
Bull. Nov. Comp. Center, Comp. Science, 42 (2018), 41–60
c© 2018 NCC Publisher

Efficient parallel implementation of
the Ramalingam decremental algorithm for

updating the all-pairs shortest paths

Anna Nepomniaschaya

Abstract. The paper proposes an efficient parallel implementation of the Ra-
malingam algorithm for the dynamic update of the all-pairs shortest paths of a
directed weighted graph after deleting an edge. To this end, a model of associative
parallel systems with vertical data processing (the STAR-machine) is used. With
this model, the Ramalingam decremental algorithm for the dynamic update of the
all-pairs shortest paths is represented as the main procedure DeleteEdge that uses
a group of auxiliary procedures to perform its different parts. We provide the pro-
cedure DeleteEdge along with auxiliary procedures, prove the correctness of these
procedures and evaluate the time complexity.

Keywords: directed weighted graph, adjacency matrix, decremental algorithm,
associative parallel processor, access data by contents, the time complexity.

1. Introduction

The associative processing is a completely different way of storing, manipu-
lating, and retrieving data as compared to conventional computation tech-
niques. Associative (content addressable) parallel processors of the SIMD
type belong to fine-grain systems with bit-serial (vertical) processing and
simple processing elements (PEs). In [1], such processors are called Vertical
Processing Systems (VPS). A distinctive feature of such processors is im-
plementation of a more intelligent memory. Such an architecture performs
the data parallelism at the base level, provides a massively parallel search
by content, allows one using 2D tables as the basic data structure, and per-
forms the basic operations of searching in constant time [16]. Initially, the
vertical processing systems were mainly oriented to nonnumeric processing.
By now, the use of VPSs has been extended. The associative processing
has been studied since 1960s. But studying the associative processing has
never taken off because only a limited amount of memory could be placed
on a single die [15]. However, progress in the computer industry and semi-
conductor technology in recent years has made the associative processing
attractive again.

Let us enumerate a few recent results that confirm this assertion. In [20],
the associative processor (AP) based on the resistive content addressable

42 A. Nepomniaschaya

memory is studied. The paper shows that the resistive memory technol-
ogy potentially allows scaling the AP from a few millions to a few hundred
millions of processing units on a single silicon die. Moreover, the resistive
AP allows one a much better scalability and a higher carrying out perfor-
mance compared to the CMOS AP and the popular modern conventional
SIMD accelerators Graphics Processing Units (GPUs). In [5], the electronics
system used for the massive parallelization performed by the ATLAS Fast
Tracker is given. An increase in the center-of-mass energy and luminosity
of the Large Hadron Collider (LHC) makes controlling trigger rates with
a high efficiency challenge. The LHC is the world largest and most pow-
erful particle accelerator. The LHC is aimed at allowing physicists to test
the predictions of different theories of the particle physics. The ATLAS Fast
Tracker is a hardware processor built to very quickly reconstruct the charged
particle trajectories from the pixel&silicon detectors and makes these tracks
available to the algorithms at the software-based processing step. The Fast
Tracker exploits the hardware technology with massive parallelism, combin-
ing Associative Memory ASICs, FPGAs (Field-Programmable Gate Arrays),
and high-speed communication links. In [3], the associative operations of
the model MASC (Multiple Associative Computing) were presented. This
model is highly efficient when it is used for real time scheduling in control
systems for the air traffic. In the current technologies, the architecture of
the model MASC has not been built. Therefore the implementation of the
MASC associative operations on the GPUs has been proposed.

In [6], we have proposed an abstract model of the SIMD type (the STAR-
machine) to simulate running the vertical processing systems at the micro
level. This model uses a group of elementary operations that allow one to
update the tabular data by contents. On the STAR-machine, associative
parallel algorithms are represented as the corresponding procedures written
in the language STAR whose correctness has been proved and the time com-
plexity has been evaluated. In [7], we present the basic associative parallel
algorithms that are used to design different associative algorithms for dif-
ferent applications. We observe that the architecture of vertical processing
systems is best suited for a natural and efficient implementation of graph
algorithms. For the STAR-machine, we have built both the new associative
parallel graph algorithms and the associative versions of the well-known
sequential graph algorithms. First of all, we have constructed a natural
straightforward implementation of a group of classical graph algorithms.
This implementation includes, in particular, associative versions of Dijk-
stra’s algorithm for finding the single source shortest paths [6], Floyd’s al-
gorithm for finding the all-pairs shortest paths [8], Kruskal’s algorithm and
the Prim–Dijkstra one for finding the minimal spanning tree (MST) [9].

Of special interest is the implementation of dynamic graph algorithms
on the STAR-machine. The objective of a dynamic algorithm is to update

Efficient parallel implementation of the Ramalingam algorithm. . . 43

the solution of a problem after dynamic changes faster than to compute
the entire graph from a scratch each time with the fastest static algorithm.
On the STAR-machine, we have implemented a group of dynamic graph
algorithms. It includes, in particular, associative parallel algorithms for the
dynamic edge update of an MST [10], associative versions of the Italiano
algorithms for the dynamic update of the transitive closure of a directed
graph after inserting and after deleting an edge [11], associative versions
of the Ramalingam algorithms for updating the shortest paths subgraph
with a sink after inserting and after deleting an edge and their efficient
implementations on the STAR-machine [12, 13].

In this paper, we study the dynamic update of the all-pairs shortest
paths (APSP) by means of the STAR-machine. The most general types of
update operations for the APSP problem include insertions and deletions
of edges, update operations on edge weights, finding the shortest distance
and finding the shortest path between two vertices, if any. An algorithm
is called fully dynamic if the update operations include both insertions and
deletions of edges. A partially dynamic algorithm is called incremental if it
supports only insertions, while it is called decremental if only deletions are
supported.

