
Bull. Nov. Comp.Center, Comp. Science, 32 (2011), 93–106
c⃝ 2011 NCC Publisher

Decremental associative algorithm for updating
the shortest paths tree

A. S. Nepomniaschaya

Abstract. The paper proposes an efficient associative algorithm for dynamic up-
date of the shortest paths tree of a directed weighted graph after deletion of an
edge. To this end, we use the STAR–machine that simulates the run of associative
(content addressable) parallel systems of the SIMD type with bit–serial (vertical)
processing. We provide a data structure that allows us to perform access to data
by contents. On the STAR–machine, the associative algorithm is represented as
the main procedure DeleteArcSPT that uses a group of auxiliary procedures. By
means of the auxiliary procedures, we execute some parts of the associative parallel
algorithm for dynamic update of the shortest paths tree after deleting an arc from
the graph. We prove correctness of the procedure DeleteArcSPT and all its parts.
On the STAR–machine, this procedure takes O(hk) time, where h is the number
of bits required for coding the maximum of the shortest paths weights and k is the
number of vertices, whose shortest paths change after deleting an edge from the
given graph.

1. Introduction

In many applications, graphs are subject to discrete changes, such as
insertions and deletions of edges or vertices. The objective of a dynamic
algorithm is to efficiently update the solution to a problem after dynamic
changes rather than to recompute the entire graph from scratch each time.

The dynamic version of the single source shortest paths problem con-
sists in updating the shortest paths information after every change on the
graph. The most general types of update operations for the single source
shortest paths problem include insertions and deletions of edges and update
operations on the edge weights. An algorithm is called fully dynamic if arbi-
trary sequences of the above operations are allowed, and it is called partially
(semi−) dynamic if only one type of the update is allowed. A partially dy-
namic algorithm is called incremental if it supports only insertions of edges,
while it is called decremental if it supports only deletions of edges.

In the case of arbitrary real edge weights, Ramalingam and Reps [11,
12] devise fully dynamic algorithms for updating the single source shortest
paths using the output bounded model. In this model, the running time of
an algorithm is analyzed in terms of the output change rather than the input
size. The authors assume that the graph has no negative–length cycles be-
fore and after the input update. Frigioni et al. [3] study the semi–dynamic

94 A. S. Nepomniaschaya

single source shortest paths problem for both directed and undirected graphs
with positive real edge weights in terms of the output complexity. Frigioni et
al. [4] propose fully dynamic algorithms for updating the distances and the
shortest paths tree (SPT) in either a directed or an undirected graph with
positive real edge weights under arbitrary sequences of edge updates. The
cost of the update operations is given as a function of the number of output
updates by using the notion of k-bounded accounting function. Frigioni et
al. [5] propose the fully dynamic solution for the problem of updating the
shortest paths from a given source in a directed graph with arbitrary edge
weights. The authors devise a new algorithm for performing edge deletions
and weight increases that explicitly deals with zero–length cycles. In [6], we
propose an efficient parallel implementation of the Ramalingam decremen-
tal algorithm [11] for dynamic update of the shortest-paths subgraph SP (G)
that consists of all shortest paths from every vertex of a given directed graph
G to the sink. Our model of computation (the STAR–machine) simulates
the run of associative (content addressable) parallel systems of the SIMD
type with bit–serial (vertical) processing. The associative version of this
algorithm is given as the procedure DeleteArc, whose correctness is proved.
We obtain that this procedure takes time proportional to the number of
vertices, for which the shortest paths to the sink change after deleting an
edge from SP (G). Following [2], it is assumed that each elementary opera-
tion of the STAR–machine (its microstep) takes one unit of time. In [8], we
propose an efficient parallel implementation of the Ramalingam incremen-
tal algorithm for dynamic update of the single-sink shortest-paths subgraph
SP (G). The associative version of the Ramalingam incremental algorithm
is given as the procedure InsertArc, whose correctness is proved. We obtain
that this procedure takes the same O(hk) time as in the case of the pro-
cedure DeleteArc. We also present the main advantages of the associative
version of the Ramalingam incremental algorithm.

