Bull. Nov. Comp. Center, Comp.Science, 14 (2001), 29-42
(© 2001 NCC Publisher

An associative version
of the Edmonds—Karp—Ford
shortest path algorithm*

A.S. Nepomniaschaya

In this paper, by means of a model of associative parallel systems with the ver-
tical processing (the STAR-machine), we propose a natural straight forward repre-
sentation of the Edmonds—Karp version of performing the Ford shortest path algo-
rithm. We present the associative parallel algorithm as the corresponding STAR
procedure and prove its correctness. Moreover, we provide special tools for main-
taining graphs with the negative arc weights on associative parallel processors.

1. Introduction

Finding the shortest paths in networks is a fundamental problem in the com-
binatorial optimization. An important version of the shortest path problem
is the single-source problem. Given a directed n-vertex and m-arc weighted
graph GG with a distinguished vertex s, the single-source shortest path prob-
lem is to find for each vertex v the length of the shortest path from s to v.
When all arc weights are non-negative, the most efficient solution gives Di-
jkstra’s sequential shortest path algorithm [3]. Dijkstra’s algorithm runs in
O(m+nlogn) time both on the RAM model [9], when the priority queue is
realized using the Fibonacci heap, and the EREW PRAM model [4], when
the priority queue is given by means of relaxed heaps. In [14], we propose
a simple straight forward implementation of Dijkstra’s shortest path algo-
rithm on a model of associative parallel systems with the vertical processing
(the STAR-machine). In [7], Ford generalizes Dijkstra’s algorithm for graphs
having negative arc weights but without cycles of negative weight. In [5],
Edmonds and Karp present a simple execution of the Ford shortest path
algorithm.

In this paper, we study a basic possibility of updating graphs with the
negative arc weights using associative parallel processors. Here we propose
a natural straight forward representation of the Edmonds—Karp—Ford algo-
rithm on the STAR-machine and prove its correctness. This representation
uses the new basic procedures and tools for maintaining graphs with the neg-
ative arc weights. Such a technique extends the class of algorithms which
can be implemented in a natural way on associative parallel processors.

*Partially supported by the Russian Foundation for Basic Research under Grant
99-01-00548.

30 A.S. Nepomniaschaya

2. Model of associative parallel machine

Let us recall our model which is based on a Staran-like associative parallel
processor [8, 10]. We define it as an abstract STAR-machine of the SIMD
type with bit-serial (or vertical) processing and simple single-bit processing
elements (PEs). The model consists of the following components:

e a sequential control unit (CU), where programs and scalar constants
are stored;

e an associative processing unit consisting of p single-bit PEs;

e a matrix memory for the associative processing unit.

The CU broadcasts an instruction to all the PEs in unit time. All active
PEs execute it in parallel while inactive PEs do not perform it. Activation
of a PE depends on the data. It should be noted that the time of performing
any instruction does not depend on the number of processing elements [8].

Input binary data are loaded in the matrix memory in the form of two-
dimensional tables in which each datum occupies an individual row and it
is updated by a dedicated processing element. It is assumed that there
are more PEs than data. The rows are numbered from top to bottom and
the columns — from left to right. Both a row and a column can be easily
accessed. Some tables may be loaded in the matrix memory.

The associative processing unit is represented as h vertical registers
(h > 4), each consisting of p bits. The vertical registers can be regarded as
a one-column array. The bit columns of the tabular data are stored in the
registers which perform the necessary Boolean operations and record the
search results.

The STAR-machine run is described by means of the language STAR
[11] which is an extension of Pascal. Let us briefly consider the STAR
constructions needed for the paper. To simulate data processing in the
matrix memory, we use data types word, slice, and table. Constants for
the types slice and word are represented as a sequence of symbols of {0, 1}
enclosed within single quotation marks. The types slice and word are used
for the bit column access and the bit row access, respectively, and the type
table is used for defining the tabular data. Assume that any variable of the
type slice consists of p components which belong to {0,1}. For simplicity,
let us call slice any variable of the type slice.

Now, we present some elementary operations and predicates for slices.

Let X, Y be variables of the type slice and ¢ be a variable of the type
integer. We use the following operations:

SET(Y) sets all the components of Y to ’1’;
CLR(Y) sets all the components of Y to ’0';

An associatie version of the Edmonds—Karp—Ford algorithm 31

Y (7) selects the i-th component of Y;

FND(Y) returns the ordinal number 7 of the first (or the uppermost) com-
ponent ‘1" of Y, i > 0.

