
Bull. Nov.Comp.Center, Comp.Science, 14 (2001), 29{42c
 2001 NCC PublisherAn associative versionof the Edmonds{Karp{Fordshortest path algorithm�A.S. NepomniaschayaIn this paper, by means of a model of associative parallel systems with the ver-tical processing (the STAR-machine), we propose a natural straight forward repre-sentation of the Edmonds{Karp version of performing the Ford shortest path algo-rithm. We present the associative parallel algorithm as the corresponding STARprocedure and prove its correctness. Moreover, we provide special tools for main-taining graphs with the negative arc weights on associative parallel processors.1. IntroductionFinding the shortest paths in networks is a fundamental problem in the com-binatorial optimization. An important version of the shortest path problemis the single-source problem. Given a directed n-vertex and m-arc weightedgraph G with a distinguished vertex s, the single-source shortest path prob-lem is to �nd for each vertex v the length of the shortest path from s to v.When all arc weights are non-negative, the most e�cient solution gives Di-jkstra's sequential shortest path algorithm [3]. Dijkstra's algorithm runs inO(m+n logn) time both on the RAM model [9], when the priority queue isrealized using the Fibonacci heap, and the EREW PRAM model [4], whenthe priority queue is given by means of relaxed heaps. In [14], we proposea simple straight forward implementation of Dijkstra's shortest path algo-rithm on a model of associative parallel systems with the vertical processing(the STAR-machine). In [7], Ford generalizes Dijkstra's algorithm for graphshaving negative arc weights but without cycles of negative weight. In [5],Edmonds and Karp present a simple execution of the Ford shortest pathalgorithm.In this paper, we study a basic possibility of updating graphs with thenegative arc weights using associative parallel processors. Here we proposea natural straight forward representation of the Edmonds{Karp{Ford algo-rithm on the STAR-machine and prove its correctness. This representationuses the new basic procedures and tools for maintaining graphs with the neg-ative arc weights. Such a technique extends the class of algorithms whichcan be implemented in a natural way on associative parallel processors.�Partially supported by the Russian Foundation for Basic Research under Grant99-01-00548.



30 A.S. Nepomniaschaya2. Model of associative parallel machineLet us recall our model which is based on a Staran-like associative parallelprocessor [8, 10]. We de�ne it as an abstract STAR-machine of the SIMDtype with bit-serial (or vertical) processing and simple single-bit processingelements (PEs). The model consists of the following components:� a sequential control unit (CU), where programs and scalar constantsare stored;� an associative processing unit consisting of p single-bit PEs;� a matrix memory for the associative processing unit.The CU broadcasts an instruction to all the PEs in unit time. All activePEs execute it in parallel while inactive PEs do not perform it. Activationof a PE depends on the data. It should be noted that the time of performingany instruction does not depend on the number of processing elements [8].Input binary data are loaded in the matrix memory in the form of two-dimensional tables in which each datum occupies an individual row and itis updated by a dedicated processing element. It is assumed that thereare more PEs than data. The rows are numbered from top to bottom andthe columns { from left to right. Both a row and a column can be easilyaccessed. Some tables may be loaded in the matrix memory.The associative processing unit is represented as h vertical registers(h � 4), each consisting of p bits. The vertical registers can be regarded asa one-column array. The bit columns of the tabular data are stored in theregisters which perform the necessary Boolean operations and record thesearch results.The STAR-machine run is described by means of the language STAR[11] which is an extension of Pascal. Let us brie
y consider the STARconstructions needed for the paper. To simulate data processing in thematrix memory, we use data types word, slice, and table. Constants forthe types slice and word are represented as a sequence of symbols of f0; 1genclosed within single quotation marks. The types slice and word are usedfor the bit column access and the bit row access, respectively, and the typetable is used for de�ning the tabular data. Assume that any variable of thetype slice consists of p components which belong to f0; 1g. For simplicity,let us call slice any variable of the type slice.Now, we present some elementary operations and predicates for slices.Let X , Y be variables of the type slice and i be a variable of the typeinteger. We use the following operations:SET(Y ) sets all the components of Y to 010;CLR(Y ) sets all the components of Y to 000;