In this paper, we propose an efficient associative algorithm for dynamic
update of the SPT of a directed weighted graph G after deletion of an
edge. To this end, we propose a data structure that allows us to perform
access to data by contents. On the STAR–machine, the associative algorithm
is represented as the main procedure DeleteArcSPT that uses a group of
auxiliary procedures. By means of the auxiliary procedures, we execute some
parts of the associative parallel algorithm for updating SPT after deleting
an arc from G. We prove correctness of the procedure DeleteArcSPT and
all its parts. We obtain that this procedure takes O(hk) time, where h is
the number of bits required for coding the maximum of the shortest paths
weights and k is the number of vertices, whose shortest paths change after
deleting an edge from G.

Decremental associative algorithm for updating the shortest paths tree 95

2. An associative parallel machine model

In this section, we first recall the main operations of the STAR–machine.
The description of the model is given, for example, in [7].

Let us present some elementary operations and a predicate for slices.

Let X and Y be variables of the type slice and i be a variable of the
type integer. We use the following operations:

SET(Y) simultaneously sets all components of Y to ′1′;

CLR(Y) simultaneously sets all components of Y to ′0′;

Y (i) selects the i-th component of Y ;

FND(Y) returns the number i of the first (the uppermost) ′1′ of Y , i ≥ 0;

STEP(Y) returns the same result as FND(Y), then resets the first ′1′

found to ′0′;

CONVERT(Y) returns a row, whose every i-th bit coincides with Y (i).
It is applied when a row of one matrix is used as a slice for another matrix.

The operations FND(Y), STEP(Y), and CONVERT(Y) are used only
as the right part of the assignment statement, while the operation Y (i) is
used as both the right part and the left part of the assignment statement.

To execute the data parallelism, we introduce in the usual way the bitwise
Boolean operations: X andY , X or Y , not Y , X xor Y . We also use a
predicate SOME(Y) that results in true if there is at least a single bit ′1′

in the slice Y . For simplicity, the notation Y ̸= ∅ means that the predicate
SOME(Y) results in true.

Note that the predicate SOME(Y) and all operations for the type slice
are also performed for the type word.

Let T be a variable of the type table. We employ the following elemen-
tary operations:

ROW(i, T) returns the i-th row of the matrix T ;

COL(i, T) returns its i-th column.

Note that the STAR statements are defined in the same manner as for
Pascal. We will use them later for presenting our procedures.

Now, we recall a group of basic procedures [9, 10] implemented on the
STAR–machine which will be used later on. These procedures use the given
slice X to indicate with ′1′ the row positions used in the corresponding
procedure. In [9, 10], we have shown that the basic procedures take O(r)
time each, where r is the number of bit columns in the corresponding matrix.

The procedure MATCH(T,X,w,Z) determines the positions of the rows
of the matrix T that coincide with the given pattern w. It returns the slice
Z, where Z(i) =′ 1′ if and only if ROW(i, T) = w and X(i) =′ 1′.

The procedure MIN(T,X,Z) finds the positions of rows in the given
matrix T where the minimal element is located. These positions are marked
with ′1′ in the result slice Z.

96 A. S. Nepomniaschaya

The procedure SETMIN(T, F,X,Z) finds the positions of the rows of
the matrix T that are less than the corresponding rows of the matrix F .
It returns the slice Z, where Z(i) =′ 1′ if ROW(i, T) <ROW(i, F) and
X(i) =′ 1′.

The procedure TCOPY1(T, j, h, F) writes h columns from the given
matrix T , starting from the (1+ (j− 1)h)-th column, into the result matrix
F (j ≥ 1).

The procedure TMERGE(T,X, F) writes the rows of the matrix T , that
correspond to positions ′1′ in the slice X, into the matrix F . Other rows of
the matrix F are not changed.

The procedure ADDV(T, F,X,R) writes into the matrix R the result
of parallel addition of the corresponding rows of matrices T and F , whose
positions are selected with ′1′ in the slice X. This algorithm uses the table
5.1 from [2].

The procedure ADDC(T,X, v, F) adds the binary word v to the rows
of the matrix T selected with ′1′ in X, and writes down the result into the
corresponding rows of the matrix F . Other rows of the matrix F are set to
zero.

