
Bull. Nov. Comp. Center, Comp. Science, 39 (2016), 37–49
c© 2016 NCC Publisher

An associative version of the Ramalingam
decremental algorithm for the dynamic all-pairs

shortest-path problem

A.S. Nepomniaschaya

Abstract. This paper proposes an efficient parallel representation of the Rama-
lingam algorithm for the dynamic update of the all-pairs shortest paths of a directed
weighted graph after deleting an edge. To this end, a model of associative parallel
systems with vertical processing (the STAR-machine) is used. The associative ver-
sion is given as a group of algorithms that provide an efficient parallel execution
on the STAR-machine of different parts of the Ramalingam decremental algorithm.
We also present the main advantages of the associative version of the Ramalingam
decremental algorithm for the dynamic update of the all-pairs shortest paths. In
the Appendix, we propose a special technique being used in the associative parallel
algorithm for finding affected vertices after the edge deletion.

1. Introduction

The associative processing is a completely different way of storing, manip-
ulating, and retreiving data as compared to traditional computation tech-
niques. Associative (content addressable) parallel processors of the SIMD
type with bit-serial (vertical) processing and simple processing elements
(PEs) perform the massively parallel search by contents and use 2D ta-
bles as the basic data structure. In particular, such an architecture is best
suited for natural and efficient implementation of graph algorithms. In [6],
we propose an abstract model of the SIMD type (the STAR-machine) that
simulates the run of such systems at the micro level. Associative paral-
lel algorithms are represented as corresponding procedures for the STAR-
machine. In [7], we present the basic associative parallel algorithms that are
used to design different associative algorithms for different applications. Of
special interest is implementation of the dynamic graph algorithms on the
STAR-machine. The aim of the dynamic algorithm is to support queries
about some properties of a graph and update the solution of a problem af-
ter dynamic changes faster than to compute the entire graph from scratch
each time with the fastest static algorithm. Let us enumerate a group of
dynamic graph algorithms implemented on the STAR-machine. In [8], we
propose two associative parallel algorithms for the dynamic edge update of
a minimum spanning tree (MST) of an undirected graph. In [9, 10], we
propose associative parallel algorithms for the dynamic reconstruction of an
MST after deleting and after inserting a new vertex along with its incident



38 A.S. Nepomniaschaya

edges. In [11], we present associative versions of the Italiano algorithms for
the dynamic update of the transitive closure of a directed graph after insert-
ing and after deleting an edge. In [12, 13], we propose associative versions of
the Ramalingam algorithms for updating the shortest paths subgraph with
a sink after inserting and after deleting an edge.

In this paper, we study the dynamic update of the all-pairs shortest paths
(APSP) by means of the STAR-machine. The commonly accepted types of
update operations for the APSP problem include insertions and deletions of
edges, update operations on edge weights, finding the shortest distance and
finding the shortest path between two vertices if any. An algorithm is called
fully dynamic if the update operations include both insertions and deletions
of edges. A partially dynamic algorithm is called incremental if it supports
only insertions, while it is called decremental if only deletions are supported.

In the case of positive edge weights, several solutions have been pro-
posed for the dynamic maintenance of the all-pairs shortest paths. Ausiello
et al. [1] propose an efficient solution for the incremental APSP problem
assuming that edge weights are restricted in the range of integers [1, C].
Chaudhuri and Zaroliagis [2] devise efficient solutions for the APSP prob-
lem for bounded treewidth graphs when the weight of edges changes. Klein
et al. [9] propose a fully dynamic solution to maintain all-pairs shortest
paths for planar graphs with unrestricted edge weights. King [4] proposes
fully dynamic algorithms for updating the all-pairs shortest paths in directed
graphs with positive integer weights less than C. Ramalingam [14] proposes
fully dynamic algorithms for updating the all-pairs shortest paths in directed
graphs with positive edge weights. Demetrescu and Italiano [3] devise fully
dynamic algorithms for the dynamic maintenance of the all-pairs shortest
paths in directed graphs with nonnegative real edge weights. Let us note
that the algorithms by Ramalingam [14, 15] are described by means of the
output bounded model in which the running time of an algorithm is analyzed
in terms of the output change rather than of the input size. Complexity of
other above-enumerated algorithms is measured in terms of the amortized
time, that is, the total worst-case time over a sequence of operations.