An associative version of the Edmonds{Karp{Ford algorithm 31Y (i) selects the i-th component of Y ;FND(Y ) returns the ordinal number i of the �rst (or the uppermost) com-ponent 010 of Y , i � 0.In the usual way we introduce the predicates ZERO(Y ) and SOME(Y )and the bitwise Boolean operations X and Y , X or Y , not Y , X xor Y .All the operations for the type slice can also be performed for the typeword.For a variable T of the type table, we use the following elementaryoperations:ROW(i; T ) returns the i-th column of the matrix T ;COL(i; T ) returns the i-th column of the matrix T .Remark 1. Note that the STAR statements [11] are de�ned in the samemanner as for Pascal. We will use them later for presenting our procedures.3. PreliminariesFirst, let us present some notions used in the paper.Let G = (V;E;w) be a directed weighted graph with the set of verticesV = f1; 2; : : : ; ng, the set of directed edges (arcs) E � V � V and thefunction w that assigns a weight to every edge. We assume that jV j = nand jEj = m.We consider graphs which have no self-loops and parallel arcs.A weight matrix of G is an n � n matrix which contains arc weights aselements. We assume that w(u; v) =1 if (u; v) =2 E.Note that the weights are integers represented as binary strings.A path from the vertex u to the vertex v in G is a �nite sequence of thevertices u = v1; v2; : : : ; vk = v, where (vi; vi+1) 2 E for i = 1; 2; : : : ; k � 1and k > 0. The shortest path between two vertices in a weighted graph isthe path with the minimal sum of weights of its arcs.A tree of the shortest paths T is a connected acyclic subgraph of G withthe root vertex s which contains all vertices of G and such that the pathfrom s to any vertex v in T is the shortest path from s to v in G.Now, recall a group of the basic procedures implemented on the STAR-machine which will be used later on. These procedures use the given globalslice X to select by ones the row positions being used in the correspondingprocedure.The procedure MATCH(T;X; v;Z) de�nes positions of those rows of thegiven matrix T which coincide with the given pattern v written in binarycode. It returns the slice Z, where Z(i) = 010 if and only if ROW(i; T ) = vand X(i) = 010.



32 A.S. NepomniaschayaThe procedure MIN(T;X; Z) de�nes positions of those rows of the givenmatrix T where the minimal element is located. It returns the slice Z,where Z(i) = 010 if and only if ROW(i; T ) is the minimal matrix elementand X(i) = 010.The procedure MAX(T;X; Z) is de�ned by analogy with the procedureMIN(T;X; Z).It should be noted that the procedures MATCH, MIN and MAX arebased on the corresponding algorithms �rst examined in [6].The procedure SETMIN(T;R;X;Y 1) de�nes positions of the matrix Trows being less than the corresponding rows of the matrix R. It returnsthe slice Y 1, where Y 1(j) = 010 if and only if ROW(j; T ) < ROW(j; R) andX(j) = 010.The procedure ADDV(T;R;X;F ) writes into the matrix F the result ofadding the matrices T and R having the same number of bit columns. Notethat this procedure is based on the corresponding algorithm from [8].The procedure ADDC(T;X; v; F ) adds the binary word v to those rowsof the matrix T which are selected by ones in X , and writes down the resultinto the corresponding rows of the matrix F . The rows of F , which areselected by zeros in X , will be set to zero.The procedure SUBTV(T;R;X; S) writes into the matrix S the resultof subtracting the rows of the matrix R from the corresponding rows of thematrix T selected by ones in the slice X .The procedure TMERGE(T;X;F ) writes into the matrix F those rowsof the given matrix T , which are selected by ones in the slice X . Other rowsof the matrix F are not changed.The procedure WCOPY(v;X; F ) writes the binary word v into thoserows of the matrix F , which are selected by ones in the slice X . The rowsof the matrix F , which are selected by zeros in the slice X , will consist ofzeros.The procedure TCOPY1(T; j; h; F ) writes h columns from the given ma-trix T , starting from the (1+ (j� 1)h)-th column, into the result matrix F ,where j � 1.In [12, 13], we have shown that the basic procedures take O(k) time each,where k is the number of bit columns in the corresponding matrix.4. Basic procedures for updating negativeintegersIn this section, we propose a group of new basic procedures being appliedto matrices with the negative integers. Therefore, every matrix is givenalong with its slice of signs. These procedures permit extending the class ofgraph algorithms which can be implemented in a natural way on associative