3. Preliminaries

Let G = (V,E) be a directed weighted graph with the set of vertices V =
{1, 2, . . . , n} and the set of directed edges (arcs) E. Let wt(e) denote a
function that assigns a weight to every edge e. We assume that |V | = n
and |E| = m. We also assume that all arcs have a non–negative weight and
wt(u, v) = ∞ if (u, v) /∈ E.

For the considered problem, the infinity will be implemented by the value∑n
i=1 ci, where ci is the maximum weight of arcs outgoing from the vertex

i. Let h be the number of bits for coding this sum.
An arc e directed from u to v is denoted by e = (u, v), where u is the

father of e and v is its son.
An adjacency matrix Adj = [aij] of a directed graph G is an n×n Boolean

matrix, where aij = 1 if and only if there is an arc from the vertex i to the
vertex j in the set E.

The shortest path from v1 to vk in G is a finite sequence of vertices
v1, v2, . . . , vk, where (vi, vi+1) ∈ E (1 ≤ i < k) and the sum of weights of the
corresponding arcs is minimal. Let dist(l) denote the length of the shortest
path from v1 to l.

A tree of the shortest paths Ts is a connected acyclic subgraph of G which
contains all graph vertices and is such that the path from s to any vertex
v in Ts is the shortest path from s to v in G. A leaf in a tree is a vertex
that has no outgoing arcs. The height of a tree is the number of arcs in the
longest path from the root to a leaf.

Decremental associative algorithm for updating the shortest paths tree 97

Let an arc (i, j) be deleted from the graph G. A vertex y is called
affected after deleting the arc (i, j) from the shortest paths tree Ts if there
is no path from s to the vertex y.

4. Associative parallel algorithm for updating the shortest
paths tree

In this section, we first propose the data structure. Then we provide an
associative parallel algorithm for dynamic update of the SPT after deleting
an arc from a given graph G with a selected source vertex s called the root.
We observe that the initial shortest paths tree is obtained by means of the
classical Dijkstra algorithm [1].

We will employ the following data structure:

– an n× n adjacency matrix G, whose every i-th column saves with the
bit ′1′ the sons of the vertex i;

– an n× n adjacency matrix SPT , whose every i-th column saves with
the bit ′1′ the sons of the vertex i that belong to the shortest paths tree;

– an n × hn matrix Weight that contains the arc weights as entries. It
consists of n fields having h bits each. The weight of an arc (i, j) is written
in the j-th row of the i-th field;

– an n × hn matrix Cost that contains the arc weights as entries. It
consists of n fields having h bits each. The weight of an arc (i, j) is written
in the i-th row of the j-th field;

– an n×h matrix Dist, whose every i-th row saves the shortest distance
from the root s to the vertex i;

– a slice AffectedV that saves with ′1′ the positions of all affected
vertices.

We observe that the i-th field of the matrix Weight saves the weights
of arcs outgoing from the vertex i, while the i-th field of the matrix Cost
saves the weights of arcs entering the vertex i. Moreover, every j-th row of
the matrix G saves with ′1′ different fathers of the vertex j.

Our algorithm for the dynamic update of the shortest paths tree is based
on the main idea of the Ramalingam decremental algorithm. Let an arc (i, j)
be deleted from G and Ts. We observe that every vertex in a tree has a single
father. Therefore after deleting the arc (i, j) from Ts, the vertex j becomes
an affected one. Moreover, all vertices belonging to the subtree Tj are also
affected and there is no another affected vertex in Ts.

We first propose an associative parallel algorithm for finding the affected
vertices and affected arcs (say Algorithm 1) obtained after deleting the arc
(i, j) from the shortest paths tree.

The idea underlying this algorithm is as follows. We determine the
vertices that belong to the connected component including the vertex j. The

98 A. S. Nepomniaschaya

associative parallel algorithm uses the matrix SPT , the slice AffectedV and
an auxiliary slice, say Z. It performs the following steps.

