
Bull. Nov. Comp.Center, Comp. Science, 26 (2007), 91–101
c© 2007 NCC Publisher

Associative version of Italiano’s incremental
algorithm for dynamic updating the transitive

closure

A. Sh. Nepomniaschaya

Abstract. The transitive closure (or reachability) problem in a directed graph
consists in finding whether there is a path between any two vertices. In this paper,
we first study the problem of parallelization of Italiano’s algorithm for dynamic
updating the transitive closure after inserting a new arc into the graph represented
as a list of arcs. To this end, by means of the data structure first proposed in [9],
Italiano’s incremental algorithm is represented in a natural way on a model of an
associative parallel processor with vertical processing (the STAR–machine). Asso-
ciative version of Italiano’s incremental algorithm is given as procedure InsertArc
for the STAR–machine. We prove correctness of this procedure and evaluate its
time complexity. We also compare implementations of Italiano’s incremental algo-
rithm and its associative version and present the main advantages of the associative
version.

1. Introduction

In many applications, graphs are subject to discrete changes, such as inser-
tions and deletions of edges or vertices. The goal of a dynamic algorithm is
to update efficiently the solution of a problem after dynamic changes rather
than to recompute the entire graph from scratch each time. An algorithm
is called fully dynamic if the update operations include both insertions and
deletions of edges or vertices, and it is called partially dynamic if only one
type of an update, either insertions or deletions, is allowed. A partially dy-
namic algorithm is called incremental if it supports only insertions, while
it is called decremental if it supports only deletions.

The transitive closure problem in a directed graph G with n vertices and
m edges consists in finding whether there is a path between any two vertices
in G. In the fully dynamic transitive closure problem, a directed graph is
updated under an intermixed sequence of edge insertions, edge deletions,
and two types of queries: a Boolean query for vertices i and j that returns
yes if there is a path from i to j and no otherwise, and a path query that
returns an actual path from i to j if it exists.

We focus on incremental algorithms for the transitive closure problem.
The first incremental algorithm was given by Ibaraki and Katoh [4]. Their
algorithm takes O(n3) time over any sequence of insertions. For a sequence
of m insertions, Italiano [5] and La Poutré and Leeuwen [10] improved this

92 A. Sh. Nepomniaschaya

estimation to O(mn) time, where m is the number of edges in the final
graph. In [11], Yellin proposed an incremental algorithm for bounded de-
gree graphs which requires O(dm∗) time for m insertions, where d is the
maximum outdegree of the final graph and m∗ is the number of edges in
the final transitive closure graph. All of these algorithms perform a Boolean
query in O(1) time. The incremental algorithm of La Poutré and Leeuwen
[10] does not support a path query, but other above–mentioned algorithms
perform a path query in time proportional to the length of the path.

In [2], Frigioni et al. presented an experimental study of a group of
dynamic algorithms for the transitive closure. In particular, the authors
proposed a variant of Italiano’s algorithms [5, 6], called Ital-Gen, whose
decremental part applies to a general graph and any sequence of edge dele-
tions takes O(m2) worst-case time. As shown in [2], in the case of path
queries, Italiano’s incremental algorithm was practically always the fastest
among the dynamic algorithms of Yellin, La Poutré and Leeuwen, Ital-Gen,
and a randomized algorithm of Henzinger and King [3], while for dense di-
rected acyclic graphs (DAGs) Italiano’s decremental algorithm was better
than the other algorithms. For sparse DAGs, the other algorithms including
Ital-Gen are faster than Italiano’s decremental algorithm.

In [9], we proposed a data structure for implementing in a natural way
Italiano’s decremental algorithm for updating the transitive closure on as-
sociative (or content addressable) parallel processors. Such an architec-
ture is mainly oriented to solve non–numerical problems. We simulate the
run of associative parallel systems with vertical processing by means of the
STAR–machine [7]. Following Foster [1], time complexity of an algorithm is
measured by counting all elementary operations of the STAR–machine (its
microsteps) performed in the worst case.

In this paper, we provide an associative version of Italiano’s incremental
algorithm for dynamic updating the transitive closure. The associative ver-
sion of Italiano’s incremental algorithm is given as a procedure InsertArc,
whose correctness is proved. We show that on the STAR–machine, this
procedure takes O(n log n) time per an insertion. We also obtain that the
associative algorithm performs Boolean and path queries in the same time
as Italiano’s incremental algorithm. Finally, we compare implementations
of Italiano’s incremental algorithm and its associative version and listed the
main advantages of the associative version.