An associative version of the Edmonds{Karp{Ford algorithm 33parallel systems with the vertical data processing.We �rst consider the procedure MIN�(T;X; Y;Z) which generalizes thebasic procedure MIN(T;X; Z). The slice Y is used to save the signs of thematrix T . The procedure MIN� runs as follows.proc MIN�(T: table; X,Y: slice; var Z: slice);var X1: slice;begin X1:= X and Y;/* By means of ones in the slice X1, we save positions of the matrix T rowshaving negative value. */if SOME(X1) then MAX(T,X1,Z) else MIN(T,X,Z)end;Let us present the procedure ADDV�(T,R,X,Y, Z,F, Z1) which gener-alizes the basic procedure ADDV(T;R;X;F ). The procedure ADDV� per-forms in parallel the algebraic addition of the matrices T and R. It uses theslices Y; Z and Z1 to save the signs of the matrices T , R, and F , respectively.This procedure runs as follows.proc ADDV�(T,R: table; X,Y,Z: slice; var F: table; Z1: slice);/* Here X is the global slice. */var X1,X2,Y1,Y2: slice; M: table;begin X1:= Y xor Z;/* By means of ones in the slice X1, we save positions of the correspondingrows in T and R having di�erent signs. */Y1:= not X1;Y1:= Y1 and X;/* By means of ones in Y 1, we select the positions of the correspondingrows in T and R having the same sign. */ADDV(T,R,Y1,F);Z1:= Y1 and Y;/* The results of adding the corresponding rows with the same signin T and R are written in the corresponding rows of Fand their signs are saved in the slice Z1. */X1:= X1 and X;SETMIN(T,R,X1,X2);/* By means of ones in X2, we select positions of the rows in Twhich are less than the corresponding rows in R. */SUBTV(R,T,X2,M);TMERGE(M,X2,F);/* The rows of the matrix F , selected by ones in X2, save the resultof subtracting the rows of T from the corresponding rows of R. */



34 A.S. NepomniaschayaY1:= Z and X2;Z1:= Z1 or Y1;/* The signs of the matrix R rows, selected by ones in X2,are included into the slice Z1. */Y2:= X1 and (not X2);/* By means of ones in Y 2, we select positions of the matrix T rows, which aregreater than the corresponding rows of R. */SUBTV(T,R,Y2,M);TMERGE(M,Y2,F);/* The rows of the matrix F , selected by ones in Y 2, save the resultof subtracting the rows of R from the corresponding rows of T . */X1:= Y and Y2;Z1:= Z1 or X1/* The signs of the matrix T rows, selected by ones in Y 2,are included into the slice Z1. */end;Now, we present the procedure ADDC�(T;X; Y; v; sign; F; Z) which gen-eralizes the procedure ADDC(T;X; v; F ). It uses the slices Y and Z to savethe signs of the given matrix T and the resulting matrix F , respectively, andthe variable sign to indicate the sign of the given v. The procedure ADDC�runs as follows.proc ADDC�(T: table; X,Y: slice; v,sign: word;var F: table; Z: slice);/* Here X is the global slice. */var X1,Z1: slice; R: table;begin CLR(X1); WCOPY(v,X,R);if sign='0' then Z1:=X1 else Z1:=X;ADDV�(T,R,X,Y,Z1,F,Z)end;Let us consider the procedure SETMIN�(T;R;X;Y;Z;Z1; Z2) whichgeneralizes the procedure SETMIN(T;R;X; Z1). It uses the slices Y and Zto select by ones positions of the negative integers in the given matrices Tand R, respectively. Along with the slice Z1, this procedure returns the sliceZ2 to select by ones positions of those matrix T rows, in which the negativeintegers are less than the negative ones located in the corresponding rowsof R.The procedure SETMIN� runs as follows.proc SETMIN�(T,R: table; X,Y,Z: slice; var Z1,Z2: slice);var X1,X2,X3: slice;