Here, we construct an associative version of the Ramalingam decremen-
tal algorithm for the dynamic update of the all-pairs shortest paths in a
directed graph G. This algorithm is built as a modification of its previous
algorithm for updating the shortest paths subgraph with a sink after delet-
ing an edge from G. The associative version is given as a group of algorithms
that provide an efficient parallel execution of different parts of the Rama-
lingam decremental algorithm on the STAR-machine. We also consider the
main advantages of the associative version of the Ramalingam decremental
algorithm for updating the all-pairs shortest paths. In Appendix, we pro-
pose a special technique that is used in the associative parallel algorithm for
finding affected vertices after the edge deletion.



The dynamic all-pairs shortest-path problem for an edge deletion 39

2. Preliminaries

Let G = (V,E) be a directed weighted graph with n vertices and m directed
edges (arcs). We assume that V = {1, 2, . . . , n}. Let wt denote a function
that assigns a weight to every edge.

An adjacency matrix Adj = [aij ] of a directed graph G is an n × n
Boolean matrix, where aij = 1 if and only if there is an arc from the vertex
i to the vertex j in the set E.

An arc e directed from i to j is denoted by e = (i, j), where i = tail(e)
and j = head(e). Also, if (i, j) ∈ E, then j is said to be adjacent to i.
We assume that all arcs have non-negative weights and wt(u, v) = ∞ if
(u, v) /∈ E.

The shortest path from u to w is the path of the minimum sum of weights
of its edges. Let dist(u, z) denote the weight of the shortest path from
vertex u to the distinguished vertex z called sink. Let Dist be a matrix
whose every entry dist[i, j] represents the weight of the shortest path in G
from the vertex i to the vertex j.

By analogy with Ramalingam, we introduce the following notions.

Let an arc (i, j) be deleted from G. Let AffectedV denote the set of all
vertices u in G such that all paths from u to the selected sink z include the
deleted arc (i, j).

A predicate SP(a, b, c) is defined as follows:

SP(a, b, c) ≡ (dist(a, c) = wt(a, b) + dist(b, c)) ∧ (dist(a, c) 6=∞).

This predicate verifies whether the arc (a, b) belongs to the shortest path
from the vertex a to the selected sink c.

3. The Ramalingam decremental algorithm for updating the
all-pairs shortest paths

In [14], Ramalingam represents the problem of the dynamic update of the
all-pairs shortest paths after edge deletion using the dynamic single-sink
shortest path problem after edge deletion as a subroutine but with a different
sink vertex at each call. Following Ramalingam, a vertex y is called an
affected sink if there exists such a vertex x that dist(x, y) changes after
the edge deletion. As shown in [14], the set of affected sink vertices after
deleting an edge i → j coincides with the set of all affected vertices for
the single-source shortest path problem with the source vertex i. Therefore
the decremental algorithm for the dynamic update of the all-pairs shortest
paths first determines the set of all affected sink vertices and then it applies
a modification of the decremental algorithm for the dynamic update of the
single-sink shortest paths for every affected sink vertex.



40 A.S. Nepomniaschaya

Let an arc (i, j) be deleted from G, and z be a sink.

The modification of the Ramalingam decremental algorithm for the dy-
namic update of the single-sink shortest paths consists of the following two
stages.

At the first stage, one determines the set AffectedV of all affected ver-
tices obtained after deleting the arc (i, j) from G. At the second stage, for
every affected vertex vi, one computes a new distance to the sink z.

The first stage is performed as follows. At first, AffectedV = ∅. To
construct it, an auxiliary set of vertices WorkSet is used. Initially, all arcs
(i, x) are analyzed. For every head x, one checks whether the predicate
SP(i, x, z) is not performed. If it is true, then WorkSet := {i}. Vertices in
WorkSet are sequentially updated. The current updated vertex u is deleted
from WorkSet and is included into the set AffectedV. Then all arcs (x, u)
are analyzed. For every tail x for which the predicate SP(x, u, z) is true,
one checks whether there does not exist such a non-affected head y of an arc
(x, y) for which the predicate SP(x, y, z) is true. In this case, the vertex x
is included into WorkSet.