Step 1. Simultaneously include the sons of the vertex j into the slices
AffectedV and Z. Include the vertex j into the slice AffectedV . Then
simultaneously delete from the matrix SPT the arcs leaving the vertex j.

Step 2. While Z ̸= ∅, perform the following actions:

– delete the position of the first bit ′1′ (say r) from the slice Z;

– by means of a slice, save the sons of the vertex r;

– delete from the matrix SPT the arcs leaving the vertex r;

– include all sons of the vertex r into the slices AffectedV and Z.

On the STAR–machine, this algorithm is implemented as the procedure
AffectedVertSPT.

An associative parallel algorithm for computing new distances from the
root to all affected vertices (say Algorithm 2) uses the slice AffectedV and
the matrices G, Cost, and Dist. It runs as follows.

While AffectedV ̸= ∅, determine a new distance from the root to every
affected vertex by means of the following steps.

Step 1. Select the position of the current vertex k in the slice AffectedV
and mark it with zero.

Step 2. Compute in parallel the weight of every path in the matrix G
from the root to the vertex k that does not include affected vertices.

Step 3. Select the minimal distance from the root to k and write it down
into the k-th row of the matrix Dist.

On the STAR–machine, this algorithm is implemented as the procedure
NewDistSPT.

An associative parallel algorithm for updating the arcs leaving an af-
fected vertex k (say Algorithm 3) uses the slice AffectedV , and the matrices
Weight and Dist. It performs the following steps.

Step 1. Knowing the slice AffectedV and the distance from the root to
the vertex k, simultaneously save the weights of paths in G from the root
to every affected vertex r that is the son of k.

Step 2. By means of a slice (say Y), save positions of those sons r of
the vertex k, for which distnew(r) < distold(r). Then write distnew(r) in the
corresponding rows of the matrix Dist.

On the STAR–machine, this algorithm is implemented as the procedure
OutgoingArcsSPT.

Now we provide the associative parallel algorithm for dynamic update of
the shortest paths tree after deleting the arc (i, j) from G. It performs the
following steps.

Step 1. Delete the position of the arc (i, j) from the matrix G. If
(i, j) /∈ SPT , then go to exit. Otherwise, delete the position of this arc
from the matrix SPT .

Decremental associative algorithm for updating the shortest paths tree 99

Step 2. Construct the slice AffectedV and delete affected arcs from the
matrix SPT .

Step 3. Determine new distances from the root to all affected vertices
and write them in the corresponding rows of the matrix Dist.

Step 4. While AffectedV ̸= ∅, update affected vertices taking into
account their new distances from the root as follows:

– knowing the slice AfectedV and the matrix Dist, determine the posi-
tion of an affected vertex k having the minimum distance from the root and
delete k from the slice AffectedV ;

– determine the father p of the vertex k and include the position of the
arc (p, k) into the matrix SPT ;

– recompute the distances from the root to those affected vertices r, for
which the vertex k is their father in G and distnew(r) < distold(r). Write
distnew(r) in the corresponding rows of the matrix Dist.

On the STAR–machine, it is implemented as the procedure DeleteArc-
SPT.

5. Implementation of the associative algorithm for updating
the SPT on the STAR–machine

In this section, we first provide three auxiliary procedures. Then we propose
the procedure DeleteArcSPT.

Let us consider the procedure AffectedVertSPT. Knowing the vertices i
and j and the current matrix SPT , it returns the slice AffectedV and
deletes the positions of affected arcs from the matrix SPT .

procedure AffectedVertSPT(i,j: integer; var SPT: table;

var AffectedV: slice(G));

/* The arc (i, j) has been deleted from G and SPT. */
var X,Y,Z: slice(G);

r: integer;

1. Begin CLR(Y); AffectedV:=COL(j,SPT);

2. Z:=COL(j,SPT); AffectedV(j):=’1’;

3. COL(j,SPT):=Y;

/* We write zeros into the j-th column of the matrix SPT. */
4. while SOME(Z) do

5. begin r:=STEP(Z);

6. X:=COL(r,SPT); COL(r,SPT):=Y;

/* The arcs leaving the vertex r are deleted from SPT. */
7. AffectedV:=AffectedV or X;

8. Z:=Z or X;

9. end;

10. End.

100 A. S. Nepomniaschaya

Lemma 1. Let an arc (i, j) be deleted from the shortest paths tree Ts. Then
the procedure AffectedVertSPT returns the slice AffectedV, where
positions of affected vertices are marked with ′1′. Moreover, it deletes from
the SPT all arcs outgoing from every affected vertex.