An associative version of the Edmonds{Karp{Ford algorithm 35begin X1:= Y and Z;X1:= X1 and X;/* By means of ones in X1, we select positions of the rows of T and R,where the negative integers are written. */X2:= (not Y) and (not Z);X2:= X2 and X;/* By means of ones in X2, we select positions of the rows of T and R,where the positive integers are written. */X3:= X1 or X2;/* By means of ones in X3, we select positions of the rows of T and R,where the corresponding integers have the same sign. */SETMIN(T,R,X3,Z1);/* By means of ones in Z1, we select positions of the rows of T ,where the integers less than the corresponding integers from Rand they have the same sign. */Z2:= X1 and (not Z1);/* By means of ones in Z2, we select positions of the matrix T rows,where ROW(i; T ) < ROW(i; R) and Y (i) = Z(i) = 010. */Z1:= Z1 and X2/* By means of ones in Z1, we select positions of the matrix T rows,where ROW(i; T ) < ROW(i; R) and Y (i) = Z(i) = 000. */end;Correctness of the procedures ADDV� and SETMIN� is veri�ed by in-duction on the number of columns in the matrix T . Correctness of theprocedures ADDC� and MIN� is evident. It is not di�cult to observe thatthese procedures take O(k) time each, where k is the number of columns inthe matrix T .5. Representation of the Edmonds{Karp{Fordalgorithm on the STAR-machineIn this section, we propose a natural straight forward representation ofEdmonds{Karp{Ford algorithm on the STAR-machine. Explain the mainidea of this algorithm.For any vertex v 2 V we have a superdistance D(v) � dist(s; v), wheredist(s; v) is the distance, that is, the weight of the shortest path from thesource vertex s to the vertex v. In addition, we have a set of verticesS � V belonging to the tree of the shortest paths, that is, 8u 2 S we haveD(u) = dist(s; u). Initially, S = fsg, D(s) = 0 and 8v =2 S D(v) = 1. LetS consist of k vertices (1 � k < n) and u be the last vertex added to the



36 A.S. Nepomniaschayaset S. Then a new vertex for the set S is de�ned as follows.At �rst, for all vi 2 V , we de�ne the arcs (u; vi). Then, for every vertexvi 2 V we determine the superdistance D(vi) as dist(s; u) + w(u; vi). Afterthat, we exclude those vertices vj from the set S, for which the current su-perdistance D(vj) is less than the previous one. Finally, among the verticesvk =2 S, we select such a vertex vr that has the minimal superdistance, andadd it to the set S.The process of including the vertices in the set S is completed whenS = V and no superdistance D(x) changes.Consider the main idea of the associative version of the Edmonds{Karp{Ford algorithm.We save positions of the vertices included in the tree of the shortestpaths S. Let k be the last vertex added to S. Then, we de�ne positionsof all the vertices which are adjacent to k. In the matrix M , we computethe superdistances for the vertices which are adjacent to k. After that, wede�ne positions of those vertices whose superdistances have decreased.Now, we write the new superdistances to the matrix D and remove fromS positions of the vertices, whose superdistances have decreased.Finally, among the vertices not belonging to S, we de�ne the position ofthe vertex vp whose superdistance D(vp) has the minimal value. We includethis vertex in the set S.Remark 2. Note that any current superdistance decreases in the followingcases:{ the current superdistance is less than the previous one and both valuesare positive;{ the current superdistance is greater than the previous one and bothvalues are negative;{ the current superdistance is negative and the previous one is positive.We assume that x+1 =1 and min(x;1) = x for all x. We choose in�nityas Pni=1 wi, where wi is the maximal weight of arcs incident with vertex i.Let h be the number of bits necessary for coding in�nity. Then the weightmatrix W consists of hn bit columns and every i-th vertex of the graph Gis associated with the i-th �eld having h bit columns.Remark 3. In view of the vertical data processing, we assume that everygraph will be represented in the STAR-machine memory as a transposeweight matrix. Note that some real associative parallel processors allow oneto easily transpose every matrix.We will represent the Edmonds{Karp{Ford algorithm as procedure EKFwritten in the language STAR. It uses the following input parameters:



