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Parallel implementation of the Ramalingam
decremental algorithm for dynamic updating the
single-sink shortest paths subgraph

A.S. Nepomniaschaya

Abstract. We propose an efficient parallel implementation of the Ramalingam al-
gorithm for dynamic updating the single-sink shortest paths subgraph of a directed
weighted graph after deletion of an edge on a model of associative (content address-
able) parallel systems with vertical processing (the STAR-machine). The associa-
tive version of the Ramalingam decremental algorithm for updating the shortest
paths subgraph is given as procedure DeleteEdge, whose correctness is proved and
the time complexity is evaluated. We compare implementations of the Ramalingam
decremental algorithm and its associative version and present the main advantages
of the associative version.

1. Introduction

Finding the shortest paths in a weighted graph is a fundamental and well
studied problem in computer science. Such a problem arises in practice
in different application settings. There are two versions of this problem:
finding the single source shortest paths and finding the all-pairs shortest
paths.

The dynamic version of the single source shortest paths problem consists
of maintaining the shortest paths information while the graph changes with-
out recomputing everything from scratch after every update on the graph.
In this framework, the most general types of update operations for the sin-
gle source shortest paths problem include insertions and deletions of edges,
update operations on the weight of edges, insertions or deletions of isolated
vertices [7]. The typical operations for the all-pairs shortest paths prob-
lem include update operations on weights, finding the shortest distance and
finding the shortest path between two vertices, if any. When arbitrary se-
quences of the above operations are allowed, we refer to the fully dynamic
problem. If we consider only insertions (deletions) of edges, we refer to the
incremental (decremental) problem.

In the case of positive edge weights, several solutions have been proposed
for the dynamic maintenance of the shortest paths. Ausiello et al. [1]
propose an efficient solution for the all-pairs incremental problem assuming
that edge weights are restricted in the range of integers [1..C]. Chaudhuri
and Zaroliagis [2] devise efficient solutions for the all-pairs shortest paths
problem for bounded treewidth graphs when the weight of edges changes.
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Klein et al. [9] propose a fully dynamic solution to maintain all-pairs shortest
paths for planar graphs with unrestricted edge weights. Franciosa et al. [5]
devise fast algorithms that maintain a single source shortest paths tree (sp-
tree) of a general directed graph with integer edge weights in the range of
integers [1..C] during a sequence of edge deletions or a sequence of edge
insertions.

However, on general graphs with arbitrary edge weights, neither a fully
dynamic solution nor a decremental solution for the single source shortest
paths problem is known in the standard models (the worst case and the
amortized analysis) that is assymptotically better than recomputing a new
solution from scratch.

In the case of arbitrary real edge weights, Ramalingam and Reps [14,
15] devise fully dynamic algorithms for updating the single source shortest
paths using the output bounded model. In this model the running time
of an algorithm is analyzed in terms of the output change rather than the
input size. In [14, 15] the authors assume that the graph has no negative-
length cycles before and after input update. Frigioni et al. [7] study the
semi-dynamic single source shortest paths problem for both directed and
undirected graphs with positive real edge weights in terms of the output
complexity. The decremental solution works only for planar graphs, while
the incremental solution works for any graph and its complexity depends on
the existence of a k-bounded accounting function for the graph. Frigioni et
al. [6] propose fully dynamic algorithms for updating the distances and an
sp-tree in either a directed or an undirected graph with positive real edge
weights under arbitrary sequences of edge updates. The cost of the update
operations is given as a function of the number of output updates by using
the notion of k-bounded accounting function. For general graphs with n
vertices and m edges the algorithms require O(y/mlogn) worst case time
per output update. Frigioni et al. [8] propose the fully dynamic solution
for the problem of updating the shortest paths from a given source in a
directed graph with arbitrary edge weights. The authors devise a new al-
gorithm for performing edge deletions and weight increases that explicitly
deals with zero-length cycles. They also propose an algorithm for handling
edge insertions and weight decreases that explicitly deals with negative-
length cycles. The cost of the update operations is evaluated as a function
of the structural property of the graph and of the number of output up-
dates. Algorithms from [5-8, 14, 15] use the dynamic version of the Dijkstra
algorithm [3]. Narvaez et al. [10] study a group of algorithms for dynamic
maintaining an sp-tree after performing the update operations on the edge
weights. The authors propose two incremental methods to transform the
well-known static algorithms of Dijkstra, Bellman-Ford, and D’Esopo-Pape
into new dynamic algorithms.