Proof. (Sketch.) To prove the lemma, we have to show that after per-
forming the procedure AffectedVertSPT every vertex l from the subtree Tj

belongs to the slice AffectedV and the l-th column of the matrix SPT
consists of zeros. We prove this by induction in terms of the height q of the
subtree Tj .

Basis is checked for q = 1. After performing lines 1–3, the slice Y consists
of zeros, the slice Z saves the sons of the vertex j, the slice AffectedV saves
the vertex j along with its sons, and the j-th column of the matrix SPT
consists of zeros. Now we perform the cycle while SOME(Z) do (lines 5–9).
After performing lines 5–6, the slice X = ∅ because any vertex r marked
with ′1′ in Z is a leaf in Tj and the r-th column of the matrix SPT consists
of zeros. After performing lines 7–8, none new vertex is included into the
slices AffectedV and Z. After updating the last vertex from Z, we obtain
Z = ∅. Therefore we go to the exit.

Step of induction. Let the assertion be true for any subtree Tl of the
height q ≥ 1. We prove the lemma for the subtree Tj of the height q + 1.
By the inductive hypothesis, after updating any subtree Tl of the height q,
all vertices of Tl are included into the slice AffectedV and all arcs leaving
every vertex of Tl are deleted from the matrix SPT .

Consider the update of the subtree Tj of the height q + 1. By analogy
with the basis, after performing lines 1–3, the slice AffectedV saves the
vertex j along with its sons and all arcs leaving the vertex j are deleted
from the matrix SPT . Now every son r of the vertex j in Tj becomes a root
of a subtree Tr, whose height is no greater than q. Therefore we apply the
inductive hypothesis to every such a subtree. After updating the last vertex
in the slice Z, the slice AffectedV includes all vertices of the subtree Tj

and all arcs leaving every vertex of Tj are deleted from the matrix SPT .
This completes the proof.

Now we provide the procedure NewDistSPT that determines new dis-
tances from s to all affected vertices. It returns the updated matrix Dist.

procedure NewDistSPT(h: integer; G: table; Cost: table;

AffectedV: slice(G); var Dist: table);

var v: word(G); v1: word(Dist);

X,Z,Z1: slice(G);

W1,W2: table;

k,r: integer;

1. Begin X:=AffectedV;

Decremental associative algorithm for updating the shortest paths tree 101

2. while SOME(X) do

3. begin k:=FND(X); v:=ROW(k,G);

4. Z:=CONVERT(v);

/* The slice Z saves fathers of arcs entering k in G. */

5. Z1:=Z and (not AffectedV);

/* The slice Z1 saves those vertices from Z that

are not affected. */

6. TCOPY1(Cost,k,h,W1);

7. ADDV(Dist,W1,Z1,W2);

/* W2 saves different distances from the root to k. */
8. MIN(W2,Z1,Z);

9. r:=FND(Z); v1:=ROW(r,W2);

10. ROW(k,Dist):=v1;

/* The new distance from the root to k is written

in the k-th row of the matrix Dist. */

11. X(k):=’0’;

12. end;

13. End.

Lemma 2. Let h be the number of bits for coding the infinity. Let the slice
AffectedV and the current matrices G, Cost, and Dist be given. Then
the procedure NewDistSPT returns the updated matrix Dist that saves new
distances from the root to all affected vertices.

Proof. We prove this by induction on the number of affected vertices l.
Basis is checked for l = 1. After performing lines 1–4, the slice X is a

copy of the slice AffectedV , k = j, and the slice Z saves the fathers of the
vertex j in G. After performing lines 5–7, the matrix W2 saves the weights
of different paths from the root to the vertex j that do not include affected
vertices. After performing lines 8–10, we first determine the vertex r that
belongs to the new shortest path from the root to j, then we write down
the new distance in the j-th row of the matrix Dist. After fulfilling line 11,
X = ∅, and we go to the exit.