An associative version of the Edmonds{Karp{Ford algorithm 37{ a graph given as transpose weight matrix T and an n � n matrix Qfor indicating the signs of the corresponding weights from T ;{ the source vertex s;{ the number of bits h for coding in�nity;{ the binary word inf for representing in�nity.The procedure returns the distance matrix D and the slice Z for indicatingthe signs of the corresponding distances from D.Note that for any i, the weights of arcs, which are incident with thevertex i, are written in the i-th column of T . The distance from the sourcevertex s to the given vertex i is written in the i-th row of D. The negativeweights in the matrix T are indicated by means of ones in the matrix Q,while the negative distances in the matrix D are indicated with the use ofones in the slice Z.Let us brie
y explain the meaning of the main variables being used.The procedure uses a global slice U where positions of vertices, belongingto the tree of the shortest paths S, are selected by zeros; an integer k { tosave the last vertex added to S; a matrix R { to select the weights of the arcswhich are incident with the last vertex added to S; a matrix M { to savethe current superdistances for the vertices being adjacent to the vertex k.At the beginning, the slice Z consists of zeros and the tree of the shortestpaths S consists of the source vertex s.Now, we present the procedure EKF.proc EKF(T,Q: table; s,h: integer; inf: word; var D: table;Z: slice);var M,R: table; U,V,X,Y,Z1,Z2: slice;w,sign: word; k: integer;begin k:=s; SET(U); U(s):='0';1. /* By means of zeros in U , we save positions of verticesbelonging to the tree of the shortest paths S. */WCOPY(inf,U,D);2. CLR(Z);3. /* By means of ones in Z, we select positions of verticeswhose superdistances from the vertex s are negative. */while SOME(U) do4. begin TCOPY1(T,k,h,R);5. /* Here R is a matrix of arc weights of those verticeswhich are adjacent to the vertex k. */SET(X); X(k):='0';6. MATCH(R,X,inf,Y);7.



38 A.S. NepomniaschayaX:= X and (not Y);8. /* Positions of vertices which are adjacent to k are selectedby ones in the slice X. */w:=ROW(k,D);9. Y:=COL(k,Q);10. sign:=Z(k);11. ADDC�(R,X,Y,w,sign,M,V);12. /* By means of ones in the slice V , we select the positionsof vertices whose current superdistances are negative. */SETMIN�(M,D,X,V,Z,Z1,Z2);13. /* By means of ones in Z1 (respectively, Z2), we select positionsof the vertices whose current superdistances are less than the previous onesand both superdistances are positive (respectively, negative). */V:= V and (not Z);14. /* By means of ones in V , we select positions of the verticeswhose current superdistance is negative and the previous one is positive. */Z1:= Z1 or Z2;15. Z1:= Z1 or V;16. /* By means of ones in Z1, we select positions of the verticeswhose current superdistance is less than the previous one. */TMERGE(M,Z1,D);17. Z:= Z or V;18. /* By means of ones in Z, we select positions of the verticeswhose current superdistances are negative. */U:= U or Z1;19. /* We delete positions of those vertices in the slice U ,whose current superdistances have been decreased. */MIN�(D,U,Z,X);20. k:=FND(X);21. /* Here k is the position of a vertex added to the set S. */U(k):='0'22. end;23. end.24. Theorem. Let a directed weighted graph G be given as the transpose weightmatrix T and the n � n matrix Q which saves by ones the correspondingnegative weights from T . Let s be the source vertex, and there is no di-rected cycle from s with the negative weight. Let every arc weight use h bitsand let inf be the binary representation of the in�nity. Then the procedureEKF (T;Q; s; h; inf ; D; Z) returns the distance matrix D, in whose everyi-th row there is the distance from s to i, and the slice Z which saves byones the negative distances.