In [14], we have constructed an associative version of the Ramalingam
decremental algorithm for the dynamic update of the all-pairs shortest paths.
The associative version is given as a group of associative algorithms that pro-
vide execution on the STAR-machine of different parts of the Ramalingam
decremental algorithm. In this paper, we present the efficient parallel im-
plementation on the STAR-machine of the associative version of the Ra-
malingam decremental algorithm for updating the all–pairs shortest paths.
It consists of the main procedure DeleteEdge along with a group of auxiliary
procedures. We prove the correctness of these procedures and evaluate the
time complexity.

2. A model of the associative parallel machine

Here, we propose a brief description of the STAR-machine that simulates
the run of vertical processing systems. It uses some Staran properties and
the Russian associative processor [4]. The current version of the STAR-
machine has been presented in [7]. Recently we have started the project
of implementing the STAR-machine on GPU NVIDIA GEFORCE 920m
[18, 19]. It will allow us to implement the associative algorithms on a real
hardware of GPUs.

The STAR-machine consists of the following three components: a se-
quential control unit, an associative processing unit, and a matrix memory
for the associative processing unit. In [7], the run of the STAR-machine is
described in considerable detail. Input binary data are loaded into the ma-

44 A. Nepomniaschaya

trix memory in the form of 2D tables. In any table, the rows are numbered
from top to bottom and the columns –– from left to right. An associative
processing unit is represented as a group of vertical registers. A vertical
register can be regarded as a one-column array. To update a matrix, its
bit columns are stored in the registers which perform the necessary Boolean
operations. To simulate the data processing in the matrix memory the types
word, slice, and table are used. The types slice and word are used for the
bit column access and the bit row access, respectively, and the type table
is used for defining the tabular data. For simplicity, a variable of the type
slice sometimes is called slice. In this paper, we will use constants for the
types slice and word without single quotation marks.

Now let us present some operations of the STAR-machine which are used
in the paper.

Let X and Y be slices and i be a variable of the type integer. The
following operations are used for slices:

CLR(Y) simultaneously sets all components of Y to 0;

Y (i) selects the value of the ith component of Y ;

FND(Y) returns the ordinal number of the uppermost bit 1 of Y ;

STEP(Y) returns the same result as FND(Y) and then resets the first found
1 to 0;

CONVERT(Y) returns a row, whose every ith bit coincides with Y (i). It
is applied when a row of one matrix is used as a slice for another
matrix.

To carry out the data parallelism, bitwise Boolean operations are intro-
duced in the usual way: X and Y , X or Y , not Y , X xor Y .

The predicate SOME(Y) results in true if there is at least a single bit 1
in the slice Y . For simplicity, the notation Y 6= ∅ denotes that the predicate
SOME(Y) results in true.

Note that the predicate SOME(Y) and all operations for the type slice
are also performed for the type word. In addition, one employs bitwise
Boolean operations between a variable w of the type word and a variable Y
of the type slice, where the number of bits in w coincides with the number
of bits in Y .

Moreover, for variables v and w of the type word, the following two
operations are used:

TRIM(i, j, w) returns the substring of w of the form w(i)w(i + 1) . . . w(j),
where 1 ≤ i < j ≤ |w|;

REP(i, j, v, w) replaces the substring w(i)w(i + 1) . . . w(j) of the string w
with the string v, where |v| = j − i + 1 and 1 ≤ i < j < |w|.

Efficient parallel implementation of the Ramalingam algorithm. . . 45

For a variable T of the type table the following two operations are used:

ROW(i, T) returns the ith row of the matrix T ;

COL(i, T) returns its ith column.

The STAR statements are defined in the same manner as for Pascal.
They are later used for presenting the procedures.

Now, we briefly enumerate a group of the basic procedures implemented
on the STAR-machine [7]. These procedures use a given global slice X to
indicate with bit 1 the row positions used in the corresponding procedure.

The procedure MATCH(T,X, v, Z) defines the positions of those rows of
the given matrix T which coincide with a given pattern v. It returns the
slice Z, where positions of these rows are marked with bit 1.

The procedure MIN(T,X,Z) defines the positions of those rows of a
given matrix T , where a minimal element is located. It returns the slice Z,
where Z(i) = 1 if and only if ROW(i, T) is the minimal element in T and
X(i) = 1.

The procedure SETMIN(T, F,X,Z) defines the positions of given matrix
T rows that are less than the corresponding rows of the matrix F . It returns
the slice Z, where positions of such rows of the matrix T are marked with 1.

The procedure HIT(T, F,X,Z) defines the positions of the corresponding
identical rows of the given matrices T and F . It returns the slice Z, where
the positions of identical rows are marked with 1.

The procedure TMERGE(T,X, F) writes the rows of the matrix T , se-
lected with bit 1 in the slice X, in the corresponding rows of the matrix F .
Other rows of the matrix F do not change.

The procedure TCOPY1(T, j, h, F) writes h columns from a given ma-
trix T , starting from the (1+(j−1)h)-th column, into the resulting matrix F ,
where j ≥ 1.

The procedure ADDV(T, F,X,R) writes into the matrix R the result of
the parallel addition of the corresponding rows of the matrices T and F ,
whose positions are selected with bit 1 in the given slice X.

The procedure ADDC(T,X, v, F) adds the binary word v to the rows of
the matrix T selected with bit 1 in the slice X, and writes down the result
into the corresponding rows of the matrix F . Other rows of the matrix F
are set to zeros.

Following Foster [2], we assume that each elementary operation of our
model (its microstep) takes one unit of time. We measure the time com-
plexity of an associative algorithm by counting all elementary operations
performed in the worst case.

In [7], we have shown that the basic procedures take O(k) time each,
where k is the number of bit columns in the corresponding matrix.