To perform the second stage, one uses a heap PriorityQueue, whose
elements are affected vertices with a key. Initially PriorityQueue = ∅. To
build it, for every affected vertex, one first computes a current key. To this
end, for every affected vertex k, one defines non-affected heads r of the arcs
outgoing from the vertex k for which there is a path to z. Then for every
vertex r, one computes the sum wt(k, r) + dist(r, z). The current key of k
in the heap is defined as the minimum value of such sums.

After that, one updates the heap PriorityQueue as follows. At every
iteration, a vertex with the minimum key in the heap (say a) is deleted
from the set PriorityQueue. Further all the arcs (c, a) are analyzed. For
every tail c, for which wt(c, a) + dist(a, z) < dist(c, z), the current value
dist(c) is equal to distnew(c) and this value is a new key for the vertex c
in PriorityQueue. If c ∈ PriorityQueue, the previous key of c receives a
new value. Otherwise, the vertex c is included into the heap with the key
distnew(c). The process is completed after updating all vertices in the heap.

A modification of the decremental algorithm for updating distances to
the sink z is given as a function DeleteUpdate that returns a set of affected
vertices.

Finally, the Ramalingam decremental algorithm for updating the all-
pairs shortest paths runs as follows. At first, the arc i → j is deleted
from G. Then by means of the function DeleteUpdate, one defines a set of
affected sink vertices. After that, the function DeleteUpdate is applied to
every affected sink vertex.



The dynamic all-pairs shortest-path problem for an edge deletion 41

4. The associative version of the decremental algorithm for
updating the all-pairs shortest paths

As shown in [14], the decremental algorithm for the dynamic update of
the all-pairs shortest paths is based on a modification of the decremental
algorithm for updating the single-sink shortest paths. To represent this
modification on the STAR-machine, we first propose a special data structure
and build associative algorithms to perform the predicates SP(u, x, z) and
SP(y, u, z) for a given vertex u and a sink z. Then we construct associative
algorithms for finding affected vertices and new distances from them to the
sink z.

4.1. The data structure. We will use the following data structure:

• an n × n adjacency matrix Adj, whose every ith column saves with
bits ′1′ the heads of arcs outgoing from the vertex i;

• an n × n adjacency matrix Adj1, whose every ith column saves with
bits ′1′ the vertices for which there is the shortest path from the vertex
i;

• an n× hn matrix Weight that consists of n fields having h bits each.
The weight of an arc (i, j) is written in the jth row of the ith field;

• an n×hn matrix Cost that consists of n fields having h bits each. The
weight of an arc (i, j) is written in the ith row of the jth field;

• an n×hn matrix Dist that consists of n fields having h bits each. The
distance from the vertex i to the vertex j is written in the jth row of
the ith field;

• an n × hn matrix Dist1 that consists of n fields having h bits each.
The distance from the vertex i to the vertex j is written in the ith row
of the jth field;

• a slice AffectedV that saves with bits ′1′ the positions of all affected
vertices.

Let us note that the ith field of the matrix Weight saves the weights of
arcs outgoing from the vertex i, while the ith field of the matrix Cost saves
the weights of arcs entering the vertex i. Moreover, every jth row of the
matrix Adj saves with bits ′1′ the tails of arcs entering the vertex j, while
every jth row of the matrix Adj1 saves the vertices from which there is the
shortest path entering the vertex j.

4.2. Associative algorithms for performing predicates SP(u, x, z)
and SP(y, u, z). Here, we present two associative algorithms for concur-
rent execution of predicates both for the heads of arcs outgoing from a given



42 A.S. Nepomniaschaya

vertex and for the tails of arcs entering it. Observe that these algorithms
are used for finding affected vertices.

Let an arc (i, j) be deleted from G. Let z be a sink.

We first propose an associative algorithm (say, Algorithm A1) for parallel
execution of a group of predicates SP(u, x, z) for the heads of arcs outgoing
from the vertex u. This algorithm uses the matrices Adj, Adj1, Weight,
Dist, and Dist1. It performs the following steps.

Step 1. By means of a slice, say X, save non-affected heads of arcs (u, l)
from which there is the shortest path to z.

Step 2. Save the uth field of the matrix Weight by means of a matrix,
say R1.

Step 3. Save the zth field of the matrix Dist1 by means of a matrix, say
R2.