An associative version of the Edmonds{Karp{Ford algorithm 39To prove this theorem, we will use the following lemmas:Lemma 1. Let all assumptions of the theorem be true. Let k be the lastvertex added to the tree of the shortest paths S. Then after performing lines1{12 of the procedure EKF , the current superdistances are written in thematrixM for the vertices being adjacent to k and positions of vertices, whosecurrent superdistances are negative, are selected by ones in the slice V .Proof. Obviously, after performing line 1, the variable k saves the sourcevertex s and only this vertex is included in the set S. After performing lines2{3, the distance from s to s is equal to zero, the distances from s to othervertices have not been determined yet and all values are non-negative in thematrix D. According to the Edmonds{Karp{Ford algorithm, it is necessaryto de�ne all the vertices which are adjacent to the vertex k. Therefore, afterperforming lines 6{7, there is the unique zero in the slice X (in its k-thposition) and positions of vertices, which are not adjacent to k, are selectedby ones in the slice Y , that is, for every i, Y (i) = 010 if and only if X(i) = 010and ROW(i; R) = inf . In view of de�ning the procedure MATCH afterperforming the statement X := X and (not Y ) (line 8), we obtain X(i) = 010if and only if Y (i) = 000, that is, positions of the vertices being adjacentto k are selected by ones in the slice X . Clearly, after performing line 9,the variable w saves the k-th row of the matrix D. Because of de�ningthe matrix Q after performing the statement Y := COL(k;Q) (line 10),positions of the vertices being formed with k arcs of the negative weights,are selected by ones in the slice Y . Obviously, after performing line 11, wesave the sign of the k-th row of the matrix D. As a result of executing thebasic procedure ADDC� (line 12), the current superdistances for the verticesbeing adjacent to the vertex k are written in the matrixM , positions of thevertices whose current superdistances are negative, are selected by ones inthe slice V . 2Lemma 2. Let all assumptions of the theorem be true. Let k be the lastvertex added to the tree of the shortest paths S. Then, after ful�lling lines13{18, positions of the vertices, for which the current superdistances de-crease, are selected by ones in the slice Y . Moreover, the rows of the matrixM , selected by ones in Z1, are written in the corresponding rows of the ma-trix D and positions of vertices, whose current superdistances are negative,are selected by ones in the slice Z.Proof. In view of Lemma 1, after performing lines 1{12, the current su-perdistances for the vertices being adjacent to k are written in the matrixM , and positions of the vertices, whose current superdistances are negative,are selected by ones in V . In account of Remark 2, we have to analyze three



40 A.S. Nepomniaschayacases to select positions of the vertices whose current superdistances from shave decreased.As a result of ful�lling the basic procedure SETMIN� (line 13), by meansof ones in Z1, we select positions of the vertices whose current superdis-tances are less than the previous ones and both superdistances are posi-tive, and by means of ones in Z2, we select positions of the vertices whosecurrent superdistances are less than the previous ones and both superdis-tances are negative. Therefore, it remains to de�ne the positions of thevertices whose current superdistances are negative and the correspondingprevious ones are positive. We determine them by means of the statementV := V and (not Z) (line 14). Clearly, after performing lines 15{16 by meansof ones in the slice Z1, we accumulate positions of the vertices whose su-perdistances have decreased at the current iteration. On ful�lling the state-ment TMERGE(M;Z1; D) (line 17), the rows of the matrix M , selected byones in Z1, are written in the corresponding rows of the matrix D.It remains to check that all current negative superdistances are selectedby ones in the slice Z. Really, initially the slice Z consists of zeros (line 3).Each time after performing the statement Z := Z or V (line 18), we increasethe number of ones in the slice Z which select positions of the vertices havingthe negative superdistances from s because any negative superdistance inthe matrix D can be replaced with a new negative one. 2Remark 4. One can immediately verify that after performing the state-ment U := U or Z1 (line 19), we have U(k) = 000.Lemma 3. Let all assumptions of the theorem be true. Let k be the lastvertex added to the tree of the shortest paths S. Then, after ful�lling lines19{23, the vertices, whose current superdistances decrease, are deleted fromS. Moreover, a new k-th vertex will be included into the tree of the shortestpaths S.Proof. By Lemma 2, after ful�lling lines 13{18, positions of the verticeswhose current superdistances decrease are saved by ones in Z1. Thereforeafter performing the statement U := U or Z1 (line 19), these vertices aredeleted from S, because their positions are selected by ones in the slice U .Since some superdistances may be negative in D, we perform the basic pro-cedure MIN�(D;U; Z;X) (line 20) to de�ne positions of the rows having theminimal value. After performing lines 21{22, a new k-th vertex is includedin the tree of the shortest paths S. 2Remark 5. One can immediately verify that after performing the �rstiteration of the procedure EKF for every vertex i being adjacent to s, theweight of the arc (s; i) is written in the i-th row of the matrix D.



