 to vj is saved in Z1. */
COL(j,M):=Z1;

end;
End;

Before presenting the procedure TreePaths, we explain how to determine
a subtree whose vertices are adjacent with root vr and do not belong to the
tree path from P . To this end, we first determine the position i of an edge
from P incident on vr. Then all vertices reachable from vr will be marked
by ′1′ in the i-th row of the matrix M1. Among them, we have to exclude
the vertices being updated before.

Now, we propose the procedure TreePaths.

92 A.S. Nepomniaschaya

procedure TreePaths(left,right: table; code: table;
l,n,ins,del: integer; var M: table;
var P,W: slice(left));

/* New tree paths for vertices from the connected component Y 1
will be written in the matrix M. */

var M1: table; N1,N2,X,Z: slice(left); A,B: slice(code);
current,node1,prev: word(M); node: word(code);
i,q,r: integer;

/* Initialization. */
Begin CLR(prev); SET(A);1.

/* The first stage. */
TCOPY(M,n,M1); Z:=COL(ins,M1);2.

COL(ins,M):=W;3.

/* A new path from v1 to vins is written in the corresponding
column of M. */
r:=ins; node:=ROW(r,code);4.

/* The second stage. */
while SOME(P) do5.

begin MATCH(left,P,node,N1);6.

MATCH(right,P,node,N2);7.

X:=N1 or N2; i:=FND(X);8.

/* We define the position i of an edge from P incident on vr. */
node1:=ROW(i,M1);9.

/* Vertices whose tree paths include the edge from the i-th position
are marked by ′1′ in node1. */

current:=node1;10.

node1:=node1 and (not prev);11.

prev:=current;12.

/* By means of prev, we save the updated vertices. */
node1(r):=’0’;13.

/* Here, vr is a subtree root. */
if SOME(node1) then Update(M1,W,Z,node1,M);14.

/* The third stage. */
if N1(i)=’1’ then node:=ROW(i,right)15.

else node:=ROW(i,left);16.

/* The binary code of a new subtree root is saved in node. */
MATCH(code,A,node,B);17.

q:=FND(B);18.

/* Here, vq is a new subtree root. */
W(i):=’1’; COL(q,M):=W;19.

A new technique for updating tree paths 93

/* A new tree path from v1 to vq is written in the corresponding
column of M. */

Z:=COL(q,M1); P(i):=’0’;20.

r:=q;21.

end;22.

/* The fourth stage. */
node1:= ROW(l,M1);23.

node1:= node1 and (not prev);24.

node1(r):= ‘0’;25.

if SOME(node1) then Update(M1,W,Z,node1,M);26.

End;27.

Correctness of this procedure is established by means of the following
theorem.

Theorem. Let an undirected graph G with n vertices be given as association
of matrices left and right. Let a matrix code save binary representations of
vertices. Let an edge from the l-th position be deleted from the minimum
spanning tree T . Let del be end-point of the deleted edge and ins be end-point
of the inserted edge that belong to the connected component Y 1. Then the
procedure TreePaths returns the updated matrix M and the slices P and W .

Proof. We prove this by induction on the number of edges k belonging to
the slice P .

Basis is checked for k = 1. On performing lines 1–4, the variable prev
consists of zeros, matrix M1 is a copy of M , the slice Z saves pins and p′

ins

is written in the corresponding column of M , the current vertex vr coincides
with vins, and its binary code is saved by means of the variable node.

Further, on fulfilling lines 6–9, we first determine the position i of an
edge from P incident on vr. Then, we determine vertices whose tree paths
include this edge and mark them by ′1′ in the variable node1. On performing
lines 10–12, we first save the current value of node1 and then vertices being
updated before this step along with root vr are deleted from node1. Hence,
after performing line 13, node1 saves a subtree whose vertices are adjacent
with vr and do not belong to the tree path from P . If node1 is nonempty,
we determine new tree paths for all vertices from this subtree using the
auxiliary procedure Update (line 14). Further, we execute the next stage.

At the third stage, on performing lines 15-18, the variable node saves the
binary code of a new subtree root vq. Then on fulfilling line 19, we determine
a new tree path to vq and write it in the q-th column of M . After that on
fulfilling lines 20–21, we save pq in the slice Z, delete the edge position i
from the slice P , and perform the statement r := q.