Step 4. Knowing the matrices R1 and R2 and the slice X, compute the
weights of different paths from the vertex u to z. Save the results in a
matrix, say R3.

Step 5. Knowing the matrix Dist, save the distance from u to z by
means of a variable, say v.

Step 6. By means of the basic procedure MATCH(R3, v,X, Y ), define
the heads of the arcs outgoing from u for which the corresponding predicates
SP(u, x, z) are true.

On the STAR-machine, the algorithm is given as the procedure Compute-
Pred1. It returns a slice to save by bits ′1′ non-affected heads of the arcs
(u, x) for which the corresponding predicates are true.

Now, we present an associative algorithm (say, Algorithm A2) for parallel
execution of a group of predicates SP(x, u, z) for the tails of arcs entering
the vertex u. This algorithm uses the matrices Cost, Adj, Dist, and Dist1.
It performs the following steps.

Step 1. Save the tails of arcs entering the vertex u in the matrix Adj by
means of a slice, say Y .

Step 2. Save the uth field of the matrix Cost by means of a matrix, say
R1.

Step 3. Knowing the matrix Dist, save the distance from u to z by
means of a variable, say v.

Step 4. Knowing the matrix R1 and the variable v, compute the weights
of different paths to z starting from the vertices saved in the slice Y . Write
the results in a matrix, say R2.

Step 5. Save the zth field of the matrix Dist1 by means of a matrix, say
R3.

Step 6. By means of the basic procedure HIT(R2, R3, Y, Y1), define the
tails of arcs entering u for which the corresponding predicates SP(x, u, z)
are true.



The dynamic all-pairs shortest-path problem for an edge deletion 43

On the STAR-machine, the algorithm is given as the procedure Com-
putePred2. It returns a slice that saves tails of the arcs (x, u) for which the
corresponding predicates are true.

4.3. Associative algorithms for finding affected vertices and new
distances to a sink. Here, we first provide an associative parallel algo-
rithm (say Algorithm A) for selecting a set of affected vertices obtained after
deleting the arc (i, j). This algorithm uses, in particular, the slices WS and
AffectedV. It performs the following steps.

Step 1. Set zeros into the slices AffectedV and WS. Let a slice Y save
the heads of arcs outgoing from the vertex i that start the shortest paths to
the sink z.

Step 2. Update the predicates SP(i, x, z) for the heads of the arcs (i, x)
belonging to the slice Y . Let the procedure ComputePred1 return a slice,
say Y1.

Step 3. If Y1 6= ∅, go to exit. Otherwise, include the vertex i into WS.
Step 4. While WS 6= ∅, perform the following actions:
– delete the position of the first bit ′1′ (say k) from the slice WS. Include

the vertex k into the slice AffectedV;
– update the predicates SP(x, k, z) for the tails of the arcs (x, k). Let a

slice Y2 save the result of the procedure ComputePred2;
– update every vertex u from the slice Y2 in the following way. At first,

perform the procedure ComputePred1. If it returns an empty slice, insert
the vertex u into the slice WS.

On the STAR-machine, this algorithm is implemented as the procedure
FindAffectedVert.

Now we propose an associative parallel algorithm (say Algorithm B) for
finding initial distances from all the affected vertices to the sink z. This
algorithm uses, in particular, the slice AffectedV and the matrices Weight

and Dist1. It constructs a matrix Queue whose every ith row saves the initial
distance from the affected vertex i to z. The algorithm runs as follows.

While AffectedV 6= ∅, perform the following steps.
Step 1. Select the uppermost vertex, say k, in the slice AffectedV and

update it as follows.
Step 2. By analogy with Step 1 of Algorithm A, define a slice, say X,

to save the non-affected heads of the arcs outgoing from the vertex k that
belong to different paths from k to z.

Step 3. Knowing the slice X, the kth field of the matrix Weight and the
zth field of the matrix Dist1, compute in parallel the weights of different
paths from k to z and save them in a matrix, say F .

Step 4. Define the initial distance from k to z as the weight of the
minimum value in the matrix F . Write this value in the kth row of the
matrix Queue.



44 A.S. Nepomniaschaya

On the STAR-machine, this algorithm is implemented as procedure Find-
CurrentDist.

Let us consider an associative parallel algorithm (say Algorithm C) for
finding a new distance from every affected vertex to z. This algorithm uses,
in particular, the slice AffectedV and the matrices Queue, Cost, Dist, and
Dist1. It runs as follows.