In the usual way we introduce the predicates ZERO(Y) and SOME(Y)
and the bitwise Boolean operations X and Y, X orY, notY, X zorY.

All the operations for the type slice can also be performed for the type
word.

For a variable T of the type table, we use the following elementary
operations:

ROW(7,T') returns the i-th column of the matrix 7
COL(%,T) returns the i-th column of the matrix 7.

Remark 1. Note that the STAR statements [11] are defined in the same
manner as for Pascal. We will use them later for presenting our procedures.

3. Preliminaries

First, let us present some notions used in the paper.

Let G = (V, F,w) be a directed weighted graph with the set of vertices
V = {1,2,...,n}, the set of directed edges (arcs) £ C V x V and the
function w that assigns a weight to every edge. We assume that |V| = n
and |E| =m.

We consider graphs which have no self-loops and parallel arcs.

A weight matriz of G is an n X n matrix which contains arc weights as
elements. We assume that w(u,v) = oo if (u,v) ¢ L.

Note that the weights are integers represented as binary strings.

A path from the vertex u to the vertex v in G is a finite sequence of the
vertices u = vy, vg,...,0; = v, where (v;,v;41) € E fori=1,2,... k-1
and k > 0. The shortest path between two vertices in a weighted graph is
the path with the minimal sum of weights of its arcs.

A tree of the shortest paths T is a connected acyclic subgraph of G with
the root vertex s which contains all vertices of G and such that the path
from s to any vertex v in T is the shortest path from s to v in G.

Now, recall a group of the basic procedures implemented on the STAR-
machine which will be used later on. These procedures use the given global
slice X to select by ones the row positions being used in the corresponding
procedure.

The procedure MATCH(T', X, v, 7) defines positions of those rows of the
given matrix T which coincide with the given pattern v written in binary
code. It returns the slice Z, where Z(i) = 1" if and only if ROW(:,T) = v
and X (1) ="1".

32 A.S. Nepomniaschaya

The procedure MIN(T', X, 7) defines positions of those rows of the given
matrix T where the minimal element is located. It returns the slice Z,
where Z(i) = '1" if and only if ROW(¢,T') is the minimal matrix element
and X (¢)="1".

The procedure MAX(T, X, 7) is defined by analogy with the procedure
MIN(T, X, 7).

It should be noted that the procedures MATCH, MIN and MAX are
based on the corresponding algorithms first examined in [6].

The procedure SETMIN(T, R, X, Y1) defines positions of the matrix T
rows being less than the corresponding rows of the matrix R. It returns
the slice Y1, where Y'1(j) ='1"if and only if ROW(4,T) < ROW(j, R) and
X)) ="1.

The procedure ADDV(T, R, X, F) writes into the matrix F' the result of
adding the matrices T" and R having the same number of bit columns. Note
that this procedure is based on the corresponding algorithm from [8].

The procedure ADDC(T, X, v, F') adds the binary word v to those rows
of the matrix T" which are selected by ones in X, and writes down the result
into the corresponding rows of the matrix F. The rows of F, which are
selected by zeros in X, will be set to zero.

The procedure SUBTV(T, R, X, S) writes into the matrix S the result
of subtracting the rows of the matrix R from the corresponding rows of the
matrix T selected by ones in the slice X.

The procedure TMERGE(T, X, F) writes into the matrix F' those rows
of the given matrix T, which are selected by ones in the slice X. Other rows
of the matrix F' are not changed.

The procedure WCOPY (v, X, I') writes the binary word v into those
rows of the matrix F', which are selected by ones in the slice X. The rows
of the matrix F', which are selected by zeros in the slice X, will consist of
ZET0S.

The procedure TCOPY1(7, j, h, F) writes h columns from the given ma-
trix T, starting from the (14 (j — 1)h)-th column, into the result matrix F,
where 57 > 1.

In [12, 13], we have shown that the basic procedures take O(k) time each,
where k is the number of bit columns in the corresponding matrix.

4. Basic procedures for updating negative
integers

In this section, we propose a group of new basic procedures being applied
to matrices with the negative integers. Therefore, every matrix is given
along with its slice of signs. These procedures permit extending the class of
graph algorithms which can be implemented in a natural way on associative

An associatie version of the Edmonds—Karp—Ford algorithm 33

parallel systems with the vertical data processing.