46 A. Nepomniaschaya

3. Preliminaries

Let G = (V,E) be a directed weighted graph with n vertices and m directed
edges (arcs). We assume that V = {1, 2, . . . , n}. Let wt denote a function
that assigns a weight to every edge.

An adjacent matrix Adj = [aij] of a directed graph G is an n×n Boolean
matrix, where aij = 1 if and only if there is an arc from the vertex i to the
vertex j in the set E.

An arc e directed from i to j is denoted by e = (i, j), where i = tail(e)
and j = head(e). Also, if (i, j) ∈ E, then j is said to be adjacent to i.
We assume that all arcs have nonnegative weights and wt(u, v) = ∞ if
(u, v) /∈ E.

The shortest path from u to w is the path of a minimal sum of weights
of its edges. Let dist(u, z) denote the weight of the shortest path from the
vertex u to the distinguished vertex z called sink. Let Dist be a matrix
whose every entry Dist[i, j] represents the weight of the shortest path from
the vertex i to the vertex j.

By analogy with Ramalingam [17], we introduce the following notions.
Let an arc (i, j) be deleted from G. Let AffectedV denote a set of all

vertices u in G such that all paths from u to the selected sink z include the
deleted arc (i, j).

A predicate SP (a, b, c) is defined as follows:

SP (a, b, c) ≡ (dist(a, c) = wt(a, b) + dist(b, c)) ∧ (dist(a, c) 6=∞).

This predicate verifies whether the arc (a, b) belongs to the shortest path
from the vertex a to the selected sink c.

Now we present an example. Let a graph G be given (Figure 1). It can
be seen that in G there is a single path to the sink s from vertices 1, 2, 3, 4,
and 8, while there are two different paths to the sink s from other vertices.

Let the arc 4 → 2 be deleted from G (Figure 2). Then vertices 4, 7, 8,
and 10 become affected because there is no path from them to the sink s.

Let us consider the execution of the predicate SP (a, b, c) for different
parameters in Figure 2. The predicate SP (6, 5, s) returns true because

Figure 1. The graph G Figure 2. Deletion of the arc (4, 2)
from G

Efficient parallel implementation of the Ramalingam algorithm. . . 47

there is shortest path 6→ 5, 5→ 1, and 1→ s starting from the arc 6→ 5.
The predicate SP (7, 8, s) returns false because there is no shortest path
from vertex 7 to the sink s.

4. The Ramalingam decremental algorithm for updating the
all-pairs shortest paths

In [17], Ramalingam represents the problem of the dynamic update of the
all-pairs shortest paths after edge deletion by using the dynamic single sink
shortest path problem after edge deletion as a subroutine but with a different
sink vertex at each call. Following Ramalingam, a vertex y is called an
affected sink if there exists such a vertex x that dist(x, y) changes after
edge deletion. As is shown in [17], the set of affected sink vertices after
deleting an edge i → j coincides with the set of all affected vertices for
the single source shortest path problem with the source vertex i. Therefore
the decremental algorithm for the dynamic update of the all-pairs shortest
paths first determines the set of all affected sink vertices and then it applies
a modification of the decremental algorithm for the dynamic update of the
single sink shortest paths for every affected sink vertex.

Before presenting a modification of the above mentioned Ramalingam
decremental algorithm, we first briefly think back to it. Let a directed graph
G, a sink z and the shortest paths subgraph SP (G) be given. Let an arc (i, j)
be deleted from G. Then the Ramalingam decremental algorithm for the
dynamic update of the single sink shortest paths subgraph constructs a new
shortest paths subgraph of G. To this end, first one determines a set of all
affected arcs obtained after deleting the arc (i, j) from G. Then the affected
arcs are deleted from SP (G), and for every affected vertex one computes a
new shortest path to z. We observe that a parallel implementation of this
algorithm on the STAR-machine is considered in [12].

Now we present the modification of the Ramalingam decremental al-
gorithm for the dynamic update of the single sink shortest paths. Let a
directed graph G and a sink z be given. Let an arc (i, j) be deleted from G.
The modification consists of the following two stages.

At the first stage, one determines the set AffectedV of all affected ver-
tices obtained after deleting the arc (i, j) from G. At the second stage, for
every affected vertex vi, one computes a new distance to the sink z.

The first stage is performed as follows. At first, AffectedV = ∅. To
construct it, an auxiliary set of vertices WorkSet is used. Initially, all the
arcs (i, x) are analyzed. For every head x, one checks whether the predicate
SP (i, x, z) returns true. If all predicates return false, then WorkSet := {i}.
Vertices in WorkSet are sequentially updated. The current updated vertex
u is deleted from WorkSet and is included into the set AffectedV. Then all
arcs (x, u) are analyzed. For every tail x for which the predicate SP (x, u, z)

48 A. Nepomniaschaya

returns true, one checks whether there does not exist such a non-affected
head y of an arc (x, y) for which SP (x, y, z) returns true. In this case, the
vertex x is included into WorkSet.

To perform the second stage, one uses a heap PriorityQueue, whose
elements are affected vertices with a key. Initially PriorityQueue = ∅. To
build it, for every affected vertex, one first computes a current key. To this
end, for every affected vertex k, one defines non-affected heads r of arcs
outgoing from the vertex k for which there is a path to z. Then for every
vertex r, one computes the sum wt(k, r) + dist(r, z). The current key of k
in the heap is defined as the minimal value of such sums.

After that, one updates the heap PriorityQueue as follows. At every
iteration, a vertex with the minimum key in the heap (say, a) is deleted from
the set PriorityQueue. Further all the arcs (c, a) are analyzed. For every
tail c, for which wt(c, a) + dist(a, z) < dist(c, z), the current value dist(c)
is equal to distnew(c), and this value becomes the new key for the vertex c
in PriorityQueue. If c ∈ PriorityQueue, the previous key of c receives a
new value. Otherwise, the vertex c is included into the heap with the key
distnew(c). The process is completed after updating all vertices in the heap.