Step of induction. Let the assertion be true for l (l ≥ 1) affected vertices.
We prove this for l+1 vertices. By the inductive assumption, after updating
the first l affected vertices, their new distances from the root are written in
the corresponding rows of the matrix Dist, and there is only a single affected
vertex in the slice X. Further we reason by analogy with the basis.

This completes the proof.
Let us proceed to the procedure OutgoingArcsSPT. It uses the current

updated vertex k, the slice AffectedV , and the matrices Weight and Dist.
The procedure returns the updated matrix Dist.

102 A. S. Nepomniaschaya

procedure OutgoingArcsSPT(h,k: integer; G: table; Weight: table;

var Dist: table);

var v: word(Dist);

W1,W2: table;

Y,Z: slice(Dist);

1. Begin Z:=COL(k,G);

2. TCOPY1(Weight,k,h,W1);

/* The matrix W1 saves the weights of arcs leaving k. */
3. v:=ROW(k,Dist);

4. ADDC(W1,Z,v,W2);

/* The matrix W2 saves the new distances from the root

to the vertices p that belong to the arc (k, p). */
5. SETMIN(W2,Dist,Z,Y);

6. TMERGE(W2,Y,Dist);

7. End;

Lemma 3. Let h be the number of bits for coding the infinity and k be
the current updated vertex. Let the current matrices G, Weight and Dist
be given. Then the procedure OutgoingArcsSPT maintains the matrix Dist,
where the new distances from the root are written for the sons r of the vertex
k whose distnew(r) is decreased.

This lemma is proved by contradiction. Let an arc (k, r) belong to the
graph G and distnew(r) < distold(r). However, after performing the proce-
dure OutgoingArcsSPT, the r-th row of the matrix Dist does not change. We
prove that this cotradicts the execution of the procedure OutgoingArcsSPT.

Indeed, since (k, r) ∈ G, then Z(r) =′ 1′ after performing line 1. After
performing lines 2–4, the weight of the shortest path from the root to the
vertex r, that includes the edge (k, r), is written into the r-th row of the ma-
trix W2. By the assumption, distnew(r) < distold(r). Therefore Y (r) =′ 1′

after fulfilling the basic procedure SETMIN (line 5). Hence, after performing
line 6, the edge distnew(r) is written into the r-th row of the matrix Dist.
This contradicts our assumption.

Finally, we proceed to the procedure DeleteArcSPT. Knowing the deleted
arc (i, j) and the current matrices G, Weight, Cost, Dist, and SPT , the
procedure returns the updated matrices G, SPT , and Dist with the use of
the above auxiliary procedures.

procedure DeleteArcSPT(i,j,h: integer; Weight,Cost: table;

var G,SPT: table; var Dist: table);

/* The arc (i, j) has been deleted from the graph G. */

var k,r: integer;

AffectedV,X,Y,Z: slice(G);

Decremental associative algorithm for updating the shortest paths tree 103

W1,W2: table;

v: word(G); v1: word(Dist);

label 1;

1. Begin X:=COL(i,G); X(j):=’0’;

2. COL(i,G):=X;

/* The arc (i, j) is deleted from G. */

3. X:=COL(i,SPT);

4. if X(j)=’0’ then goto 1;

5. X(j):=’0’; COL(i,SPT):=X;

/* The arc (i, j) is deleted from SPT. */
6. AffectedVertSPT(i,j,SPT,AffectedV);

/* This procedure returns the updated matrix SPT
and the slice AffectedV . */

7. NewDistSPT(h,G,Cost,AffectedV,Dist);

/* This procedure returns the updated matrix Dist. */
8. while SOME(AffectedV) do

9. begin MIN(Dist,AffectedV,Z);

/* The slice Z saves positions of the matrix Dist rows,

where the minimal value is located. */

10. k:=FND(Z); AffectedV(k):=’0’;

/* The vertex k is included into the shortest paths tree. */

11. v:=ROW(k,G); Z:=CONVERT(v);