In this paper, we deal with a single-sink directed graph G and the shortest
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paths subgraph SP(G) that consists of all shortest paths from every vertex
to the sink. We propose an associative version of the Ramalingam algorithm
[14] for the dynamic update of SP(G) after deletion of an edge from G. Our
model of computation (the STAR-machine) simulates the run of associa-
tive (content addressable) parallel systems of the SIMD type with bit-serial
(vertical) processing and simple single-bit processing elements. Such an ar-
chitecture is best suited to solve the graph problems. We first offer a simple
and natural data structure that allows one to design an efficient parallel
implementation of the Ramalingam algorithm on the STAR-machine. The
associative algorithm is given as a procedure DeleteEdge, whose correctness
is proved. We obtain that this procedure takes O(hk) time, where h is
the number of bits for coding the infinity and k is the number of vertices,
whose shortest paths to the sink change in SP(G) after deleting an edge
from G. Following [4], it is assumed that each elementary operation of the
STAR-machine (its microstep) takes one unit of time. We also present the
main advantages of the associative version of the Ramalingam decremental
algorithm [14].

2. Model of associative parallel machine

Here we propose a brief description of our model. It is defined as an abstract
STAR-machine of the SIMD type with the vertical data processing [11]. It
consists of the following components:

— a sequential control unit (CU), where programs and scalar constants
are stored;

— an associative processing unit consisting of p single-bit processing ele-
ments (PEs);

— a matrix memory for the associative processing unit.

The CU passes an instruction to all PEs in one unit of time. All active
PEs execute it in parallel, while inactive PEs do not perform it. Activation
of a PE depends on data.

Input binary data are given in the form of two-dimensional tables, where
each datum occupies an individual row and is updated by a dedicated pro-
cessing element. In any table, rows are numbered from top to bottom and
columns — from left to right. Both a row and a column can easily be accessed.
Some tables may be loaded into the memory.

An associative processing unit is represented as h vertical registers, each
consisting of p bits. Vertical registers can be regarded as a one-column array.
The bit columns of the tabular data are stored in the registers that perform
the necessary Boolean operations.

Its run is described by means of the language STAR being an extension
of Pascal. Let us briefly consider the STAR constructions needed for the
paper. To simulate the data processing in the matrix memory, we use the
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data types word, slice, and table. Constants for the types slice and word are
represented as a sequence of symbols of a set {0,1} enclosed within single
quotation marks. The types slice and word are used for the bit column access
and the bit row access, respectively, and the type table is used for defining
the tabular data. Assume that any variable of the type slice consists of
p components, which belong to {0,1}. For simplicity, let us call slice any
variable of the type slice.

Let us present some elementary operations and a predicate for slices.

Let X, Y be variables of the type slice and ¢ be a variable of the type
integer. We use the following operations:

SET(Y') simultaneously sets all components of Y to '1’;

CLR(Y) simultaneously sets all components of ¥ to '0’;

Y (i) selects the i-th component of Y;

FND(Y') returns the number 7 of the first (the uppermost) 1’ of Y, i > 0;

STEP(Y) returns the same result as FND(Y'), then resets the first '1’
found to '0/;

CONVERT(Y) returns a row, whose every i-th component (bit) coincides
with Y (7). It is applied when a row of one matrix is used as a slice for another
matrix.

The operations FND(Y), STEP(Y'), and CONVERT(Y) are used only
as the right part of the assignment statement, while the operation Y (i) is
used as both the right part and the left part of the assignment statement.

To carry out the data parallelism, we introduce in the usual way the
bitwise Boolean operations: X andY, X orY,notY, X xzorY. We also use
a predicate SOME(Y') that results in true if and only if there is at least a
single component '1’ in the slice Y.!

Note that the predicate SOME(Y') and all operations for the type slice are
also performed for the type word. We will also employ the bitwise Boolean
operations between a variable w of the type word and a variable Y of the
type slice, where the number of bits in w coincides with the number of bits
inY.

Let T be a variable of the type table. We employ the following elementary
operations:

ROW(i,T) returns the i-th row of the matrix T’

COL(i, T) returns its é-th column.

Note that the STAR statements are defined in the same manner as for
Pascal. We will use them later for presenting our procedures.