A modification of the decremental algorithm for updating distances to
the sink z is given as a function DeleteUpdate that returns the set of affected
vertices.

Finally, the Ramalingam decremental algorithm for updating the all-
pairs shortest paths runs as follows. At first, the arc i → j is deleted from
G. Then by means of the function DeleteUpdate, one defines the set of
affected sink vertices. After that the function DeleteUpdate is applied for
every affected sink vertex.

In [14], to represent this modification on the STAR-machine, at first, a
special data structure is proposed. Then one constructs the following three
algorithms:

Algorithm A: an associative parallel algorithm for selecting a set of affected
vertices obtained after deleting the arc (i, j);

Algorithm B: an associative parallel algorithm for finding initial distances
from all affected vertices to the sink z;

Algorithm C: an associative parallel algorithm for finding a new distance
from every affected vertex to z.

On the STAR-machine, the modification of the decremental algorithm for
updating the single sink shortest paths is given as procedure DeleteUpdate
that performs in succession Algorithms A, B, and C.

Efficient parallel implementation of the Ramalingam algorithm. . . 49

5. The data structure

Before presenting the data structure, we recall that the Ramalingam decre-
mental algorithm uses a given directed weighted graph G, distances between
all-pairs of vertices, and a given edge (i, j). Let w be a maximal weight of
edges in G. The maximal distance between all-pairs of vertices is less than
the value t = w × n, where n is the number of graph vertices. In this case,
h = dlog te, that is, h bits will be used for representing any distance be-
tween any pairs of vertices in the matrix Dist. We observe that initially the
distances between all-pairs of vertices are defined by means of the classical
Floyd’s algorithm.

We will use the following data structure:

• an n × n adjacency matrix Adj, whose every ith column saves with
bits 1 the heads of arcs outgoing from the vertex i;

• an n × n adjacency matrix Adj1, whose every ith column saves with
bits 1 the vertices for which there is the shortest path from the vertex
i;

• an n× hn matrix Weight that consists of n fields having h bits each.
The weight of an arc (i, j) is written in the jth row of the ith field;

• an n×hn matrix Cost that consists of n fields having h bits each. The
weight of an arc (i, j) is written in the ith row of the jth field;

• an n×hn matrix Dist that consists of n fields having h bits each. The
distance from the vertex i to the vertex j is written in the jth row of
the ith field;

• an n × hn matrix Dist1 that consists of n fields having h bits each.
The distance from the vertex i to the vertex j is written in the ith row
of the jth field;

• a slice AffectedV that saves with bits 1 positions of all affected ver-
tices.

We notice that the ith field of the matrix Weight saves the weights of
arcs outgoing from the vertex i, while the ith field of the matrix Cost saves
the weights of arcs entering the vertex i. Moreover, every jth row of the
matrix Adj saves with bits 1 tails of the arcs entering the vertex j, while
every jth row of the matrix Adj1 saves the vertices from which there is a
shortest path entering the vertex j.

Remark 1. We should mention that Algorithm A uses, in particular,
the slices WS and AffectedV. Algorithm B uses, in particular, the slice
AffectedV and the matrices Weight and Dist1. This algorithm constructs
a matrix Queue, whose every ith row saves the initial distance from the

50 A. Nepomniaschaya

affected vertex i to the sink z. Algorithm C uses, in particular, the slice
AffectedV and the matrices Queue, Cost, Dist, and Dist1.

6. Implementation of the associative algorithm for finding
affected vertices

In this section, we first provide two auxiliary procedures ComputePred1
and ComputePred2. Then we propose the procedure FindAffectedVert for
finding affected vertices after deleting an arc from the graph and justify its
correctness.

The procedure ComputePred1 simultaneously defines the non-affected
heads of arcs outgoing from a given vertex u for which the predicates
SP (u, x, z) are true. It uses, in particular, the matrices Adj, Adj1, Weight,
Dist, and Dist1. It returns a slice to save by bits 1 the above mentioned
heads of arcs.

Let us briefly explain the main idea of this procedure. We first define
positions of arcs (u, x) that belong to different paths from u to z. Then we
define the weights of these paths. After selecting a distance from u to z, we
save the positions of those arcs that belong to the shortest path from u to z.

procedure ComputePred1(h,u,z: integer; AffectedV: slice(Adj);

Adj,Adj1: table; Weight, Dist, Dist1: table;

var Y: slice(Adj));

var l1,l2: integer; X,X1,X2: slice(Adj); R1,R2,R3: table;

v: word(Dist); v1: word(Adj); w1: word(R1);

Begin X1:=COL(u,Adj);1.

/* The slice X1 saves the heads of arcs outgoing from u. */

v1:=ROW(z,Adj1); X2:=CONVERT(v1);2.

/* The slice X2 saves the vertices from which there is the shortest path to z. */

X:=X1 and X2;3.

X:=X and (not AffectedV);4.

/* The slice X saves non–affected heads of arcs outgoing from u that belong to
different paths from u to z. */

TCOPY1(Weight,u,h,R1);5.

TCOPY1(Dist1,z,h,R2);6.

ADDV(R1,R2,X,R3);7.

/* The matrix R3 saves the weights of different paths from u to z. */

v1:=ROW(z,Dist1);8.

l1:=1+(u-1)*h; l2:=u*h;9.

w1:=TRIM(l1,l2,v1);10.

/* The row w1 saves the distance from u to z. */

MATCH(R3,w1,X,Y);11.

Efficient parallel implementation of the Ramalingam algorithm. . . 51

/* The slice Y saves positions of the matrix R3 rows that coincide with
the distance from u to z. */

End;12.