2. A model of associative parallel machine

Here, we propose a short description of the model. It is defined as an
abstract STAR–machine of the SIMD type with vertical data processing [7].
It consists of the following components:

– a sequential control unit (CU), where programs and scalar constants

Associative version of Italiano’s incremental algorithm 93

are stored;
– an associative processing unit consisting of p single–bit processing ele-

ments (PEs);
– a matrix memory for the associative processing unit.
The CU passes an instruction to all PEs in one unit of time. All active

PEs execute it in parallel while inactive PEs do not perform it. An activation
of a PE depends on the data.

Input binary data are loaded in the matrix memory in the form of two–
dimensional tables in which each data item occupies an individual row and
it is updated by an assigned processing element. The rows are numbered
from top to bottom and the columns – from left to right. Both a row and
a column can be easily accessed. Some tables may be loaded in the matrix
memory.

An associative processing unit is represented as h vertical registers each
consisting of p bits. Vertical registers can be regarded as a one-column array.
The bit columns of the tabular data are stored in the registers which perform
the necessary Boolean operations.

Its run is described by means of the language STAR being an extension of
Pascal. Let us briefly consider the STAR constructions needed for the paper.
To simulate the data processing in the matrix memory, we use data types
word, slice, and table. Constants for the types slice and word are represented
as a sequence of symbols of the set {0, 1} enclosed within single quotation
marks. The types slice and word are used for the bit column access and the
bit row access, respectively, and the type table is used for defining the tabular
data. Assume that any variable of the type slice consists of p components
which belong to {0, 1}. For simplicity let us call slice any variable of the
type slice.

Now we present some elementary operations and a predicate for slices.
Let X, Y be variables of the type slice and i be a variable of the type

integer. We use the following operations:
SET(Y) sets all components of Y to ′1′;
CLR(Y) sets all components of Y to ′0′;
Y (i) selects the i-th component of Y ;
FND(Y) returns the ordinal number i of the first (or the uppermost) ′1′

of Y , i ≥ 0;
STEP(Y) returns the same result as FND(Y) and then resets the first

found ′1′ to ′0′.
It should be noted that operations SET(Y) and CLR(Y) are used as a

separate statement. The operations FND(Y) and STEP(Y) are used as the
right part of the assignment statement, while the operation Y (i) can be used
both in the left part and in the right part of the assignment statement.

In the usual way, we introduce the predicate SOME(Y) and the bitwise
Boolean operations: X andY , X or Y , not Y , X xor Y .

94 A. Sh. Nepomniaschaya

Note that the predicate SOME(Y) and all operations for the type slice
are also performed for the type word.

We will also employ the bitwise Boolean operations between a variable
w of the type word and a variable Y of the type slice, where the number of
bits in w coincides with the number of bits in Y .

Let T be a variable of the type table. We employ the following elementary
operations:

ROW(i, T) returns the i-th row of the matrix T ;
COL(i, T) returns its i-th column.
Remark 1. Note that the STAR statements are defined in the same

manner as for Pascal. We will use them later to present our procedures.

3. Preliminaries

Let us present some notions being used in the paper.
Let G = (V, E) be a directed graph (digraph) with the set of vertices

V = {1, 2, . . . , n} and the set of directed edges (arcs) E. We assume that
|V | = n, and |E| = m.

An arc e from i to j is denoted by e = (i, j), where the vertex i is the
head of e (or father) and the vertex j is its tail (or son). Also if (i, j) ∈ E
then j is called to be adjacent to i.

A sequence of arcs e1, e2, . . . , ek is a path from the head of e1 to the tail
of ek, if the tail of ei is the head of ei+1 for 1 ≤ i ≤ k − 1.

A vertex v is reachable from u if there is a directed path from u to v
(u − v path). In such a case u is called an ancestor of v and v is called a
descendant of u.

The transitive closure of a directed graph G = (V, E) is a directed graph
G∗ = (V, E∗) such that an arc (u, v) ∈ E∗ if and only if the vertex v is
reachable from u in G.

A spanning tree Tu is a connected acyclic subgraph of G with the root
vertex u that cointains all the descendants of u.

4. Italiano’s incremental algorithm for updating the
transitive closure

We first recall the data structure proposed by Italiano [5] to support the
efficient insertion of arcs in a digraph and the Boolean and path queries.