Now, we recall a group of basic procedures [12, 13] implemented on the
STAR-machine which will be used later on. These procedures use the given

'For simplicity, the notation ¥ # © denotes that the predicate SOME(Y") results in
true.
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global slice X to indicate with '1’ the row positions used in the corresponding
procedure.

The procedure MIN(T, X, Z) defines positions of those rows of the given
matrix T where the minimal element is located. It returns the slice Z,
where Z(i) =" 1’ if and only if ROW(,T') is the minimal matrix element
and X (i) =" 1'.

The procedure SETMIN(T, F', X, Y") defines positions of the given matrix
T rows that are less than the corresponding rows of the matrix F'. It returns
the slice Y, where Y (j) =’ 1’ if and only if ROW(4,T) < ROW(j, F) and
X(j) =" 1"

The procedure WCOPY (v, X, F') writes the binary word v into those
rows of the matrix I, that correspond to positions ‘1’ in the slice X. The
rows of the matrix F, that correspond to positions ‘0’ in the slice X, consist
of zeros.

The procedure TCOPY1(T, j, h, F') writes h columns from the given ma-
trix T, starting from the (1+ (j — 1)h)-th column, into the result matrix F,
where j > 1.

The procedure HIT(T, F, X, Z) defines positions of the corresponding
identical rows in the given matrices 7' and F' using the global slice X. It
returns the slice Z, where Z(i) =' 1’ if and only if ROW (i, T) = ROW(i, F)
and X (i) =" 1'.

The procedure ADDV(T, F, X, R) writes into the matrix R the result
of parallel addition of the corresponding rows of matrices T" and F, whose
positions are selected with ‘1’ in the given slice X. This algorithm uses the
table 5.1 from [4].

In [12, 13], we have shown that the basic procedures take O(k) time each,
where k is the number of bit columns in the corresponding matrix.

3. Preliminaries

Let G = (V,E,w) be a directed weighted graph with the set of vertices
V = {1,2,...,n}, the set of directed edges (arcs) E C V x V and the
function w that assigns a weight to every edge. We assume that |V| = n
and |E| = m.

We will consider graphs with a distinguished vertex s called sink.

An edge e directed from i to j is denoted by e = (i, j), where the vertex
i is the head of e (or father) and the vertex j is its tail (or son). Also, if
(1,7) € E, then j is said to be adjacent to i. We assume that all edges have
a positive weight and w(u,v) = oo, if (u,v) ¢ E. Let h be the number of
bits for coding the infinity.

A path from u to s in G is a finite sequence of vertices u = v, vo, ..., v =
s, where (v;,vi41) € E fori=1,2,...,k—1 and k > 0. The shortest path
from wu to s is the path of the minimal sum of weights of its edges.
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Let dist(u) denote the shortest path from u to s and SP(G) denote the
subgraph of the shortest paths from all vertices of G to the sink.

By analogy with Ramalingam, we introduce the following notations.

We denote by outdegreeg P(G)('U) the number of edges outgoing from the
vertex v in SP(G).

Let an edge (i, 7) be deleted from SP(G). We denote by Af fectedV the
set of all vertices u in SP(G) such that all paths from u to the sink include
the deleted edge (i,7). An edge in G is called SP edge iff it belongs to some
shortest path to the sink.

An edge (z,y) is called af fected by deleting the edge (i,7) in SP(G) if
there is no such path from z to s in the new graph that uses the edge (z,y)
and the length of the path is equal to distyq(x).

4. The Ramalingam decremental algorithm for the
single-sink shortest paths problem

Let an edge (i, j) be deleted from SP(G) and outdegreesp(cy(i) = 0.

The Ramalingam decremental algorithm for the dynamic update of the
single-sink shortest paths subgraph consists of the following two stages.

At the first stage, one determines the set Af fectedV and all affected
edges obtained after deleting the edge (i,7) from SP(G). Then affected
edges are deleted from SP(G).

At the second stage, for every affected vertex v;, one computes a new
shortest path from v; to s in G and updates SP(G).

The first stage is performed as follows.

Initially, Af fectedV = ©. To construct it, an auxiliary set of vertices
WorkSet is used. Initially, WorkSet = {i} because outdegreegp(c(i) =0
after deleting the edge (i, 7) from SP(G). Vertices in WorkSet are sequen-
tially updated. The current updated vertex u is deleted from WorkSet and
is included into the set Af fectedV. Then every edge (x,u) entering the
vertex u is deleted from SP(G) and outdegreegp(qy(w) is decreased by one.
If outdegreesp(q)(z) = 0, the vertex x is included into WorkSet.