Lemma 1. Let a slice AffectedV and the matrices Adj, Adj1, Weight,
Dist, and Dist1 be given. Let the parameters h, u, and z be given as well.
Then the procedure ComputePred1 returns a slice Y that saves non-affected
heads of arcs (u, s) for which the predicates SP (u, s, z) are true.

Proof. We prove the lemma by contradiction. Let the predicate SP (u, r, z)
be true for a non-affected head of the arc (u, r). However, after performing
the procedure ComputePred1, Y (r) = 0. We can see that this contradicts
the execution of the procedure ComputePred1.

Really, after performing line 1, X1(r) = 1 because the arc (u, r) be-
longs to G. After performing line 2, X2(r) = 1 because by assumption the
predicate SP (u, r, z) is true. After fulfilling lines 3–4, X(r) = 1 since r is
a non-affected vertex from which there is the shortest path to the sink z.
After performing lines 5–6, the rth row of the matrix R1 saves wt(u, r) and
the rth row of the matrix R2 saves dist(r, z). After fulfilling line 7, the
matrix R3 saves the weights of different paths from u to z. In particular,
its rth row saves the weight of the path from u to z that starts from the arc
(u, r). Now, we have to select the positions of the paths from u to z having
a minimal weight. Since dist(u, z) is written in the zth row of the matrix
Dist1, we perform lines 8–10 and select the substring w1 that corresponds
to dist(u, z). Now, after performing the procedure MATCH(R3, w1, X, Y)
(line 11) we obtain the slice Y that saves the positions of the matrix R3 rows
that coincide with dist(u, z). Since X(r) = 1 and the predicate SP (u, r, z)
is true, we obtain that Y (r) = 1 that contradicts the assumption.

The procedure ComputePred2 simultaneously defines the tails of arcs
entering a given vertex u for which the predicates SP (y, u, z) are true. It
uses, in particular, the matrices Adj, Weight, Dist, and Dist1. It returns
a slice to save by bits 1 the above mentioned tails of arcs.

Let us briefly explain the main idea of this procedure. We first define the
weights of arcs entering the vertex u. After selecting a distance from u to z,
we define the weights of different paths to z that start from the tails of arcs
entering u. Then we select different distances to z starting from the tails of
arcs entering u. Finally, we compare these distances with the weights of the
corresponding paths to z.

procedure ComputePred2(h,u,z: integer; Adj: table;

Cost,Dist,Dist1: table; var Y: slice(Adj));

var l1,l2: integer; X: slice(Adj); R1,R2,R3: table;

v: word(Dist); v1: word(Adj); v2: word(R1);

52 A. Nepomniaschaya

Begin v1:=ROW(u,Adj); X:=CONVERT(v1);1.

/* The slice X saves the tails of arcs entering u. */

TCOPY1(Cost,u,h,R1);2.

/* The matrix R1 saves the weights of arcs entering u. */

v:=ROW(z,Dist);3.

l1:=1+(u-1)h; l2:=uh;4.

v2:=TRIM(l1,l2,v);5.

/* The row v2 saves the distance from u to z. */

ADDC(R1,v2,X,R2);6.

/* The matrix R2 saves the weights of different paths to z starting from the tails
of arcs entering u. */

TCOPY1(Dist1,z,h,R3);7.

/* The matrix R3 saves different distances to z. */

HIT(R2,R3,X,Y);8.

/* The slice Y saves positions of the matrix R2 rows that coincide with
the corresponding distances to z. */

End;9.

Lemma 2. Let the matrices Adj, Cost, Dist, and Dist1 be given. Let the
parameters h, u, and z be also given. Then the procedure ComputePred2
returns the slice Y that saves the tails of arcs entering the vertex u from
which there are the shortest paths to the sink z.

This lemma is proved by analogy with Lemma 1.

Remark 2. Let us mention that the auxiliary procedures ComputePred1
and ComputePred2 take O(h) time each because of applying the basic pro-
cedures [7].

Now we propose the procedure FindAffectedVert. It uses the matrices
Adj, Adj1, Weight, Cost, Dist, and Dist1 and an auxiliary slice WS. It
returns the slice AffectedV, where the positions of all affected vertices are
marked with bits 1.

Let us briefly explain the main idea of this procedure. We first include
the vertex i into the slice WS if there is no shortest path from i to z after
deleting the edge (i, j). While WS 6= ∅, we delete the first bit 1 (say k) from
the slice WS and insert it into the slice AffectedV. Then by means of a
slice, say X2, we save the tails of arcs entering the vertex k. Every vertex u
from the slice X2 is included into the slice WS if there is no shortest path
from u to z after deleting the edge (i, j).

procedure FindAffectedVert(h,i,z: integer; Adj,Adj1: table;

Weight,Cost,Dist,Dist1: table;

Efficient parallel implementation of the Ramalingam algorithm. . . 53

var AffectedV: slice(Adj));

/* The arc (i, j) has been deleted from the graph G. */

var k,r,u: integer; X,X1,X2,Y,Y1,Y2,WS: slice(Adj);

v: word(Adj);

Begin CLR(WS); CLR(AffectedV);1.

Y1:=COL(i,Adj);2.

/* The slice Y 1 saves the heads of arcs outgoing from the vertex i. */

v:=ROW(z,Adj1); Y2:=CONVERT(v);3.

/* The slice Y 2 saves the vertices from which there is the shortest path
to the sink z. */

Y:=Y1 and Y2;4.

/* The slice Y saves the heads of arcs outgoing from i that belong to
different paths from i to z. */

ComputePred1(h,i,z,AffectedV,Adj,Adj1,Weight,Dist,Dist1,X1);5.

/* The slice X1 saves the result of the procedure ComputePred1. */

if not SOME(X1) then WS(i):=1;6.

while SOME(WS) do7.

/* The cycle for selecting affected vertices. */

begin k:=STEP(WS);8.

AffectedV(k):=1;9.