For every vertex u ∈ V , Desc[u] is a spanning tree with the root u. The
transitive closure of a graph G is represented as a set of all Desc[u]. In
addition, an n×n matrix of pointers Index is maintained which allows fast
access to vertices in these trees. This matrix is defined as follows. Its every
component Index[i, j] points to the vertex j in the spanning tree Desc[i] if
j ∈ Desc[i] and it is a Null pointer otherwise.

Associative version of Italiano’s incremental algorithm 95

Now we explain the main idea of Italiano’s incremental algorithm.
Let a new arc γ = (i, j) be added to a digraph G. The data structure is

updated only if there is no previous path from i to j. The insertion of an arc
may create new paths from any ancestor r of the vertex i to any descendant
of the vertex j if there was no previous path from r to j in G. In this case,
the spanning tree Desc[r] is maintained taking into account the descendants
of j and the r-th row of the matrix Index. Namely, the common vertices in
the trees Desc[r] and Desc[j] are deleted from the copy of Desc[j]. Then
the pruned copy of Desc[j] is linked to the vertex i in Desc[r].

A Boolean query for vertices i and j is performed in O(1) time by check-
ing Index[i, j]. If every vertex in each spanning tree is provided with an
additional pointer to the parent, then a path query is carried out by means
of a bottom-up traversal in Desc[i] from j to the root i and it takes O(l)
time, where l is the length of i− j path.

5. Associative version of Italiano’s incremental algorithm

In this section, a graph is represented as association of matrices Left and
Right, where every arc (u, v) occupies an individual row, and u ∈ Left and
v ∈ Right.

To design the associative version of Italiano’s incremental algorithm, we
use the following data structure first proposed in [9]:

– an association of matrices Left and Right and a global slice X, where
positions of arcs belonging to G are marked with ′1′;

– an n× log n matrix Code, whose every i-th row saves the binary rep-
resentation of the vertex i;

– an m×n Boolean matrix Trans, whose every i-th column saves by ′1′

the positions of arcs belonging to the spanning tree Ti;
– an n× n Boolean matrix Nodes, whose every i-th column saves by ′1′

the positions of vertices that belong to the spanning tree Ti.
Let us enumerate the following two properties of matrices Nodes and

Trans.
Fact 1. In every i-th row of the matrix Nodes, the roots of spanning

trees that include the vertex i are marked with ′1′.
Fact 2. In every i-th row of the matrix Trans, the roots of all spanning

trees that include the arc written in the i-th row of the graph representation
are marked with ′1′.

Let an arc (i, j) be added to the graph G. Let a spanning tree Tr include
the vertex i and not include the vertex j. We first present the associative
parallel algorithm that updates the spanning tree Tr after adding the arc
(i, j) to the graph G. It performs the following steps.

Step 1. By means of a slice, say Z, save positions of vertices from the
spanning tree Tj that do not belong to Tr. Then add these vertices to the

96 A. Sh. Nepomniaschaya

r-th column of the matrix Nodes.
Step 2. For every vertex p 6= j selected by ′1′ in the slice Z, determine

the position of an arc from Tj entering this vertex and include this arc into
Tr.

On the STAR–machine, this algorithm is implemented as a procedure
ChangeTree.

Now we propose the associative parallel algorithm that updates the graph
after adding the arc (i, j). It runs as follows.

Step 1. Include the position of the arc (i, j) into the association of
matrices Left and Right.

Step 2. Determine the roots of trees that include the vertex i and do not
include the vertex j. Let such roots be marked with ′1′ in a row, say w.

Step 3. Include the position of the arc (i, j) into those spanning trees of
the matrix Trans whose roots correspond to ′1′ in w.

Step 4. While w does not consist of zeros, save the position r of its
leftmost bit ′1′. Then set ′0′ in the r-th bit of w. Further update the
spanning tree Tr by means of the associative algorithm proposed above.

On the STAR–machine, this algorithm is implemented as a procedure
InsertArc.

6. Implementation of the associative version of Italiano’s
incremental algorithm on the STAR–machine

In this section, we present the procedures ChangeTree and InsertArc and
prove their correctness.

We first consider the procedure ChangeTree that maintains a spanning
tree after inserting a new arc to the graph.