Since P is an empty slice, we perform the fourth stage. Here, on ful-
filling lines 23–25, we first save the connected component Y 1 by means of

94 A.S. Nepomniaschaya

node1. After that, vertices updated before this step and root vq are deleted
from node1. If node1 becomes empty, we jump to end of this procedure.
Otherwise, we determine new tree paths for all vertices of the subtree with
root vq using the auxiliary procedure Update. Since node1 becomes empty
after performing Update, we go to the end.

Step of induction. Let the assertion be true for k ≥ 1. We will prove
this for k + 1.

Let the slice P save positions of k + 1 edges from the tree path [vdel →
vins]. Let the edge (vt, vdel) belong to this path. Then we represent the
tree path [vdel → vins] as (vdel, vt)[vt → vins], where the path [vt → vins]
consists of k edges. By inductive assumption, after updating the tree path
[vt → vins], the new tree paths for vertices from subtrees rooted at vertices
vins, . . . , vt from P are written in the corresponding columns of M , the
variable prev saves the subtree rooted at vt, the variable q saves vertex vt,
the slice Z saves pq while W saves p′

q, and the slice P saves position of the
edge (vt, vdel). Since P is nonempty, we perform the (k + 1)-th iteration.

In the same manner as in the basis, we first determine position i of the
edge (vt, vdel) incident on vt. Then by means of node1, we save the subtree
rooted at vertex vt if any. After that, we determine new tree paths for all
vertices from this subtree and write them in the corresponding columns of
the matrix M .

At the third stage, we first determine a new root vdel. Then we define
p′

del and write it in the corresponding column of the matrix M . After that,
the edge position is deleted from P . Therefore it becomes empty.

At the fourth stage, we determine new tree paths for all vertices of the
subtree rooted at vdel if any and write them in the corresponding columns
of M .

Hence, after executing the procedure TreePaths, the new tree paths for
all vertices of the connected component Y 1 are written in the corresponding
columns of M .

It is easy to check that the procedure TreePaths takes O(h log n) time,
where h is the number of vertices in the connected component Y 1.

5. The use of inverted trees for updating tree paths

As shown in [8], dynamic graph algorithms require fast computations of the
following tree properties: finding a tree path that joins each pair of vertices;
finding subtrees obtained after deleting an edge from the tree; choosing the
maximum weight edge lying on such a path.

On the STAR-machine, the first two properties are satisfied by means of
the matrix of tree paths M and the third property is satisfied by means of
the basic procedure MAX.

A new technique for updating tree paths 95

In [8], Pawagi and Ramakrishnan propose a technique for updating tree
paths on parallel random access machines. To describe it, we need the
following definitions from [8].

Let r be the root of a tree. A vertex u is called an ancestor of vertex v
if u is on the path from vertex v to the root r. A father of a vertex is its
immediate ancestor. An inverted tree is a rooted tree, where every vertex
points to its father.

Let [u − v] denote an undirected path from vertex u to vertex v. The
distance from vertex v to the root r is the number of edges in [v − r].

Now, we briefly describe this technique which uses representing an MST
as an inverted tree.

As a model of computation, a CREW PRAM machine is used. Initially,
by means of the method of Tsin and Chin [11], a given MST is transformed
into an inverted tree. To update tree paths, the matrices F+, D+, and M+

are employed.
The inverted tree is represented as the matrix F+ that saves the paths

from all vertices to the root. Each element F+[i, k] (1 ≤ i ≤ n, 0 ≤ k < n)
saves the k-th ancestor of vertex vi.

After computing the matrix F+, a one-dimensional array D+ is deter-
mined, where every i-th row saves the distance from vertex vi to root vr.
After that, each row of F+ is shifted right so that all vertices vr except the
leftmost one are eliminated. Therefore the rightmost column of the matrix
F+ contains root vr. Knowing the matrix F+, one can determine a tree
path joining each pair of vertices by locating their leftmost common vertex
in the corresponding rows of F+.

To compute the maximum weight edge on the tree path joining every
pair of vertices, at first, a matrix E+ is determined, where each element
E+[i, k] saves the maximum weight edge on the tree path from vi to its
k-th ancestor. Further, by means of the algorithm from [8], the maximum
weight edge on the tree path joining every pair of vertices is determined
using matrices E+ and F+. Then for all pairs (vi, vj) the maximum weight
edge on the tree path joining these vertices is stored in a matrix M+. As
shown in [8], the matrices F+, D+, and M+ are computed in O(log n) time
using O(n2) processors each.