An associative version of the Edmonds{Karp{Ford algorithm 41Now we explain brie
y the proof of the theorem.Sketch of the proof. We prove by induction on the number of arcs qincluded in the shortest path from s to any vertex of the graph G.Basis is veri�ed for q = 1, that is, the shortest path for such verticesis the corresponding arc being incident with the vertex s. Let an arc (s; j)be the shortest path from s to the vertex j. Then, in view of Remark 5,after performing the �rst iteration, w(s; j) is written in the j-th row of thematrix D. By Lemma 2, the j-th row of the matrix D does not changeduring execution of the procedure EKF, since every other path from s to jis greater than w(s; j).Step of induction. We assume that the statement is true for all theshortest paths having less than q arcs. Let 
 be the shortest path from s toj and let 
 consist of q arcs. Assume that 
 = 
1
2, where 
2 = (v; j). Inview of Lemmas 1{3, without loss of generality, it is su�cient to considerthe iterations when all the vertices in the path 
1 are not excluded furtherfrom the tree of the shortest paths S. By the induction hypothesis, thestatement is true for the path 
1. Since the vertex j is adjacent to v and 
is the shortest path from s to j, the length of the shortest path 
 is writtenin the j-th row of the matrix D in view of Lemmas 1{3. By Lemma 2, inevery next iteration the j-th row of the matrix D does not change. Hence,after performing the procedure EKF, the length of the shortest path from sto j is written in the j-th row of the matrix D. 26. ConclusionsWe have presented an associative version of the Edmonds{Karp{Ford short-est path algorithm as the procedure EKF and proved its correctness. Thisprocedure performs in parallel all steps of the Edmonds{Karp{Ford algo-rithm using a group of the new basic procedures for updating the negativeintegers. These procedures permit one to extend the class of graph al-gorithms which can be implemented in a natural way on the associativeparallel processors. We are planning to design an associative version of theBellman{Ford shortest path algorithm [1, 2] being the best one to updategraphs with the negative arc weights. After that, we will compare theserepresentations.References[1] Bellman R. On a routing problem // Quarterly of Applied Mathematics. {1958. { Vol. 16, ü 1. { P. 87{90.[2] Christo�des N. Graph Theory. An Algorithmic Approach. { New York: Aca-demic Press, 1975.



42 A.S. Nepomniaschaya[3] Dijkstra E.W. A note on two problems in connection with graphs // Nu-merische Mathematik. { 1959. { Vol. 1. { P. 269{271.[4] Driscoll J.R., Gabow H.N., Shrairman Ruth, Tarjan R.E. Relaxed heaps: analternative to Fibonacci heaps with applications to parallel computation //Communications of the ACM. { 1988. { Vol. 31, ü 11. { P. 1343{1354.[5] Edmonds J., Karp R.M., Theoretical improvements in the algorithmic e�-ciency for network 
ow problems // J. ACM. { 1972. { Vol. 19, ü 2. { P. 248{264.[6] Falko� A.D. Algorithms for parallel{search memories // J. ACM. { 1962. {Vol. 9, ü 10. { P. 488{510.[7] Ford L.R. Network Flow Theory. { Rand Corporation Report P-923, 1956.[8] Foster C.C. Content Addressable Parallel Processors. { New York: Van Nos-trand Reinhold Company, 1976.[9] Fredman M.L., Tarjan R.E. Fibonacci heaps and their uses in improved net-work optimization algorithms // J. ACM. { 1987. { Vol. 34, ü 3. { P. 596{615.[10] Mirenkov N. The siberian approach for an open-system high-performance com-puting architecture // Computing and Control Engineering Journal. { 1992. {Vol. 3, ü 3. { P. 137{142.[11] Nepomniaschaya A.S. Language STAR for associative and parallel computa-tion with vertical data processing // Proc. Intern. Conf. \Parallel ComputingTechnologies". { Singapure: World Scienti�c, 1991. { P. 258{265.[12] Nepomniaschaya A.S. An associative version of the Prim{Dijkstra algorithmand its application to some graph problems // Andrei Ershov Second Intern.Memorial Conf. \Perspectives of System Informatics" / Lecture Notes in Com-puter Science. { Berlin: Springer-Verlag, 1996. { Vol. 1181. { P. 203{213.[13] Nepomniaschaya A.S. Solution of path problems using associative parallel pro-cessors // Proc. Intern. Conf. on Parallel and Distributed Systems, IEEE Com-puter Society Press, ICPADS'97. { Korea. Seoul, 1997. { P. 610{617.[14] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra'sshortest path algorithm on associative parallel processors // Fundamenta In-formaticae. { IOS Press, 2000. { Vol. 43. { P. 227{243.