To perform the second stage, one uses a heap PriorityQueue, whose
elements are affected vertices with a key. At this stage, we first compute for
every affected vertex u such a new shortest path to the sink that does not
include other affected vertices. The value of dist(u) is its current key in the
heap. After that one updates SP(G) as follows.

At every iteration, a vertex with the minimum key in the heap (say a)
is deleted from the set PriorityQueue. Then one determines those edges
(a,b) that belong to an alternative path from the vertex a to the sink and
distpew(a) = w(a,b) + distyq(b). Such edges are included into SP(G). Fur-
ther all edges (c,a) entering the vertex a are analyzed. If a new path from
the vertex ¢ to the sink includes the edge (c,a) and dist,en(c) < distoq(c),
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the current value dist(c) is equal to dist,ew(c) and this value is the new key
for the vertex ¢ in PriorityQueue. If ¢ € PriorityQueue, the previous key
of ¢ receives a new value. Otherwise, the vertex c is included into the heap
with the key distpew(c).

The process is completed after updating all vertices in the heap.

5. Associative version of the Ramalingam decremental
algorithm

To design an associative version of the Ramalingam decremental algorithm
for the dynamic update of the shortest paths subgraph, we employ the fol-
lowing data structures:

— an n X n adjacency matrix G, whose every i-th column saves with '1/
the tails of edges outgoing from the vertex i;

—an n x n adjacency matrix SP(G), whose every i-th column saves with
1’ the tails of edges that belong to the shortest paths subgraph;

—an n X hn matrix Weight that contains as elements the edge weights.
It consists of n fields having h bits each. The weight of an edge (i,7) is
written in the j-th row of the i-th field;

—an n X hn matrix Cost that contains as elements the edge weights. It
consists of n fields having h bits each. The weight of an edge (i, j) is written
in the i-th row of the j-th field,;

—an n X h matrix Dist, whose every ¢-th row saves the shortest distance
from the vertex ¢ to the sink;

— a slice Af fectedV that saves with '1’ positions of all affected vertices.

Note that the i-th field of the matrix Weight saves the weights of edges
outgoing from the vertex ¢, while the i-th field of the matrix Cost saves the
weights of edges entering the vertex i.

Let us enumerate two properties of matrices G and SP(QG).

Property 1. Every i-th column of the matrices G and SP(G) saves with
’1’” the tails of edges outgoing from the vertex i.

Property 2. Every i-th row of the matrices G and SP(G) saves with "1’
the heads of edges entering the vertex 1.

Let an edge (,7) be deleted from G and SP(G).

We first provide an associative parallel algorithm (say Algorithm A) for
selecting the set of affected vertices and edges. This algorithm uses slices
WS and Af fectedV and performs the following steps.

Step 1. Set zeros into slices Af fectedV and W.S. Check whether there
is an edge outgoing from the vertex ¢ in SP(G). If it is true, go to exit.
Otherwise, include the vertex ¢ into W S.

Step 2. While WS # O, perform the following actions:

— delete the position of the first 1’ (say k) from the slice WS. Include
the vertex k into the slice Af fectedV;
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— delete all edges from SP(G) that enter the vertex k;

— for every deleted edge (r, k), include the vertex r into the slice WS if
and only if there is no edge entering r in SP(G).

On the STAR-machine, this algorithm is implemented as the procedure
FindAffectedVert.

An associative parallel algorithm for updating edges outgoing from an
affected vertex k (say Algorithm B) performs the following steps.

Step 1. By means of a slice (say Z) save positions of all edges outgoing
from the vertex k in the graph G.

Step 2. Determine in parallel the distances from the vertex k to the sink
for different paths that include an edge marked with 1" in the slice Z.

Step 3. By means of a slice (say Y'), save positions of those edges (k,1)
for which dist(k) = w(k,l) + dist(l).

Step 4. Include positions of edges marked with ‘1’ in the slice Y into
SP(Q).

On the STAR-machine, this algorithm is implemented as the procedure
UpdateOutgoingEdges.

An associative parallel algorithm for updating edges entering an affected
vertex k (say Algorithm C) performs the following steps.