12. X:=Z and (not AffectedV);

/* The slice X saves fathers of arcs entering k in G
that are not affected. */

13. v1:=ROW(k,Dist);

14. TCOPY1(Cost,k,h,W1);

15. ADDV(Dist,W1,X,W2);

/* The matrix W2 saves different distances in G
from the root to the vertex k. */

16. MATCH(W2,X,v1,Y); r:=FND(Y);

17. Y:=COL(r,SPT); Y(k):=’1’;

18. COL(r,SPT):=Y;

/* The arc (r, k) is included into the matrix SPT. */
19. OutgoingArcsSPT(h,k,Weight,AffectedV,Dist);

20. end;

21. 1: End;

Theorem. Let a directed weighted graph be given as an adjacency
matrix G and a matrix Weight. Let the matrices Cost, SPT, and Dist and
the number of bits h for coding the infinity be given. Let an arc (i,j) be
deleted from the graph. Then after performing the procedure DeleteArcSPT,
this arc is deleted from the matrices G and SPT. Moreover, the matrices

104 A. S. Nepomniaschaya

SPT and Dist are updated according to Algorithms 1–3.

Proof. (Sketch.) We prove this by induction in terms of the number q of
affected vertices that appear after deleting the arc (i, j) from the shortest
paths tree.

Basis is proved for q = 1. One can check that after performing lines 1–5
the arc (i, j) is deleted from the matrices G and SPT . After performing
line 6, in view of Lemma 1, the slice AffectedV saves the position of the
affected vertex j and all arcs, leaving this vertex, are deleted from the matrix
SPT . Observe that the j-th column of the matrix SPT consists of zeros
before applying Lemma 1, because j is a single affected vertex in Ts. After
performing line 7, in view of Lemma 2, AffectedV (j) =′ 1′ and the new
distance from the root to j is written in the j-th row of the matrix Dist.
Since AffectedV ̸= ∅, we perform the cycle while SOME(AffectedV) do

(line 8). After fulfilling lines 9-10, we have k = j, AffectedV = ∅ and the
vertex j is included into the tree. To determine the father of the vertex j
in Ts, we first save the fathers of arcs entering j in G that are not affected
(lines 11–12). After performing lines 13–15, we determine different distances
in G from the root to j. After performing line 16, we select the distance
from the root to j, where the minimum value v1 is achieved. After fulfilling
lines 17–18, the new arc (r, j) is included into the matrix SPT .

Step of induction. Let the assertion be true when no more than q ≥ 1
affected vertices are updated in the given graph. We will prove the assertion
for q + 1 affected vertices.

One can immediately check that, after performing lines 1–7, the arc (i, j)
is deleted from the matrices G and SPT , the slice AffectedV saves the
positions of q + 1 affected vertices, all affected arcs are deleted from SPT ,
and the new distances from the root to all affected vertices are written in the
corresponding rows of the matrix Dist. Since AffectedV ̸= ∅, we execute
line 8.

After performing lines 9–10, we determine the position of the affected
vertex k having the minimum new distance from the root and mark it with
′0′ in the slice AffectedV . By analogy with the basis, after fulfilling lines
11–18, we first determine the father of the new arc (r, k) that belongs to
the new shortest path from the root to the vertex k. Then we include this
arc into the matrix SPT . After performing line 19, in view of Lemma 3, we
write new distances for those sons of the vertex k which are affected vertices
and distnew(r) is decreased.

Now, there are only q affected vertices, whose positions are marked with
bit ′1′ in the slice AffectedV . By the inductive assumption, after updating
q affected vertices, the new distance from the root to every affected vertex
r is written into the r-th row of the matrix Dist and a new arc, entering
the vertex r, is included into the matrix SPT . Moreover, each time after

Decremental associative algorithm for updating the shortest paths tree 105

including a current vertex p into Ts, we recompute the weights of paths from
the root to those sons of the vertex p which are affected vertices and their
new distance from the root is decreased. This assures to select correctly the
shortest path from the root to every affected vertex that has to be included
into Ts later.