/* The vertex k is saved in the slice AffectedV. */

v:=ROW(k,Adj); X2:=CONVERT(v);10.

/* The slice X2 saves the tails of arcs entering k. */

while SOME(X2) do11.

begin u:=STEP(X2);12.

ComputePred1(h,u,z,AffectedV,Adj,Adj1,Weight,13.

Dist,Dist1,X);

if not SOME(X) then WS(u):=1;14.

end;15.

end;16.

End;17.

Theorem. Let G be a directed weighted graph. Let an arc (i, j) be deleted
from G. Let the matrices Adj, Adj1, Weight, Cost, Dist, and Dist1 be
given. Then the procedure FindAffectedVert returns the slice AffectedV,
where the positions of affected vertices are marked with bits 1.

Proof. We prove this by induction in terms of the number of vertices l to
be included into the slice AffectedV.

The basis is checked for l = 1, that is, only the vertex i is an affected
one after deleting the edge (i, j) from G.

54 A. Nepomniaschaya

After performing lines 1–4, the slices WS and AffectedV consist of zeros,
and the slice Y saves the heads of arcs outgoing from the vertex i that
belong to different paths from i to z. After performing line 5, the slice X1
saves non-affected heads of the arcs (i, r) that belong to the corresponding
shortest paths from i to z. By the assumption, the vertex i is an affected
one. Therefore the slice X1 has to consist of zeros. After performing line 6,
the vertex i is included into the slice WS. After execution of lines 7–9, the
slice WS consists of zeros and the vertex i is saved in the slice AffectedV.
After performing line 10, the slice X2 saves the tails of arcs entering the
vertex i that belong to the corresponding shortest paths to z. If X2 consists
of zeros, we go to the procedure end. Otherwise, for each such a tail u, we
execute the procedure ComputePred1 (line 13). Since only the vertex i is an
affected one, the procedure ComputePred1 has to return the slice X 6= ∅ to
each tail u. Therefore after performing the cycle while SOME(X2) do (lines
12–16), we go to the procedure end.

Step of induction. Let the assertion be true for l ≥ 1 vertices included
into the slice AffectedV. We prove this for l + 1 vertices. By the inductive
assumption, after including the first l vertices into the slice AffectedV, they
should be deleted from the slice WS. Moreover, the slice WS saves the tails
of arcs entering an affected vertex that do not start any shortest path to
the sink z. After including the lth vertex into the slice AffectedV, the
slice WS saves the position of the (l + 1)th affected vertex. Therefore the
cycle while SOME(WS) do (line 7) is performed. After performing lines 8–9,
we first delete a single vertex from the slice WS and WS = ∅. Then we
include this vertex into the slice AffectedV. After performing line 10, the
slice X2 saves the tails of arcs entering the (l + 1)th affected vertex. Then
we fulfil the cycle while SOME(X2) do (lines 12–16). Since there are only
l + 1 affected vertices after deleting the edge (i, j) from G, no new vertex is
included into the slice WS. Therefore the cycle while SOME(WS) do (lines
8–17) is finished, and we go to the procedure end.

Let us evaluate the time complexity of the FindAffectedVert procedure.
Let h be the parameter defined in Section 5 (that is, the size of the field)
and k be the number of affected vertices that appear after deleting the arc
(i, j) from G. The procedure FindAffectedVert takes O(hk) time because
the cycle while SOME(WS) do (line 7) is performed k times and the auxiliary
procedures ComputePred1 and ComputePred2 take O(h) time each.

7. Updating the all-pairs shortest paths after edge deletion
on the STAR-machine

In this section, we first propose two procedures for implementing the algo-
rithms B and C presented in [14]. Then we represent the modification of

Efficient parallel implementation of the Ramalingam algorithm. . . 55

the decremental algorithm for updating the single sink shortest paths on the
STAR-machine.

Let us consider the procedure FindCurrentDist. With the matrices Adj,
Adj1, Weight, and Dist1, it constructs a matrix Queue whose every ith row
saves the initial distance from the affected vertex i to the sink z.

procedure FindCurrentDist(h,z: integer; Adj,Adj1: table;

AffectedV: slice(Adj); Weight: table; Dist1: table;

var Queue: table);

var X,X1,X2,Y,Y1: slice(Adj); k,l: integer; R1,R2,F: table;

v: word(Queue); w: word(Adj);

Begin Y:=AffectedV;1.

while SOME(Y) do2.

begin k:=STEP(Y);3.

X:=COL(k,Adj);4.

X:=X and (not AffectedV);5.

/* The slice X saves non-affected vertices being the heads of arcs
outgoing from the vertex k. */

w:=ROW(z,Adj1); X1:=CONVERT(w);6.

/* The slice X1 saves the vertices from which there is the shortest path
to the sink z. */

X2:=X1 and X;7.

/* The slice X2 saves non-affected vertices for which there is a path
from the vertex k to the sink z. */

TCOPY1(Weight,k,h,R1);8.

/* The matrix R1 saves the kth field of the matrix Weight. */

TCOPY1(Dist1,z,h,R2);9.

/* The matrix R2 saves the zth field of the matrix Dist1. */

ADDV(R1,R2,X2,F);10.

/* The matrix F saves the weights of different paths from k to z. */

MIN(F,X2,Y1); l:=FND(Y1);11.

/* The lth row of the matrix F saves the current minimal distance from k to z. */

v:=ROW(l,F); ROW(k,Queue):=v;12.

/* In every kth row of the matrix Queue a new current distance
from k to z is written. */

end;13.

End;14.

It is easy to check that the procedure FindCurrentDist takes O(hk) time.
Now we propose the procedure FindNewDist. With the matrices Queue,

Cost, Dist, and Dist1, it defines a new distance from every affected vertex
to z.