Now we propose the following procedure.

procedure ChangeTree(Right: table; Code: table; r,j: integer;
var Nodes: table; var Trans:_table);

/* The spanning tree Tr will be updated after inserting
the arc (i, j) into the graph. */

var X1,X2,Y: slice(Left);
Z,Z1,Z2,Z3: slice(Nodes);
q,p: integer;
v: word(Code);

1. Begin Z1:=COL(r,Nodes); Z2:=COL(j,Nodes);
2. Z3:=Z1 and Z2;
/* The slice Z3 saves the vertices belonging to the spanning tree Tr

and the spanning tree Tj . */
3. Z:=Z2 and (not Z3);
/* The slice Z saves the vertices from Tj that will be included

Associative version of Italiano’s incremental algorithm 97

into the spanning tree Tr. */
4. Z1:=Z1 or Z;
5. COL(r,Nodes):=Z1;
/* The new vertices for the spanning tree Tr are added

to the matrix Nodes. */
6. Z(j):=’0’;
/* The vertex j is deleted from the slice Z. */
7. Y:=COL(r,Trans);
/* The slice Y saves the positions of arcs from Tr. */
8. X1:=COL(j,Trans);
/* The slice X1 saves the positions of arcs from Tj . */
9. while SOME(Z) do
10. begin q:=STEP(Z); v:=ROW(q,Code);
11. MATCH(Right,X1,v,X2);
12. p:=FND(X2);
13. Y(p):=’1’;
/* We include into the slice Y the arc from the p-th position

of the graph representation that enters the vertex q. */
14. end;
15. COL(r,Trans):=Y;
16. End;

Proposition 1. Let a directed graph G be given as association of matrices
Left and Right along with the global slice X, and its transitive closure be
given as the matrix Trans. Let matrices Code and Nodes be also given. Let
an arc (i, j) be added to the spanning tree Tr. Let Z be a slice that saves by
′1′ vertices from the spanning tree Tj that do not belong to Tr. Then, after
performing the procedure ChangeTree, the vertices from the slice Z are added
to the r-th column of the matrix Nodes and the positions of arcs from Tj, en-
tering the vertices from Z, are added to the r-th column of the matrix Trans.

Proof (Sketch.) We prove this by contradiction. Let all conditions of
Proposition 1 be performed. However, there is such a vertex s ∈ Tj that s /∈
Tr and after execution of the procedure ChangeTree we obtain the following
two properties:

(1) the spanning tree Tr does not include the vertex s, that is, the s-th
bit of the r-th column in the matrix Nodes is equal to ′0′;

(2) the arc entering the vertex s does not belong to Tr, that is, the
position of the arc from Tj entering the vertex s is marked with ′0′ in the
r-th column of the matrix Trans.

We will prove that these properties contradict execution of the procedure
ChangeTree.

Let us assume that the first property is correct. One can immediately

98 A. Sh. Nepomniaschaya

check that after performing lines 1–2, the slice Z3 saves by ′1′ the vertices
that belong to Tr and Tj . Since s /∈ Tr, we obtain that Z3(s) =′ 0′. After
performing line 3, the vertices from Tj not belonging to Tr will be marked
with ′1′ in the slice Z. Since s ∈ Tj and s /∈ Tr by assumption, we obtain
that Z(s) =′ 1′. Therefore, after fulfilling line 4, we obtain that Z1(s) =′ 1′.
Hence, after performing line 5, the s-th bit in the r-th column of the matrix
Nodes is equal to ′1′. Since execution of lines 6–16 does not change the
matrix Nodes, we obtain a contradiction with the assumption that s /∈ Tr

after execution of the procedure ChangeTree.
Now we assume that the second property is correct. After performing

lines 7–8, the slice Y saves the spanning tree Tr and the slice X1 saves the
spanning tree Tj . Let us analyze execution of the cycle while SOME(Z) do
(line 9) for q = s. After performing lines 10–12, we determine the position
p of an arc, say γ, entering the vertex s in Tj . Since every vertex in a
tree has a unique father, we mark the position of γ with ′1′ in the slice Y .
Obviously, after fulfilling line 15, the position of γ entering the vertex s in
Tj will be marked with ′1′ in the spanning tree Tr. This contradicts the
second property. ¥

If an arc (i, j) is inserted into the graph, we maintain all spanning trees
that include the vertex i and do not include the vertex j.