This completes the proof.
Let us evaluate the time complexity of the procedure DeleteArcSPT. We

first evaluate the time complexity of the auxiliary procedures. The auxiliary
procedure AffectedVertSPT takes O(k) time because the cycle from line 4
is performed k times and every operation inside this cycle takes O(1) time.
The auxiliary procedure NewDistSPT takes O(kh) time because the cycle
while SOME(X) do (lines 2–11) is performed k times and inside this cycle
the basic procedures require O(h) time each. The auxiliary procedure Out-
goingArcsSPT takes O(h) time. In the procedure DeleteArc, the cycle while
SOME(AffectedV) do (lines 8–20) takes O(kh) time, because inside this cy-
cle the basic procedures and the auxiliary procedure require O(h) time each.
Hence, the procedure DeleteArcSPT takes O(kh) time.

6. Conclusions

We have proposed the efficient associative algorithm for dynamic update of
the shortest paths tree after deletion of an arc from the given graph. On the
STAR–machine having no less than n PEs, this algorithm is represented as
the main procedure DeleteArcSPT that uses a group of auxiliary procedures.
We prove correctness of the procedure DeleteArcSPT and all its parts. We
have shown that this procedure takes time which is proportional to the
number of affected vertices that appear in SPT after deleting an arc. It is
obvious that this estimation is optimal.

We are planning to design an associative algorithm for dynamic update
of the shortest paths tree after insertion of an arc into the given graph.

References

[1] Dijkstra E.W. A Note on two problems in connection with graphs // Nu-
merische Mathematik. – 1959. – Vol. 1. – P. 269–271.

[2] Foster C.C. Content Addressable Parallel Processors. – New York: Van Nos-
trand Reinhold Company, 1976.

[3] Frigioni D., Marchetti-Spaccamela A., Nanni U. Semi–dynamic algorithms
for maintaining single source shortest paths trees // Algorithmica. – Berlin:
Springer–Verlag, 1998. – Vol. 25, N 3. – P. 250–274.

[4] Frigioni D., Marchetti-Spaccamela A., and Nanni U. Fully dynamic algorithms
for maintaining shortest paths trees // J. of Algorithms, Academic Press. –
2000. – Vol. 34, N 2. – P. 351–381.

106 A. S. Nepomniaschaya

[5] Frigioni D., Marchetti-Spaccamela A., and Nanni U. Fully dynamic shortest
paths in digraphs with arbitrary arc weights // J. of Algorithms, Elsevier
Science. – 2003. – Vol. 49, N 1. – P. 86–113.

[6] Nepomniaschaya A. S. Associative version of the Ramalingam decremental al-
gorithm for dynamic update of the single-sink shortest paths subgraph // Proc.
of the 10-th Intern. Conf. on Parallel Computing Technologies, PaCT-2009,
Novosibirsk, Russia. – Lect. Notes Comput. Sci. – Berlin: Springer-Verlag,
2009. – Vol. 5698. – P. 257–268.

[7] Nepomniaschaya A. S. Basic associative parallel algorithms for vertical process-
ing systems // Bull. of the NCC. – Ser.: Comput. Sci. – 2009. – IIS Special
Iss. 29. – P. 63–77.

[8] Nepomniaschaya A. S. Parallel implementation of the Ramalingam incremental
algorithm for dynamic update of the shortest–paths subgraph // Bull. of the
NCC. – Ser.: Comput. Sci. – 2010. – Iss. 30. – P. 53–69.

[9] Nepomniaschaya A. S. Solution of path problems using associative parallel pro-
cessors // Proc. of the Intern. Conf. on Parallel and Distributed Systems,
ICPADS’97, Korea, Seoul, IEEE Computer Society Press, 1997. – P. 610–617.

[10] Nepomniaschaya A. S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. – IOS Press, 2000. – Vol. 43. – P. 227–243.

[11] Ramalingam G. Bounded incremental computation // Lect. Notes Comput.
Sci. – Berlin: Springer–Verlag. – 1996. – Vol. 1089.

[12] Ramalingam G. and Reps T. An incremental algorithm for a generalization
of the shortest paths problem // J. of Algorithms. – Academic Press, 1996. –
Vol. 21. – P. 267–305.