While AffectedV 6= ∅, perform the following steps.
Step 1. Knowing the current slice AffectedV, define the position of the

matrix Queue row, say k, where a minimum weight γ is written. The new
distance from the affected vertex k to z is defined as γ. Write this value
both in the matrix Dist and in the matrix Dist1. Delete the vertex k from
the slice AffectedV.

Step 2. By means of a slice, say X, save tails of the arcs entering the
vertex k. Knowing the kth field of the matrix Cost and the new distance
from k to z, define in parallel the weights of paths to z each starting with
an arc (l, k), where l belongs to the slice X. Save these weights in a matrix,
say R1.

Step 3. Knowing the current affected vertices, find positions of the matrix
R1 rows, where ROW(i, R1) < ROW(i, Queue). Then replace the matrix
Queue rows with the corresponding rows of the matrix R1.

On the STAR-machine, this algorithm is implemented as procedure Find-
NewDist.

Remark. The implementation of the algorithms A, B, and C will be given
in the full paper. In the Appendix, we propose the implementation of asso-
ciative algorithms for performing the predicates SP (u, x, z) and SP (y, u, z)
on the STAR-machine.

Let us represent the modification of the decremental algorithm for up-
dating the single-sink shortest paths on the STAR-machine. It performs in
succession the above algorithms A, B, and C. On the STAR-machine, it is
given as procedure DeleteUpdate that returns the slice AffectedV and the
current matrices Dist and Dist1.

procedure DeleteUpdate(i,h,z: integer; Adj,Adj1: table;

Weight,Cost: table; var Dist,Dist1: table;

var AffectedV: slice(Adj));

/* Here, h is the number of bits for coding the infinity, z is the sink,
and (i, j) is the arc to be deleted from G. */

Begin

FindAffectedVert(i,z,Adj,Adj1,AffectedV);

/* The procedure returns the slice AffectedV that saves affected vertices
obtained after deleting (i, j) from G. */



The dynamic all-pairs shortest-path problem for an edge deletion 45

FindCurrentDist(h,z,Adj,Adj1,AffectedV,Weight,Dist1,Queue);

/* The procedure returns the matrix Queue whose every kth row saves
a current distance from the affected vertex k to z. */

FindNewDist(h,z,Adj,Adj1,AffectedV,Cost,Queue,Dist,Dist1);

/* The procedure computes a new distance from every affected vertex to z
and saves it in matrices Dist and Dist1. */

End;

The associative version of the Ramalingam decremental algorithm for
updating the all-pairs shortest paths runs as follows. At first, the arc i→ j
is deleted from G. Then by means of the Algorithm A, one defines the set
of affected sink vertices. After that the procedure DeleteUpdate is applied
to every affected sink vertex.

procedure DeleteEdge(i,j,h: integer; Weight,Cost: table;

var Adj,Adj1: table; var Dist,Dist1: table);

/* The arc (i, j) will be deleted from the graph G, h is the number of bits
for coding the infinity. */

var X,AffectedSinks: slice(Adj); z: integer;

Begin X:=COL(i,Adj); X(j):=’0’; COL(i,Adj):=X;

/* The arc (i, j) is deleted from G. */

FindAffectedVert(i,j,Adj,Adj1,AffectedV);

AffectedSinks:=AffectedV;

while SOME(AffectedSinks) do.

begin z:=STEP(AffectedSinks);

DeleteUpdate(i,h,z,Adj,Adj1,Weight,Cost,Dist,

Dist1,AffectedV);

end;

End;

Let us enumerate the main advantages of the associative version of
the Ramalingam decremental algorithm for updating the all-pairs shortest
paths:

1. For every affected vertex u and the sink z, the associative version
simultaneously computes the predicates SP(u, x, z) for all heads of
arcs outgoing from the vertex u and the predicates SP(y, u, z) for all
tails of arcs entering the vertex u.

2. For every affected vertex u and the sink z, the associative version
simultaneously determines the weights of paths from u to z and writes
the minimum value of these weights in the corresponding row of the
matrix Queue.