Step 1. By means of a slice (say Z), save the heads of edges entering the
vertex k in G.

Step 2. For all vertices | marked with 1’ in the slice Z, determine in
parallel the distances to the sink of every path starting with the edge (I, k).

Step 3. By means of a slice (say Y'), save positions of those vertices r,
marked with ’1” in the slice Z, for which distpew (1) < distyq(r). Then write
distpeqy(r) in the corresponding rows of the matrix Dist.

On the STAR-machine, this algorithm is implemented as the procedure
UpdatelncomingEdges.

Now we provide an associative parallel algorithm for dynamic updating
the shortest paths subgraph after deleting an edge (i, 7) from the graph G.
It performs the following steps.

Step 1. Delete the position of the edge (i,j) from the matrix G. If
(1,7) ¢ SP(G), then go to exit. Otherwise, delete the position of this edge
from the matrix SP(G).

Step 2. By means of the Algorithm A, construct the slice Af fectedV
and delete affected edges from SP(G). Save a copy of the slice Af fectedV
in another slice (say X).

Step 3. While Af fectedV # O, determine new distances to the sink for
all affected vertices as follows:

—select the position of a current affected vertex k in the slice Af fectedV
and mark it with '0’;

— compute in parallel the distances from the vertex k to s for every path
beginning with an edge (k,r), where r ¢ Af fectedV and this path does not
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include affected vertices;

— select the minimum distance from k£ to s and write it down into the
k-th row of the matrix Dist.

Step 4. While X # O, update affected vertices taking into account their
new distances to the sink as follows:

— knowing the slice X and the matrix Dist, determine the position of
an affected vertex ¢ having the minimum distance to the sink and delete ¢
from the slice X;

— by means of the Algorithm B, determine in parallel the positions of
edges (q,1) for which distpew(q) = w(q,l) + distyq(l) and include these
positions into SP(G);

— by means of the Algorithm C, determine in parallel the positions of
edges (r,q), for which distpey(r) < distyq(r), and write distpe,(r) in the
corresponding rows of the matrix Dist.

On the STAR-machine, this algorithm is given as the procedure Dele-
teEdge.

6. Implementation of the associative version of the

Ramalingam decremental algorithm on the
STAR-machine

In this section, we first provide three auxiliary procedures, whose correctness
will be proved in the full paper. Then we propose the procedure DeleteEdge.

The procedure FindAffectedVert determines all affected vertices and af-
fected edges obtained after deleting an edge (i,j) from SP(G). Then it
deletes the affected edges from SP(G). The procedure uses an auxiliary
slice WS. It returns the updated matrix SP(G) and a slice Af fectedV,
where positions of all affected vertices are marked with '1’.

procedure FindAffectedVert(i,j: integer; var SP: table;
var AffectedV: slice(SP));
/* The edge (i,j) is deleted from the matrices G and SP. */
var X,WS: slice(SP);
v,vl: word(SP);
k,r: integer;
1. Begin CLR(WS); CLR(AffectedV); CLR(v1l);
2. X:=COL(i,SP);
3. if ZERO(X) then
/* There was a single edge outgoing from i in SP(G). */
4. begin WS(i):=’1";
while SOME(WS) do
begin k:=STEP(WS);
AffectedV(k):=1";

~N O O
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/* The vertex k is written into the slice AffectedV. */
8. v:=R0OW(k,SP);

/* The row v saves the heads of edges entering k. */

9. ROW(k,SP) :=v1;

/* We delete from SP(G) all edges entering k. */

10. while SOME(v) do

11. begin r:=STEP(v);

12. X:=COL(r,SP);

13. if ZERO(X) then WS(r):=’17;
14. end;

15. end;

16. end;

17. End.

Claim 1. Let an edge (i,7) be deleted from the shortest paths subgraph
SP(G). Then the procedure FindAffectedVert returns the slice AffectedV,
where positions of affected vertices are marked with'1’. Moreover, it deletes
from SP(G) positions of all edges that enter every affected vertex.

This claim is proved by induction in terms of the number of vertices to
be included into the slice Af fectedV .