We first consider the procedure MIN*(7', XY, 7) which generalizes the
basic procedure MIN(T, X, 7). The slice Y is used to save the signs of the
matrix 7. The procedure MIN* runs as follows.

proc MIN*(T: table; X,Y: slice; var Z: slice);

var X1: slice;

begin X1:= X and Y;

/* By means of ones in the slice X1, we save positions of the matrix 7' rows
having negative value. */
if SOME(X1) then MAX(T,X1,Z) else MIN(T,X,Z)

end;

Let us present the procedure ADDV*(T, R, X, Y, Z, F, Z1) which gener-
alizes the basic procedure ADDV(T, R, X, F). The procedure ADDV* per-
forms in parallel the algebraic addition of the matrices 7" and R. It uses the
slices Y, Z and Z1 to save the signs of the matrices T', R, and F', respectively.
This procedure runs as follows.

proc ADDV*(T,R: table; X,Y,Z: slice; var F: table; Z1: slice);
/* Here X is the global slice. */
var X1,X2,Y1,Y2: slice; M: table;
begin X1:= Y xor Z;
/* By means of ones in the slice X1, we save positions of the corresponding
rows in T and R having different signs. */
Y1:= not X1;
Y1i:= Y1 and X;

/* By means of ones in Y1, we select the positions of the corresponding
rows in 7' and R having the same sign. */

ADDV(T,R,Y1,F);
Z1:= Y1 and V;

/* The results of adding the corresponding rows with the same sign
in T"and R are written in the corresponding rows of F
and their signs are saved in the slice Z1. */
X1:= X1 and X;
SETMIN(T,R,X1,%X2);

/* By means of ones in X2, we select positions of the rows in T'
which are less than the corresponding rows in R. */
SUBTV(R,T,X2,M);

TMERGE(M,X2,F);

/* The rows of the matrix F', selected by ones in X2, save the result
of subtracting the rows of T' from the corresponding rows of R. */

34 A.S. Nepomniaschaya

Yi:
Z1:

Z and X2;
Z1 or Yi;

/* The signs of the matrix R rows, selected by ones in X2,
are included into the slice Z1. */

Y2:= X1 and (not X2);

/* By means of ones in Y2, we select positions of the matrix T' rows, which are
greater than the corresponding rows of R. */

SUBTV(T,R,Y2,M);
TMERGE(M,Y2,F);

/* The rows of the matrix F', selected by ones in Y2, save the result
of subtracting the rows of R from the corresponding rows of T'. */

X1:=Y and Y2;
Z1:= Z1 or X1

/* The signs of the matrix T rows, selected by ones in Y2,
are included into the slice Z1. */

end;

Now, we present the procedure ADDC*(T', X, Y, v, sign, I, Z) which gen-
eralizes the procedure ADDC(T, X, v, I). It uses the slices Y and Z to save
the signs of the given matrix 7" and the resulting matrix I, respectively, and
the variable sign to indicate the sign of the given v. The procedure ADDC*
runs as follows.

proc ADDC*(T: table; X,Y: slice; v,sign: word;
var [': table; Z: slice);

/* Here X is the global slice. */

var X1,Z1: slice; R: table;

begin CLR(X1); WCOPY(v,X,R);
if sign="0’ then Z1:=X1 else Z1:=X;
ADDV*(T,R,X,Y,Z1,F,Z)

end;

Let us consider the procedure SETMIN*(T, R, X,Y, 7, Z1,72) which
generalizes the procedure SETMIN(T, R, X, Z1). It uses the slices Y and 7/
to select by ones positions of the negative integers in the given matrices T
and R, respectively. Along with the slice Z1, this procedure returns the slice
72 to select by ones positions of those matrix T’ rows, in which the negative
integers are less than the negative ones located in the corresponding rows
of R.