56 A. Nepomniaschaya

procedure FindNewDist(h,z: integer; Adj,Adj1: table;

AffectedV: slice(Adj); Cost: table; var Queue: table;

var Dist,Dist1: table);

var X,X1,X2,Y,Y1,Y2: slice(Adj);

i,j,k,l: integer; R1,R2,F: table;

v: word(Queue); v1: word(Adj); w: word(Dist);

Begin Y:=AffectedV;1.

while SOME(Y) do2.

begin MIN(Queue,Y,X);3.

k:=FND(X); Y(k):=0;4.

v:=ROW(k,Queue);5.

/* The new distance from the vertex k to z is written in the kth row
of the matrix Queue. */

w:=ROW(z,Dist);6.

i:=1+(k-1)*h; j:=k*h;7.

Rep(i,j,v,w); ROW(z,Dist):=w;8.

/* The new distance from k to z is written in the matrix Dist. */

w:=ROW(k,Dist1);9.

i:=1+(z-1)*h; j:=z*h;10.

Rep(i,j,v,w); ROW(k,Dist1):=w;11.

/* The new distance from k to z is written in the matrix Dist1. */

v1:=ROW(k,Adj); X:=CONVERT(v1);12.

/* The slice X saves the tails of arcs entering the vertex k. */

TCOPY1(Cost,k,h,F);13.

/* The matrix F saves the kth field of the matrix Cost. */

ADDC(F,X,v,R1);14.

/* In every lth row of the matrix R1 marked with 1 in the slice X,
a weight of a path to z starting with the arc (l, k) is written. */

SETMIN(R1,Queue,Y,Y1);15.

/* The slice Y 1 saves positions of the matrix R1 rows where
ROW(i, R1) < ROW(i, Queue). */

TMERGE(R1,Y,Queue);16.

/* In every ith row of the matrix Queue, a current distance to z is written
if Y (i) = 1. */

end;17.

End;18.

The correctness of the procedures FindCurrentDist and FindNewDist is
proved by contradiction.

Let us represent a modification of the decremental algorithm for updat-
ing the single sink shortest paths on the STAR-machine. It performs in
succession of Algorithms A, B, and C. On the STAR-machine, it is given as

Efficient parallel implementation of the Ramalingam algorithm. . . 57

procedure DeleteUpdate that returns the slice AffectedV and the current
matrices Dist and Dist1.

procedure DeleteUpdate(i,h,z: integer; Adj,Adj1: table;

Weight,Cost: table; var Dist,Dist1: table;

var AffectedV: slice(Adj));

/* Here h is the size of the field, z is the sink, and (i, j) is the arc
to be deleted from G. */

Begin1.

FindAffectedVert(h,i,z,Adj,Adj1,Weight,Cost,Dist,Dist1,2.

AffectedV);

/* The procedure returns the slice AffectedV that saves affected vertices
obtained after deleting (i, j) from G. */

FindCurrentDist(h,z,Adj,Adj1,AffectedV,Weight,Dist1,Queue);3.

/* The procedure returns the matrix Queue whose every kth row saves
a current distance from the affected vertex k to z. */

FindNewDist(h,z,Adj,Adj1,AffectedV,Cost,Queue,Dist,Dist1);4.

/* The procedure computes a new distance from every affected vertex to z and
saves it in matrices Dist and Dist1. */

End;5.

Let us evaluate the time complexity of the procedure DeleteUpdate.
It takes O(hk) time because the procedures FindAffectedVert, FindCur-
rentDist, and FindNewDist take O(hk) time each.

The associative version of the Ramalingam decremental algorithm for
updating the all-pairs shortest paths runs as follows. At first, the arc i→ j
is deleted from G. Then by means of Algorithm A, one defines a set of
affected sink vertices. After that the procedure DeleteUpdate is applied to
every affected sink vertex.

procedure DeleteEdge(i,j,h: integer; Weight,Cost: table;

var Adj,Adj1: table; var Dist,Dist1: table);

/* The arc (i, j) will be deleted from the graph G, h is the size of the field. */

var X,AffectedSinks: slice(Adj); z: integer;

Begin X:=COL(i,Adj); X(j):=0; COL(i,Adj):=X;1.

/* The arc (i, j) is deleted from G. */

FindAffectedVert(h,i,z,Adj,Adj1,Weight,Cost,Dist,Dist1,2.

AffectedV);

AffectedSinks:=AffectedV;3.

while SOME(AffectedSinks) do4.

begin z:=STEP(AffectedSinks);5.

DeleteUpdate(i,h,z,Adj,Adj1,Weight,Cost,Dist,Dist1,6.

AffectedV);

58 A. Nepomniaschaya

end;7.

End;8.

Let us evaluate the time complexity of the procedure DeleteEdge. To
this end, we first enumerate the set R = {r1, . . . , rl} of the sink affected
vertices obtained after performing the procedure FindAffectedVert. Let qk
denote the number of affected vertices when the sink vertex rk ∈ R is used.
Then the total number of all affected vertices for different sinks from the set
R is defined as q =

∑l
i=1 qi. Hence, the procedure DeleteEdge takes O(hq)

time. We can see that h depends on the input, while the number of affected
vertices is the output.

Now, let us present the main advantages of the associative version of
the Ramalingam decremental algorithm for updating the all-pairs shortest
paths:

1. For every affected vertex u and the sink z, the associative version
simultaneously computes the predicates SP (u, x, z) for all the heads
of arcs outgoing from the vertex u and the predicates SP (y, u, z) for
all the tails of arcs entering the vertex u.

2. For every affected vertex u and the sink z, the associative version
simultaneously determines the weights of paths from u to z and writes
a minimum value of these weights in the corresponding row of the
matrix Queue.