Now we provide the following procedure.

procedure InsertArc(Code: table; i,j: integer; var Left,
Right: table; var X: slice(Left); var Trans: table;
var Nodes: table);

/* Here, the arc (i, j) will be included into the given graph. */
var w,w1,w2: word(Nodes);

v1,v2: word(Code);
r,k: integer;

1. Begin v1:=ROW(i,Code); v2:=ROW(j,Code);
2. k:=FND(not X); X(k):=’1’;
3. ROW(k,Left):=v1; ROW(k,Right):=v2;
/* The arc (i, j) is written in the k-th row of matrices

Left and Right. */
4. w1:=ROW(i,Nodes); w2:=ROW(j,Nodes);
5. w:=w1 and (not w2);
/* The word w saves by ′1′ the roots of trees that will be changed

after inserting the arc (i, j) into the graph. */
6. ROW(k,Trans):=w;
/* The arc (i, j) is simultaneously included into all trees

marked with ′1′ in w. */
7. while SOME(w) do
8. begin r:=STEP(w);

Associative version of Italiano’s incremental algorithm 99

9. ChangeTree(Right,Code,r,j,Nodes,Trans);
10. end;
11. End;

Proposition 2. Let a directed graph G be given as association of matrices
Left and Right along with the global slice X, and its transitive closure be
given as the matrix Trans. Let matrices Code and Nodes be also given. Let
an arc γ = (i, j) be inserted into the graph G. Then, after performing the
procedure InsertArc, the position of the arc γ is marked with ′1′ in the slice
X. Moreover, every spanning tree that includes the vertex i and does not
include the vertex j is updated as shown in Proposition 1.

Proof (Sketch.) We prove this by induction on the number of spanning
trees l in the matrix Trans being changed after insertion of the arc γ into
the graph G.

Basis is checked for l = 1. After performing lines 1–3, we determine the
position of the row in the graph representation, where γ will be written, and
mark it with ′1′ in the slice X. In view of Fact 1, after fulfilling lines 4–5, the
row w saves the roots of spanning trees that will be changed after including
γ in G. In view of Fact 2, after performing line 6, the arc γ is simultaneously
included into all spanning trees whose roots are marked with ′1′ in w. Since
l = 1, the cycle in line 7 performs only once. Here, we first determine the
root r of a spanning tree that will be updated (line 8). Since the position of
the arc γ has been included into Tr, we can apply the procedure ChangeTree.
After its execution, the updated spanning tree Tr will be written in the r-th
column of the matrix Trans, and the updated set of its vertices will be
written in the r-th column of the matrix Nodes.

Step of induction. Let the assertion be true for l ≥ 1 spanning trees being
changed after inserting γ into G. We will prove it for l + 1 spanning trees.
By analogy with the basis, after performing lines 1–6, the arc (i, j) has been
included into the graph representation, its position has been marked with
′1′ in the slice X, the row w saves the roots of trees being changed after
inserting γ into G, and the arc γ has been included into all spanning trees
whose roots are marked with ′1′ in w. By the inductive assumption, after
maintaining the first l spanning trees, whose roots are marked with ′1′ in
w, the changed l trees will be written in the corresponding columns of the
matrix Trans and the changed sets of their vertices will be written in the
corresponding columns of the matrix Nodes. Since there is a single bit ′1′

in w, we determine the root of the last (l+1)-th spanning tree and maintain
it by means of the procedure ChangeTree. ¥

Now we evaluate the time complexity of the procedure InsertArc. To
this end, we have to determine the total number of vertices being updated
after inserting an arc to the transitive closure. In view of performing the

100 A. Sh. Nepomniaschaya

procedure ChangeTree, at most all vertices of a subtree rooted at the tail
of the inserted arc are updated. Therefore the procedure InsertArc takes
O(n log n) time per an insertion, where the factor log n appears due to the
use of the basic procedure MATCH. One can check that the space complexity
of the procedure InsertArc is O(mn) bits.

On the STAR–machine, a Boolean query for vertices i and j is carried
out in O(1) time by checking the j-th bit of the i-th column in the matrix
Nodes. A path query for vertices i and j is performed by means of a bottom-
up traversal in the spanning tree Ti from the vertex j to the root i using
the procedure MATCH. It takes O(l log n) time, where l is the length of the
path.

Let us compare two implementations.
– Italiano’s incremental algorithm checks all vertices in each spanning

tree to determine whether it includes the vertex i and does not include the
vertex j. The associative version simultaneously determines the roots of
trees that include the vertex i and do not include the vertex j.