46 A.S. Nepomniaschaya

3. After selecting a new distance from the current affected vertex k to z,
the associative version simultaneously computes the weights of paths
to z each starting from the arc entering the vertex k and saves them in
a matrix, say R1. After that one simultaneously replaces the matrix
Queue rows, where ROW(i, R1) < ROW(i, Queue), with the corre-
sponding rows of the matrix R1.

5. Conclusions

We have proposed a parallel representation of the Ramalingam decremental
algorithm for updating the all-pairs shortest paths on the STAR-machine
having no less than n PEs. We have also selected the main advantages of
the associative version of the Ramalingam decremental algorithm. In the
Appendix, we have presented a special technique that allows one to execute
in parallel some parts of the Ramalingam decremental algorithm.

In the full paper, we will present the implementation on the STAR-
machine of the associative version of the Ramalingam decremental algorithm
for updating the all-pairs shortest paths.

We are planning to design an associative version of the Ramalingam
incremental algorithm for updating the all-pairs shortest paths.

References

[1] Ausiello G., Italiano G.F., Marchetti-Spaccamela A., Nanni U. Incremental al-
gorithms for minimal length paths // Journal of Algorithms.–– 1991.–– Vol. 12,
No. 4. –– P. 615–638.

[2] Chaudhuri S., Zaroliagis C.D. Shortest path queries in digraphs of small
treewidth // Proc. Int. Colloquium on Automata Languages, and Program-
ming. Szeged, Hunhary, July 10–14, 1995. –– Springer, 1995. –– P. 244–255. ––
(Lect. Notes Comp. Sci.; 944)

[3] Demetrescu C., Italiano G.F. Fully dynamic all-pairs shortest paths with real
edge weights // Proc. 42nd IEEE Annual symposium on foundations of com-
puter science (FOCS’01), Las Vegas, Nevada.–– 2001. –– P. 260–267.

[4] King V. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs // Proc. 40th IEEE Symposium on Foundations
of Computer Science (FOCS’99). –– 1999.–– P. 81–99.

[5] Klein P.N., Rao S., Rauch M., Subramanian S. Faster shortest path algorithms
for planar graphs // Proc. ACM Symposium on Theory of Computing. Mon-
treal, Quebec, Canada, May 23–25. –– 1994.–– P. 27–37.

[6] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. –– IOS Press, 2000. –– Vol. 43. –– P. 227–243.



The dynamic all-pairs shortest-path problem for an edge deletion 47

[7] Nepomniaschaya A.S. Basic associative parallel algorithms for vertical pro-
cessing systems // Bull. Novosibirsk Comp. Center. Ser. Computer Science.––
Novosibirsk, 2009. –– IIS Special Iss. 29. –– P. 63–77.

[8] Nepomniaschaya A.S. Associative parallel algorithms for dynamic edge update
of minimum spanning trees // Proc. 7th Int. Conf. PaCT 2003. –– Springer,
2003. –– P. 141–150. –– (Lect. Notes Comp. Sci.; 2763).

[9] Nepomniaschaya A.S. Associative parallel algorithm for dynamic reconstruct-
ing a minimum spanning tree after deletion of a vertex. // Proc. 8th Int. Conf.
PaCT, 2005.–– Springer, 2005.–– P. 151–173.–– (Lect. Notes Comp. Sci.; 3606).

[10] Nepomniaschaya A.S. Associative parallel algorithm for the dynamic update
of a minimum spanning tree after insertion of a new vertex // Cybernetics and
System Analysis. –– Kiev: Naukova Dumka, 2006.–– No. 1.–– P. 19–31 (In Rus-
sian). (English translation by Plenum Press).

[11] Nepomniaschaya A.S. Efficient implementation of the Italiano algorithms for
updating the transitive closure on associative parallel processors // Funda-
menta Informaticae. –– IOS Press, 2008. –– Vol. 89. –– No. 2–3. –– P. 313–329.

[12] Nepomniaschaya A.S. Associative version of the Ramalingam decremental al-
gorithm for dynamic updating the single-sink shortest paths subgraph // Proc.
10th Int. Conf. on Parallel Computing Technologies, PaCT-2009, Novosibirsk,
Russia. –– Springer, 2009. –– P. 257–268.–– (Lect. Notes Comp. Sci.; 5698).