The procedure SETMIN* runs as follows.

proc SETMIN*(T,R: table; X,Y,Z: slice; var Z1,Z2: slice);
var X1,X2,X3: slice;

An associatie version of the Edmonds—Karp—Ford algorithm 35

begin X1:= Y and Z;
X1:= X1 and X;

/* By means of ones in X1, we select positions of the rows of T" and R,
where the negative integers are written. */

X2:= (not Y) and (not Z);
X2:= X2 and X;

/* By means of ones in X2, we select positions of the rows of T" and R,
where the positive integers are written. */

X3:= X1 or X2;

/* By means of ones in X3, we select positions of the rows of T" and R,
where the corresponding integers have the same sign. */

SETMIN(T,R,X3,Z1);

/* By means of ones in Z1, we select positions of the rows of T,
where the integers less than the corresponding integers from R
and they have the same sign. */

Z2:= X1 and (not Z1);

/* By means of ones in Z2, we select positions of the matrix T' rows,
where ROW(#,7) < ROW (¢, R) and Y (¢) = Z(¢) ="1". */
Z1:= 71 and X2

/* By means of ones in Z1, we select positions of the matrix T' rows,
where ROW (7, 7) < ROW(i, R) and Y (i) = Z(i) = 0. */
end;

Correctness of the procedures ADDV* and SETMIN* is verified by in-
duction on the number of columns in the matrix 7. Correctness of the
procedures ADDC* and MIN* is evident. It is not difficult to observe that
these procedures take O(k) time each, where k is the number of columns in
the matrix 7.

5. Representation of the Edmonds—Karp—Ford
algorithm on the STAR-machine

In this section, we propose a natural straight forward representation of
Edmonds—Karp-Ford algorithm on the STAR-machine. Explain the main
idea of this algorithm.

For any vertex v € V we have a superdistance D(v) > dist(s, v), where
dist(s,v) is the distance, that is, the weight of the shortest path from the
source vertex s to the vertex v. In addition, we have a set of vertices
S C V belonging to the tree of the shortest paths, that is, Yu € S we have
D(u) = dist(s, u). Initially, S = {s}, D(s) =0 and Vv ¢ S D(v) = co. Let
S consist of k vertices (1 < k < n) and u be the last vertex added to the

36 A.S. Nepomniaschaya

set S. Then a new vertex for the set S is defined as follows.

At first, for all v; € V, we define the arcs (u,v;). Then, for every vertex
v; € V we determine the superdistance D(v;) as dist(s, u) + w(u,v;). After
that, we exclude those vertices v; from the set S, for which the current su-
perdistance D(v;) is less than the previous one. Finally, among the vertices
v € S, we select such a vertex v, that has the minimal superdistance, and
add it to the set S.

The process of including the vertices in the set S is completed when
S =V and no superdistance D(z) changes.

Consider the main idea of the associative version of the Edmonds—Karp—
Ford algorithm.

We save positions of the vertices included in the tree of the shortest
paths S. Let k be the last vertex added to S. Then, we define positions
of all the vertices which are adjacent to k. In the matrix M, we compute
the superdistances for the vertices which are adjacent to k. After that, we
define positions of those vertices whose superdistances have decreased.

Now, we write the new superdistances to the matrix D and remove from
S positions of the vertices, whose superdistances have decreased.

Finally, among the vertices not belonging to S, we define the position of
the vertex v, whose superdistance D(v,) has the minimal value. We include
this vertex in the set S.

Remark 2. Note that any current superdistance decreases in the following
cases:

— the current superdistance is less than the previous one and both values
are positive;

— the current superdistance is greater than the previous one and both
values are negative;

— the current superdistance is negative and the previous one is positive.

We assume that 2 +00 = oo and min(z, 00) = « for all . We choose infinity
as Y i—q w;, where w; is the maximal weight of arcs incident with vertex .
Let ki be the number of bits necessary for coding infinity. Then the weight
matrix W consists of hn bit columns and every :-th vertex of the graph G
is associated with the ¢-th field having h bit columns.

Remark 3. In view of the vertical data processing, we assume that every
graph will be represented in the STAR-machine memory as a transpose
weight matrix. Note that some real associative parallel processors allow one
to easily transpose every matrix.

We will represent the Edmonds—Karp-Ford algorithm as procedure EKF
written in the language STAR. It uses the following input parameters:

1.

W

oo

o

An associatie version of the Edmonds—Karp—Ford algorithm 37

a graph given as transpose weight matrix 7" and an » X n matrix)
for indicating the signs of the corresponding weights from 7T’;

— the source vertex s;
— the number of bits h for coding infinity;

— the binary word inf for representing infinity.

The procedure returns the distance matrix D and the slice Z for indicating
the signs of the corresponding distances from D.