Let us compare two techniques for updating tree paths.
On the STAR-machine, a graph is represented as a list of triples, while

on the CREW PRAM machine, it is given as an adjacency matrix.
On the STAR-machine, the procedure MSTPaths returns an MST along

with the matrix of tree paths M , whose every i-th column saves the tree
path from v1 to vi. On the CREW PRAM machine, an MST is given as
an inverted tree. Knowing the inverted tree, a matrix F+ is computed. Its
every i-th row saves the tree path from v1 to vi.

96 A.S. Nepomniaschaya

On the STAR-machine, a tree path between any pair of vertices is ob-
tained by using the bitwise Boolean operation xor between the correspond-
ing columns of the matrix M . On the CREW PRAM machine, a tree path
between any pair of vertices is obtained after performing a binary search on
the corresponding rows of the matrix F+ to locate their leftmost common
vertex.

On the STAR-machine, the maximum weight edge on the tree path join-
ing each pair of vertices (vi, vj) is determined by means of the basic proce-
dure MAX. On the CREW PRAM machine, the corresponding maximum
weight edge has been written in M+[i, j]. To compute M+, the matrices
E+ and F+ are used.

Finally, we consider how to determine two subtrees after deleting an edge
(vi, vj) from the MST.

On the STAR-machine, we first select the position of the row in the
matrix of tree paths M , where the edge γ is located. Vertices which are
marked by ′1′ in this row constitute a separate subtree of the MST because
they are not reachable from v1 after deleting the edge γ. On the CREW
PRAM machine, we first set F 1(vi) = vi to delete the edge (vi, vj) from the
inverted tree. Then we obtain two subtrees, one rooted at vr and the other
at vi. Further, we compute the matrix F+. The vertices in each subtree are
determined by the corresponding roots in the rightmost column of F+.

6. Conclusions

In this paper, we have described in detail a new technique for updating tree
paths on the STAR-machine being a model of associative parallel systems
with vertical processing. We proposed the corresponding procedures, proved
their correctness and evaluated time complexity. Moreover, we have com-
pared two techniques for updating tree paths on the STAR-machine and the
CREW PRAM machine. From this comparison, we can conclude that the
use of associative processors for dynamic edge update of an MST allows one
to design simple and natural algorithms.

To improve time complexity, we intend to employ associative systems
with bit-parallel processing for solving dynamic graph algorithms.

References

[1] Eppstein D., Galil Z., Italiano G.F., Nissenzweig A. Sparsification – A tech-
nique for speeding up dynamic graph algorithms // J. of the ACM. – 1997. –
Vol. 44, No. 5. – P. 669–696.

[2] Foster C.C. Content Addressable Parallel Processors. – New York: Van Nos-
trand Reinhold Company, 1976.

A new technique for updating tree paths 97

[3] Frederickson G.N. Data structures for on-line updating of minimum spanning
trees, with applications // SIAM J. Comput. – 1985. – Vol. 14. – P. 781–798.

[4] Nepomniaschaya, A.S., Dvoskina, M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. – IOS Press, 2000. – Vol. 43. – P. 227–243.

[5] Nepomniaschaya A.S. Comparison of performing the Prim-Dijkstra algorithm
and the Kruskal algorithm on associative parallel processors // Cybernetics
and System Analysis. – Kiev: Naukova Dumka, 2000. – No. 2. – P. 19–27
(in Russian. English translation by Plenum Press).

[6] Nepomniaschaya A.S. Associative parallel algorithms for dynamic edge update
of minimum spanning trees // Proc. 7th Int. Conf. PaCT, 2003 / Lect. Notes
in Comp. Sci. – Berlin: Springer–Verlag, 2003. – Vol. 2763. – P. 141–150.

[7] Parhami B. Search and data slection algorithms for associative processors //
Associative Processing and Processors / Ed.: A. Krikelis, C.C. Weems. – Los
Alamitos, California: IEEE Computer Society, 1997. – P. 10–25.

[8] Pawagi S., Ramakrishnan I.V.: An O(log n) algorithm for parallel update of
minimum spanning trees // Inform. Process. Letters. – 1986. – Vol. 22. –
P. 223–229.

[9] Potter J.L. Associative Computing: A Programming Paradigm for Massively
Parallel Computers / Kent State University. – New York and London: Plenum
Press, 1992.

[10] Tarjan R.E. Applications of path compression on balanced trees // J. of the
ACM. – 1979. – Vol. 26, No. 4. – P. 690–715.

[11] Tsin Y., Chin F. Efficient parallel algorithms for a class of graph-theoretic
problems // SIAM J. Comput. – 1984. – Vol. 14. – P. 580–599.

98