Now we proceed to the procedure UpdateOutgoingEdges. Knowing the
current updated vertex k and the current matrices G, Weight, Dist, and
SP(G), the procedure returns the updated matrix SP(G).

procedure UpdateOutgoingEdges(h,k: integer; G: table;
Weight: table; Dist: table; var SP: table);

/* Here h is the number of bits for coding the infinity,
and k is the updated vertex. */

var W1,W2: table;

v: word(Dist) ;
Y,Z:slice(G);

1.Begin Z:=COL(k,G);

2. TCOPY1(Weight,h,k,W1);

3. ADDV(W1,Dist,Z,W2);

/* The matrix W2 saves different distances from
the vertex k to the sink. */

4. wv:=ROW(k,Dist); WCOPY(v,Z,W1);

/* The shortest distance from the vertex k& to the sink
is written in the rows of the matrix W1 that are marked
with ‘1’ in the slice Z. */

5. HIT(W1,W2,Z,Y);

/* In the slic Y, we mark with 'l’ the vertices I
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for which dist(k) = w(k,l) + dist(l). */
6. COL(k,SP):=Y;
/* Positions of edges (k,l) are included into SP(G). x/
7. End;

Claim 2. Let h be the number of bits for coding the infinity and k be
the current updated vertex. Let the current matrices G, Weight, Dist, and
SP(G) be given. Then after performing the procedure UpdateOutgoingEdges
all edges (k,1) for which dist(k)=w(k,l)+dist(l) are included into the matrix
SP(G).

This claim is proved by contradiction. Let an arc (k,r) belong to G
and dist(k) = w(k,r) + dist(r). However, after performing the procedure
UpdateOutgoingEdges, the arc (k,r) does not belong to SP(G). We prove
that it contradicts the execution of this procedure.

Finally, we propose the procedure UpdatelncomingEdges. Knowing the
current updated vertex k, the number of bits h for coding the infinity, and
the current matrices G, Cost, and Dist, the procedure returns the updated
matrix Dist.

procedure UpdateIncomingEdges(h,k: integer; G: table;
Cost: table; var Dist: table);
var Y,Z: slice(G);
v: word(G) ;
v1: word(Dist);
W,W1l,W2: table;
1. Begin v:=ROW(k,G); Z:=CONVERT(v);
/* The slice Z saves the heads of edges entering k. */
2. v1:=ROW(k,Dist);
/* The row vl saves the shortest distance from k to s.*/
3. WCOPY(v1,Z,W1);
4. TCOPY1(Cost,k,h,W2);
/* The k-th field of the matrix Cost is written into
the matrix W2. x/
5. ADDV(W1,W2,Z,W);
/* In every l-th row of W that corresponds to 'l’ in Z,
the new distance from [ to s is written. */
6. SETMIN(W,Dist,Z,Y);
/* In the slice Y, we mark with 'l’ positions of vertices,
whose new distances to the sink are decreased. */
7. TMERGE(W,Y,Dist);
/* In every [-th row of the matrix Dist, a new value of dist(l)
is written if and only if Y (I) ='1". %/
8. End;
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Claim 3. Let h be the number of bits for coding the infinity and k be the
current updated vertex. Let the current matrices G, Cost, and Dist be given.
Then the procedure UpdatelncomingEdges maintains the matriz Dist, where
new distances to the sink are written for the heads r of edges entering the
vertex k whose distpey(r) is decreased.

This claim is proved by contradiction. Let an arc (r, k) belong to G and
distpew(r) < distyq(r). However, after performing the procedure Update-
IncomingEdges, the r-th row in the matrix Dist does not changed. We prove
that this contradicts the execution of the procedure UpdatelncomingEdges.

Let us proceed to the procedure DeleteEdge. Knowing the deleted edge
(7,7) and the current matrices G, Weight, Cost, Dist, and SP(G), the
procedure returns the updated matrices G, SP(G), and Dist with the use
of the above auxiliary procedures.

procedure DeleteEdge(i,j,h: integer; Weight,Cost: table;
var G,SP: table; var Dist: table);
/* The edge (i,j) is deleted from the matrices G and SP.*/
var k,r: integer;
AffectedV,X,Y,Z,Z1: slice(G);
v: word(Dist) ;
W1,W2: table;
v2: word(G) ;
label 1;
1.Begin X:=COL(i,G); X(j):=’0";
2. COL(1i,G):=X;
/* The edge (i,j) is deleted from G. x/
3. X:=COL(i,SP);
4. if X(j)=’0’ then goto 1;
5. X(j):=’0’; COL(i,SP):=X;
/* The edge (i,7) is deleted from SP(G). */
6. FindAffectedVert(i,j,SP,AffectedV);
/* This procedure returns the updated matrix SP(G)
and the slice AffectedV . *x/
7. X:=AffectedV;
8. while SOME(AffectedV) do