Note that for any 2, the weights of arcs, which are incident with the
vertex ¢, are written in the -th column of T'. The distance from the source
vertex s to the given vertex ¢ is written in the ¢-th row of D. The negative
weights in the matrix T are indicated by means of ones in the matrix @,
while the negative distances in the matrix D are indicated with the use of
ones in the slice 7.

Let us briefly explain the meaning of the main variables being used.

The procedure uses a global slice /' where positions of vertices, belonging
to the tree of the shortest paths 5, are selected by zeros; an integer k — to
save the last vertex added to S; a matrix R — to select the weights of the arcs
which are incident with the last vertex added to S; a matrix M — to save
the current superdistances for the vertices being adjacent to the vertex k.

At the beginning, the slice Z consists of zeros and the tree of the shortest
paths .S consists of the source vertex s.

Now, we present the procedure EKF.

proc EKF(T,Q: table; s,h: integer; inf: word; var D: table;
Z: slice);
var M,R: table; U,V,X,Y,Z21,Z2: slice;
w,sign: word; k: integer;

begin k:=s; SET(U); U(s):=°0’;
/* By means of zeros in U, we save positions of vertices

belonging to the tree of the shortest paths S. */

WCOPY (inf,U,D);

CLR(Z);

/* By means of ones in Z, we select positions of vertices
whose superdistances from the vertex s are negative. */

while SOME(U) do
begin TCOPY1(T,k,h,R);
/* Here R is a matrix of arc weights of those vertices
which are adjacent to the vertex k. */
SET(X); X(k):=07;
MATCH(R,X,inf,Y);

10.
11.
12.

13.

14.

15.
16.

17.
18.

19.

20.
21.

22.
23.
24.

38 A.S. Nepomniaschaya

X:= X and (not Y);

/* Positions of vertices which are adjacent to k are selected
by ones in the slice X. */
w:=ROW(k,D);
Y:=COL(k,Q);
sign:=Z(k);
ADDC*(R,X,Y,w,sign,M,V);
/* By means of ones in the slice V', we select the positions

of vertices whose current superdistances are negative. */
SETMIN*(M,D,X,V,Z,Z1,Z2);

/* By means of ones in Z1 (respectively, Z2), we select positions
of the vertices whose current superdistances are less than the previous ones
and both superdistances are positive (respectively, negative). */

V:= V and (not Z);

/* By means of ones in V| we select positions of the vertices
whose current superdistance is negative and the previous one is positive. */

Z1:= 71 or 7Z2;
Z1:= 7Z1 or V;

/* By means of ones in Z1, we select positions of the vertices
whose current superdistance is less than the previous one. */

TMERGE(M,Z1,D);
Z:= 7 or V;
/* By means of ones in Z, we select positions of the vertices
whose current superdistances are negative. */
U:= U or Z1;
/* We delete positions of those vertices in the slice U,
whose current superdistances have been decreased. */
MIN*(D,U,Z,X);
k:=FND(X);
/* Here k is the position of a vertex added to the set S. */
U(k):=0’
end;
end.

Theorem. Let a directed weighted graph G be given as the transpose weight
matriz T and the n X n matriz (@ which saves by ones the corresponding
negative weights from T. Let s be the source vertex, and there is no di-
rected cycle from s with the negative weight. Let every arc weight use h bits
and let inf be the binary representation of the infinity. Then the procedure
EKF(T,Q,s,h,inf, D, Z) returns the distance matriz D, in whose every
1-th row there is the distance from s to 1, and the slice Z which saves by

ones the negative distances.

An associatie version of the Edmonds—Karp—Ford algorithm 39

To prove this theorem, we will use the following lemmas:

Lemma 1. Let all assumptions of the theorem be true. Let k be the last
vertex added to the tree of the shortest paths S. Then after performing lines
1-12 of the procedure FKF, the current superdistances are written in the
matrix M for the vertices being adjacent to k and positions of vertices, whose
current superdistances are negative, are selected by ones in the slice V.