[13] Nepomniaschaya A.S. Associative version of the Ramalingam algorithm for the
dynamic update of the shortest paths subgraph after inserting a new edge //
Cybernetics and System Analysis. –– Kiev: Naukova Dumka, 2012. –– No. 3. ––
P. 45–57 (In Russian). (English translation by Springer).

[14] Ramalingam G. Bounded Incremental Computation.–– Springer, 1996.–– (Lect.
Notes Comp. Sci.; 1089).

Appendix

We provide two auxiliary procedures ComputePred1 and ComputePred2
that are used for finding affected vertices after the edge deletion from G.

The procedure ComputePred1 simultaneously defines the non-affected
heads of arcs outgoing from a given vertex u for which the predicates
SP(u, x, z) are true. It uses, in particular, the matrices Adj, Adj1, Weight,
Dist, and Dist1. It returns a slice to save by bits ′1′ the above-mentioned
heads of arcs.

Let us briefly explain the main idea of this procedure. We first define
positions of arcs (u, x) that belong to different paths from u to z. Then we
define the weights of these paths. After selecting the distance from u to z,
we save positions of those arcs that belong to the shortest path from u to z.



48 A.S. Nepomniaschaya

procedure ComputePred1(h,u,z: integer; AffectedV: slice(Adj);

Adj,Adj1: table; Weight,Dist,Dist1: table;

var Y: slice(Adj));

var l1,l2: integer; X,X1,X2: slice(Adj); R1,R2,R3: table;

v: word(Dist); v1: word(Adj); w1: word(R1);

Begin X1:=COL(u,Adj);

/* The slice X1 saves the heads of arcs outgoing from u. */

v1:=ROW(z,Adj1); X2:=CONVERT(v1);

/* The slice X2 saves the vertices from which there is the shortest path to z. */

X:=X1 and X2;

X:=X and (not AffectedV);

/* The slice X saves non-affected heads of arcs outgoing from u that belong to
different paths from u to z. */

TCOPY1(Weight,u,h,R1);

TCOPY1(Dist1,z,h,R2);

ADDV(R1,R2,X.R3);

/* The matrix R3 saves the weights of different paths from u to z. */

v1:=ROW(z,Dist1);

l1:=1+(u-1)h; l2:=uh;

w1:=TRIM(l1,l2,v1);

/* The row w1 saves the distance from u to z. */

MATCH(R3,w1,X,Y);

/* The slice Y saves positions of the matrix R3 rows that coincide with
the distance from u to z. */

End;

The procedure ComputePred2 simultaneously defines the tails of arcs en-
tering a given vertex u for which the predicates SP(y, u, z) are true. It uses,
in particular, the matrices Adj, Adj1, Weight, Dist, and Dist1. It returns
a slice to save by bits ′1′ the mentioned above tails of arcs.

Explain briefly the main idea of this procedure. We first define the
weights of arcs entering the vertex u. After selecting the distance from u
to z, we define the weights of different paths to z, that start from the tails
of arcs entering u. Then we select the different distances to z starting from
the tails of arcs entering u. Finally, we compare these distances with the
weights of the corresponding paths to z.

procedure ComputePred2(h,u,z: integer; Adj: table;

Cost,Dist,Dist1: table; var Y: slice(Adj));

var l1,l2: integer; X: slice(Adj); R1,R2,R3: table;

v: word(Dist); v1: word(Adj); v2: word(R1);

Begin v1:=ROW(u,Adj); X:=CONVERT(v1);



The dynamic all-pairs shortest-path problem for an edge deletion 49

/* The slice X saves the tails of arcs entering u. */

TCOPY1(Cost,u,h,R1);

/* The matrix R1 saves the weights of arcs entering u. */

v:=ROW(z,Dist);

l1:=1+(u-1)h; l2:=uh;

v2:=TRIM(l1,l2,v);

/* The row v2 saves the distance from u to z. */

ADDC(R1,v2,X,R2);

/* The matrix R2 saves the weights of different paths to z starting from
the tails of arcs entering u. */

TCOPY1(Dist1,z,h,R3);

/* The matrix R3 saves different distances to z. */

HIT(R2,R3,X,Y);

/* The slice Y saves positions of the matrix R2 rows that coincide with
the corresponding distances to z. */

End;

The correctness of these procedures is proved by contradiction. Let us
note that these procedures take O(h) time each because they apply the basic
procedures [7].



50