9. begin k:=STEP(AffectedV);

10. Z:=COL(k,G); Z1:=Zand (notX);

/* The slice Z1 saves the sons of k that are not affected. */
11. TCOPY1(Weight,h,k,W1);

/* The matrix W1 saves the k-th field of the matrix Weight
consisting of h bits. */
12. ADDV (W1,Dist,Z1,W2);
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/* The matrix W2 saves different distances from k to s. */
13. MIN(W2,Z1,Y);
/* In the slice Y, we mark with 'l’ positions of those
vertices r of G, for which dist(k) = w(k,r)+ dist(r). */
14. r:=FND(Y); v:=ROW(r,W2);
15. ROW(k,Dist) :=v;
/* The new distance from the vertex k£ to s is saved
in the k-th row of the matrix Dist. */

16. end;

17. while SOME(X) do

18. begin MIN(Dist,X,Z);

19. k:=FND(Z); X(k):=’0’;

20. UpdateOutgoingEdges(h,k,G,Weight,Dist,SP);

/* We include into SP those edges (k,r), for which
dist(k) = w(k,r) + dist(r). */

21. UpdateIncomingEdges(h,k,G,Cost,Dist) ;

/* We write distpey(l) into the [-th row of the matrix Dist
if and only if distpew(l) < distyq(l) and the edge (I, k)
belongs to the path from [ to s.*/

22. end;
23.1: End;

Theorem 1. Let a directed weighted graph be given as an adjacency matriz
G and a matriz Weight. Let a matriz Cost, a subgraph of the shortest paths
to the sink SP(G), a matriz of the shortest distances to the sink Dist, and
the number of bits h for coding the infinity be also given. Let an edge (i,j)
be deleted from the graph. Then after performing the procedure DeleteEdge,
the edge (i,j) is deleted from the matrices G and SP(G). Moreover, matrices
SP(G) and Dist are updated according to the algorithms A, B, and C.

Proof. (Sketch.) We prove this by induction in terms of the number g of
affected vertices that appear after deleting the edge (7,7) from SP(G).

Basis is proved for ¢ = 1. One can immediately check that after perform-
ing lines 1-5, the edge (i, j) is deleted from the matrices G and SP(G). Af-
ter performing the procedure FinfAffectedVert (line 6), the slice Af fectedV
saves the vertex ¢ and all edges, entering the vertex ¢, are deleted from
SP(G). After performing line 7, we have X (i) =" 1. One can easily check
that after fulfilling lines 9-12, we have k = i, Af fectedV = O, and the
matrix W2 saves different distances from the vertex i to the sink. After
performing lines 13-16, the new minimum distance from i to s is written
in the i-th row of the matrix Dist. Since Af fectedV = O, we carry out
line 17. After performing lines 17-19, we have X = © and k& = i because
initially the slice X is the copy of Af fectedV. Further, after perform-
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ing the procedure UpdateOutgoingEdges (line 20), all edges (¢,r) for which
distpew (i) = w(i, ) + distyq(r) are included into SP(G).

By assumption, there is a single affected vertex in SP(G). It means
that there is an alternative path to the sink for every vertex [, being the
head of any edge (/,7) in SP(G). Therefore, after performing the procedure
UpdatelncomingEdges (line 21), the matrix Dist does not change.

Hence, after performing the procedure DeleteEdge, the edge (i,j) is
deleted from the matrices G and SP(G), distne,(i) is written into the
i-th row of the matrix Dist, and all edges (i,r), for which dist,en (i) =
w(i, r) + distyq(r), are included into SP(G).

Step of induction. Let the assertion be true when no more than ¢ > 1
affected vertices are updated in the given graph. We will prove the assertion
for g + 1 affected vertices.