Proof. Obviously, after performing line 1, the variable k saves the source
vertex s and only this vertex is included in the set 5. After performing lines
2-3, the distance from s to s is equal to zero, the distances from s to other
vertices have not been determined yet and all values are non-negative in the
matrix D. According to the Edmonds—Karp—Ford algorithm, it is necessary
to define all the vertices which are adjacent to the vertex k. Therefore, after
performing lines 6-7, there is the unique zero in the slice X (in its k-th
position) and positions of vertices, which are not adjacent to k, are selected
by ones in the slice Y, that is, for every ¢, Y (i) = "1’ if and only if X () =1’
and ROW (¢, R) = inf. In view of defining the procedure MATCH after
performing the statement X := X and (notY') (line 8), we obtain X (i) ='1’
if and only if Y (¢) = '0’, that is, positions of the vertices being adjacent
to k are selected by ones in the slice X. Clearly, after performing line 9,
the variable w saves the k-th row of the matrix D. Because of defining
the matrix @) after performing the statement Y := COL(k,Q) (line 10),
positions of the vertices being formed with £ arcs of the negative weights,
are selected by ones in the slice Y. Obviously, after performing line 11, we
save the sign of the k-th row of the matrix D. As a result of executing the
basic procedure ADDC* (line 12), the current superdistances for the vertices
being adjacent to the vertex k are written in the matrix M, positions of the
vertices whose current superdistances are negative, are selected by ones in
the slice V. a

Lemma 2. Let all assumptions of the theorem be true. Let k be the last
vertex added to the tree of the shortest paths S. Then, after fulfilling lines
13-18, positions of the vertices, for which the current superdistances de-
crease, are selected by ones in the slice Y. Moreover, the rows of the matriz
M, selected by ones in Z1, are written in the corresponding rows of the ma-
triz D and positions of vertices, whose current superdistances are negative,
are selected by ones in the slice Z.

Proof. In view of Lemma 1, after performing lines 1-12, the current su-
perdistances for the vertices being adjacent to k are written in the matrix
M, and positions of the vertices, whose current superdistances are negative,
are selected by ones in V. In account of Remark 2, we have to analyze three

40 A.S. Nepomniaschaya

cases to select positions of the vertices whose current superdistances from s
have decreased.

As a result of fulfilling the basic procedure SETMIN* (line 13), by means
of ones in Z1, we select positions of the vertices whose current superdis-
tances are less than the previous ones and both superdistances are posi-
tive, and by means of ones in Z2, we select positions of the vertices whose
current superdistances are less than the previous ones and both superdis-
tances are negative. Therefore, it remains to define the positions of the
vertices whose current superdistances are negative and the corresponding
previous ones are positive. We determine them by means of the statement
V :=Vand(not Z) (line 14). Clearly, after performing lines 15-16 by means
of ones in the slice Z1, we accumulate positions of the vertices whose su-
perdistances have decreased at the current iteration. On fulfilling the state-
ment TMERGE(M, Z1, D) (line 17), the rows of the matrix M, selected by
ones in Z1, are written in the corresponding rows of the matrix D.

It remains to check that all current negative superdistances are selected
by ones in the slice Z. Really, initially the slice Z consists of zeros (line 3).
Each time after performing the statement Z := Z or V (line 18), we increase
the number of ones in the slice Z which select positions of the vertices having
the negative superdistances from s because any negative superdistance in
the matrix D can be replaced with a new negative one. a

Remark 4. One can immediately verify that after performing the state-
ment U := U or Z1 (line 19), we have U(k) ="0".

Lemma 3. Let all assumptions of the theorem be true. Let k be the last
vertex added to the tree of the shortest paths S. Then, after fulfilling lines
19-23, the vertices, whose current superdistances decrease, are deleted from
S. Moreover, a new k-th vertex will be included into the tree of the shortest
paths S.

Proof. By Lemma 2, after fulfilling lines 13-18, positions of the vertices
whose current superdistances decrease are saved by ones in Z1. Therefore
after performing the statement U := U or Z1 (line 19), these vertices are
deleted from S, because their positions are selected by ones in the slice U.
Since some superdistances may be negative in D, we perform the basic pro-
cedure MIN*(D, U, Z, X) (line 20) to define positions of the rows having the
minimal value. After performing lines 21-22, a new k-th vertex is included
in the tree of the shortest paths S. a

Remark 5. One can immediately verify that after performing the first
iteration of the procedure EKF for every vertex ¢ being adjacent to s, the
weight of the arc (s,) is written in the i-th row of the matrix D.

An associative version of the Edmonds—Karp—Ford algorithm 41

Now we explain briefly the proof of the theorem.

Sketch of the proof. We prove by induction on the number of arcs ¢
included in the shortest path from s to any vertex of the graph G.