– To determine the vertices from the spanning tree Tj that should be
added to Tr, Italiano’s incremental algorithm checks whether any vertex
from Tj belongs to Tr. The associative version simultaneously determines
those vertices from Tj that should be added to Tr.

– To perform a path query, for every vertex j in every spanning tree,
Italiano’s incremental algorithm uses an additional pointer to its parent.
The associative version determines the parent of any vertex by means of the
basic procedure MATCH.

– To link the pruned copy of Desk[j] and the vertex i in Desk[r], Ital-
iano’s incremental algorithm updates the spanning tree Desk[r] and the
matrix Index. The associative version determines the position of any arc
from the pruned copy of Tj in the graph representation and includes it into
the r-th column of the matrix Trans. Moreover, the positions of the new
vertices are included into the p-th column of the matrix Nodes.

7. Conclusions

We have proposed a natural and efficient implementation of Italiano’s incre-
mental algorithm for dynamic updating the transitive closure on the STAR–
machine having no less than m PEs. The associative version of Italiano’s
incremental algorithm is represented as a procedure InsertArc whose correct-
ness is proved. We have obtained that this procedure takes O(n log n) time
per an insertion assuming that each microstep of the STAR–machine takes
one unit of time. Space complexity of this procedure is O(mn) bits. We have
also compared implementations of Italiano’s incremental algorithm and its
associative version and presented the main advantages of the associative
version.

Associative version of Italiano’s incremental algorithm 101

We are planning to design associative versions of both Italiano’s algo-
rithms for dynamic updating the transitive closure for the case when a graph
is represented as an adjacency matrix.

References

[1] Foster C. C. Content Addressable Parallel Processors. — New York: Van Nos-
trand Reinhold Company, 1976.

[2] Frigioni D., Miller T., Nanni U., et al. An experimental Study of Dynamic Al-
gorithms for Directed Graphs // Proc. of the European Symp. on Algorithms,
Algorithms-ESA’98. — Lect. Notes Comput. Sci. — 1998. — Vol. 1461. — P.
368–380.

[3] Henzinger M. R., King V. Fully Dynamic Biconnectivity and Transitive
Closure // Proc. 36th IEEE Symp. on Foundations of Computer Science
(FOCS’95). — 1995. — P. 664–672.

[4] Ibaraki T., Katoh N. On-Line Computation of Transitive Closure for Graphs
// Information Processing Letters. — 1983. — Vol. 16. — P. 95–97.

[5] Italiano G. F. Amortized Efficiency of a Path Retrieval Data Structure //
Theor. Comput. Sci. — 1988. — Vol. 48, N 2–3. — P. 273–281.

[6] Italiano G. F. Finding Paths and Deleting Edges in Directed Acyclic Graphs
// Information Processing Letters. — 1988. — Vol. 28. — P. 5–11.

[7] Nepomniaschaya A. S. Language STAR for Associative and Parallel Compu-
tation with Vertical Data Processing // Proc. of the Intern. Conf. “Parallel
Computing Technologies”. — Singapure: World Scientific, 1991. — P. 258–265.

[8] Nepomniaschaya A. S., Dvoskina M.A. A Simple Implementation of Dijkstra’s
Shortest Path Algorithm on Associative Parallel Processors // Fundamenta
Informaticae. — IOS Press, 2000. — Vol. 43. — P. 227–243.

[9] Nepomniaschaya A. S. Associative Version of Italiano’s Decremental Algorithm
for the Transitive Closure Problem // Proc. of 9-th Internat. Conf. PaCT 2007,
Pereslavl-Zalessky, Russia, September 3-7, 2007. — Lect. Notes Comput. Sci.
— Berlin: Springer-Verlag, 2007. — Vol. 4671. — P. 442–452.

[10] La Poutré J. A., van Leeuwen J. Maintenance of Transitive Closure and Tran-
sitive Reduction of Graphs // Proc. Workshop on Graph-Theoretic Conceps
in Computer Science. — Lect. Notes Comput. Sci. — Berlin: Springer-Verlag,
1988. — Vol. 314. — P. 106–120.

[11] Yellin D. M. Speeding Up Dynamic Transitive Closure for Bounded Degree
Graphs // Acta Informatica. — 1993. — Vol. 30, N 4. — P. 369–384.

102