One can immediately verify that, after performing lines 1-7, the edge
(i,7) is deleted from G and SP(G), the slice Af fectedV saves positions of
g+ 1 affected vertices, affected edges are deleted from SP(G), and the slice
X is a copy of Af fectedV. After performing line 9, the position of the first
(or uppermost) affected vertex k is determined. By analogy with the basis,
after performing lines 10-16, the new distance from & to s is written into the
k-th row of the matrix Dist. Now, only q affected vertices are marked with
1" in the slice Af fectedV. By the inductive assumption, after execution
of the cycle while SOME(AffectedV) do (line 8), new distances from every
affected vertex to s will be written in the corresponding rows of the matrix
Dist.

Since Af fectedV = O, we carry out the cycle while SOME(X) do (line
17). After performing lines 18-19, we determine the position of the af-
fected vertex k having the minimum new distance to s and mark it with
0/ in the slice X. After performing the procedure UpdateOutgoingEdges
(line 20), we include into SP(G) the positions of edges (k,r), for which
distpew(k) = w(k,r) + distyq(r). Further, after performing the proce-
dure UpdatelncomingEdges (line 21), for every affected vertex r, for which
distpew(r) < distoq(r), we write distpey(r) into the r-th row of the matrix
Dist.

Now, there are only ¢ affected vertices, whose positions are marked with
1" in the slice X. By the inductive assumption, after updating ¢ affected
vertices, all alternative paths from every affected vertex r to the sink are
included into SP(G) and the minimun distance from r to s is written in the
r-th row of the matrix Dist. Hence, the assertion is true for g + 1 affected
vertices.

This completes the proof.

Let us evaluate the time complexity of the procedure DeleteEdge. To
this end, we first evaluate the time complexity of three auxiliary proce-
dures. Let h be the number of bits for coding the infinity and k& be the
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number of affected vertices that appear in SP(G) after deleting the edge
(1,7). The auxiliary procedure FindAffectedVert takes O(k) time because
the cycle from line 10 takes O(1) time which is no greater than the max-
imum number of bits ‘1’ in the rows of the matrix SP(G). The auxiliary
procedures UpdateOutgoingEdges and UpdatelncomingEdges take O(h) time
each. In the procedure DeleteEdge, the cycle while SOME(AffectedV) do
(lines 10-16) and the cycle while SOME(X) do (lines 18-22) take O(kh) time
each. Hence, the procedure DeleteEdge takes O(kh) time.

Now we compare implementations of the Ramalingam decremental algo-
rithm and its associative version:

— the Ramalingam decremental algorithm uses a heap of vertices, where
the distance from any affected vertex to the sink is its current key in the
heap. The associative version saves the current distance from any affected
vertex r to s in the r-th row of the matrix Dist;

— for every affected vertex r, the Ramalingam decremental algorithm
determines in succession every affected edge entering r. The associative
version simultaneously determines all affected edges entering r;

— for every affected vertex r, the Ramalingam decremental algorithm
determines in succession different distances from r to s and assignes the
minimum distance among them to the current key for the vertex r in the
heap. The associative version simultaneously determines different distances
from the affected vertex r to s and writes the minimum distance from 7 to
s into the r-th row of the matrix Dist;

— for every affected vertex r, the Ramalingam decremental algorithm
determines in succession those edges (r,[), for which dist(r) = w(r,l) +
dist(l,s). The associative version simultaneously determines positions of
such edges (r,1);

— for every affected vertex r, the Ramalingam decremental algorithm
determines in succession those edges (g, r), for which the shortest path from
q to s includes the edge (q,7) and distpew(q) < distyq(q), then assigns
distnew(q) to the current key of ¢ in the heap. The associative version
simultaneously determines positions of such heads of edges (g,r), then
simultaneously writes the new distances from these heads to the sink into
the corresponding rows of the matrix Dist.

7. Conclusions

We have proposed a new data structure for efficient implementation of the
Ramalingam decremental algorithm on the STAR-machine having no less
than n PEs. The associative version of the Ramalingam decremental al-
gorithm is represented as the procedure DeleteEdge, whose correctness is
proved. We have obtained that this procedure takes O(kh) time per a dele-
tion, where h is the number of bits for coding the infinity and k is the number
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of affected vertices that appear in SP(G) after deleting the edge (3, 7). It is
assumed that each microstep of the STAR-machine takes one unit of time.
We have also compared the implementations of the Ramalingam decremen-
tal algorithm and its associative version and present the main advantages of
the associative version.

We are planning to design an associative version of the Ramalingam in-
cremental algorithm for the dynamic update of the shortest paths subgraph
after insertion of an edge into the given graph.
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