Basis is verified for ¢ = 1, that is, the shortest path for such vertices
is the corresponding arc being incident with the vertex s. Let an arc (s, j)
be the shortest path from s to the vertex j. Then, in view of Remark 5,
after performing the first iteration, w(s, j) is written in the j-th row of the
matrix D. By Lemma 2, the j-th row of the matrix D does not change
during execution of the procedure EKF, since every other path from s to j
is greater than w(s, j).

Step of induction. We assume that the statement is true for all the
shortest paths having less than ¢ arcs. Let v be the shortest path from s to
J and let v consist of ¢ arcs. Assume that v = y173, where v = (v, 7). In
view of Lemmas 1-3, without loss of generality, it is sufficient to consider
the iterations when all the vertices in the path «; are not excluded further
from the tree of the shortest paths S. By the induction hypothesis, the
statement is true for the path «;. Since the vertex j is adjacent to v and «
is the shortest path from s to j, the length of the shortest path v is written
in the j-th row of the matrix D in view of Lemmas 1-3. By Lemma 2, in
every next iteration the j-th row of the matrix D does not change. Hence,
after performing the procedure EKF, the length of the shortest path from s
to j is written in the j-th row of the matrix D. a

6. Conclusions

We have presented an associative version of the Edmonds—Karp-Ford short-
est path algorithm as the procedure EKF and proved its correctness. This
procedure performs in parallel all steps of the Edmonds—Karp—Ford algo-
rithm using a group of the new basic procedures for updating the negative
integers. These procedures permit one to extend the class of graph al-
gorithms which can be implemented in a natural way on the associative
parallel processors. We are planning to design an associative version of the
Bellman—Ford shortest path algorithm [1, 2] being the best one to update
graphs with the negative arc weights. After that, we will compare these
representations.

References

[1] Bellman R. On a routing problem // Quarterly of Applied Mathematics. —
1958. — Vol. 16, Ne 1. — P. 87-90.

[2] Christofides N. Graph Theory. An Algorithmic Approach. — New York: Aca-
demic Press, 1975.

42

[3]

[4]

[13]

[14]

A.S. Nepomniaschaya

Dijkstra E.W. A note on two problems in connection with graphs // Nu-
merische Mathematik. — 1959. — Vol. 1. — P. 269-271.

Driscoll J.R., Gabow H.N., Shrairman Ruth, Tarjan R.E. Relaxed heaps: an
alternative to Fibonacci heaps with applications to parallel computation //

Communications of the ACM. — 1988. — Vol. 31, Ne 11. — P. 1343-1354.

Edmonds J., Karp R.M., Theoretical improvements in the algorithmic effi-
ciency for network flow problems // J. ACM. — 1972. — Vol. 19, Ne 2. — P. 248-
264.

Falkoff A.D. Algorithms for parallel-search memories // J. ACM. — 1962. -
Vol. 9, Ne 10. — P. 488-510.

Ford L.R. Network Flow Theory. — Rand Corporation Report P-923, 1956.

Foster C.C. Content Addressable Parallel Processors. — New York: Van Nos-
trand Reinhold Company, 1976.

Fredman M.L., Tarjan R.E. Fibonacci heaps and their uses in improved net-

work optimization algorithms // J. ACM. — 1987. — Vol. 34, Ne 3. — P. 596-615.

Mirenkov N. The siberian approach for an open-system high-performance com-
puting architecture // Computing and Control Engineering Journal. — 1992. —
Vol. 3, Ne 3. — P. 137-142.

Nepomniaschaya A.S. Language STAR for associative and parallel computa-
tion with vertical data processing // Proc. Intern. Conf. “Parallel Computing

Technologies”. — Singapure: World Scientific, 1991. — P. 258-265.

Nepomniaschaya A.S. An associative version of the Prim—Dijkstra algorithm
and its application to some graph problems // Andrei Ershov Second Intern.
Memorial Conf. “Perspectives of System Informatics” / Lecture Notes in Com-
puter Science. — Berlin: Springer-Verlag, 1996. — Vol. 1181. — P. 203-213.

Nepomniaschaya A.S. Solution of path problems using associative parallel pro-
cessors // Proc. Intern. Conf. on Parallel and Distributed Systems, IEEE Com-
puter Society Press, ICPADS’97. — Korea. Seoul, 1997. — P. 610-617.

Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-

formaticae. — IOS Press, 2000. — Vol. 43. — P. 227-243.