3. After selecting a new distance from the current affected vertex k to z,
the associative version simultaneously computes the weights of paths
to z, each starting from an arc entering the vertex k and saves them in
a matrix, say R1. After that one simultaneously replaces the matrix
Queue rows, where ROW(i, R1) < ROW(i, Queue) with the corre-
sponding rows of the matrix R1.

8. Conclusion

We have proposed an efficient parallel implementation of the Ramalingam
decremental algorithm for updating the all-pairs shortest paths on the
STAR-machine having no less than n PEs. The associative version of this
Ramalingam decremental algorithm is represented as procedure DeleteEdge
that includes a group of auxiliary procedures for performing different parts
of this algorithm. We have proved the correctness of the auxiliary proce-
dures and the procedure DeleteEdge and evaluated the time complexity. We
have obtained that the procedure DeleteEdge takes O(hq) time per deletion,
where h is the size of the field, q is the total sum of affected vertices for dif-
ferent sink vertices. It is assumed that each microstep of the STAR-machine

Efficient parallel implementation of the Ramalingam algorithm. . . 59

takes one unit of time. The proposed data structure and the proposed tech-
nique for updating the all-pairs shortest paths after deleting an arc from G
can be used to solve other tasks.

We are planning to implement on GPU NVIDIA GEFORCE 920m the
most important associative graph algorithms presented on the STAR-ma-
chine.

References

[1] Fet Y.I. Vertical processing systems: A survey. –– IEEE, Micro, 1995. –– P. 65–
75.

[2] Foster C.C. Content Addressable Parallel Processors. –– New York: Van Nos-
trand Reinhold Company, 1976.

[3] Jin M. Associative operations from MASC to GPU // The 21th Int.
Conf. on Parallel and Distributed Processing Techniques and Applications,
PDPTA’15.–– 2015.–– P. 388–393.

[4] Mirenkov N. The Siberian approach for an open-system high-performance com-
puting architecture // J. Computing and Control Engineering.–– 1992.–– Vol. 3,
No. 3. –– P. 137–142.

[5] Nedaa A. A hardware fast tracker for the ATLAS trigger // Physics of Particles
and Nuclei Letters. –– 20116.–– Vol. 13, No. 5. –– P. 527–531.

[6] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. –– IOS Press, 2000. –– Vol. 43. –– P. 227–243.

[7] Nepomniaschaya A.S. Basic associative parallel algorithms for vertical pro-
cessing systems // Bull. the Novosibirsk Computing Center.–– NCC Publisher,
2009. –– IIS Special Issue 29. –– P. 63–77. –– http://ncc.bulletin.ru/files/article/
nepomniaschaya.pdf.

[8] Nepomniaschaya A.S. Solution of path problems using associative paral-
lel processors // Proc. Intern. Conf. on Parallel and Distributed Systems,
ICPADS’97, Korea, Seoul. –– IEEE Computer Society Press, 1997. –– P. 610–
617.

[9] Nepomniaschaya A.S. Comparison of performing the Prim–Dijkstra algorithm
and the Kruskal algorithm by means of associative parallel processors // Cy-
bernetics and System Analysis.–– 2000.–– No. 2.–– P. 19–27 (In Russian, English
translation by Plenum Press).

[10] Nepomniaschaya A.S. Associative parallel algorithms for dynamic edge update
of minimum spanning trees // Proc. 7th Int. Conf. PaCT 2003. –– Springer,
2003. –– P. 141–150. –– (Lect. Notes Comp. Sci.; 2763).

60 A. Nepomniaschaya

[11] Nepomniaschaya A.S. Efficient implementation of the Italiano algorithms for
updating the transitive closure on associative parallel processors // Funda-
menta Informaticae. –– IOS Press, 2008. –– Vol. 89, No. 2–3. –– P. 313–329.

[12] Nepomniaschaya A.S. Efficient parallel implementation of the Ramalingam
decremental algorithm for updating the shortest paths subgraph // Computing
and Informatics. –– 2013.–– Vol. 32. –– P. 331–354.

[13] Nepomniaschaya A.S. Associative version of the Ramalingam algorithm for
the dynamic update of the shortest paths subgraph after inserting a new edge
// Cybernetics and System Analysis. Kiev: Naukova Dumka, 2012.–– No. 3.––
P. 45–57 (In Russian, English translation by Springer).

[14] Nepomniaschaya A.S. Associative version of the Ramalingam decremental al-
gorithm for the dynamic all-pairs shortest-path problem // Bull. of the Novosi-
birsk Computing Center, Series: Computer Science. –– NCC Publisher, 2016.
No. 39. –– P. 37–50.

[15] Pagiamtzis K., Sheikholeslami A. Content-addressable memory (CAM) circuits
and architectures: a tutorial and survey // IEEE J. Solid-State Circuits. ––
March 2006.–– Vol. 41, No. 3. –– P. 712–727.

[16] Potter J.L. Associative Computing: A Programming Paradigm for Massively
Parallel Computers / Kent State University. –– New York; London: Plenum
Press, 1992.

[17] Ramalingam G. Bounded Incremental Computation. –– Berlin: Springer,
1996. –– (Lect. Notes Comp. Sci.; 1089).

[18] Snytnikova T.V., Snytnikov A.V. Implementation of the STAR-machine on
GPU // Bull. of the Novosibirsk Computing Center, Series: Computer Sci-
ence. –– NCC Publisher, 2016. –– No. 39. –– P. 51–60.

[19] Snytnikova T.V., Nepomniaschaya A.S. Solution of graph problems by means
of the STAR-machine being implemented on GPUs // Applied Discrete Math-
ematics. –– The Tomsk State University Publisher, 2016. –– Vol. 33, No. 3. ––
P. 98–115 (In Russian).

[20] Yavits L., Kvatinsky S., Morad A., Ginosar R. Resistive associative processor
// IEEE Computer Architecture Letters.–– 2015.–– Vol. 14, No. 2.–– P. 148–151.

