
Bull. Nov. Comp.Center, Comp. Science, 23 (2005), 71–83
c© 2005 NCC Publisher

Efficient update of tree paths on associative
systems with bit-parallel processing∗

A. Sh. Nepomniaschaya

Abstract. In this paper, we propose an efficient associative parallel algorithm for
updating tree paths after every change in the underlying graph. Such a problem
arises when we perform dynamic graph algorithms. To speed up time complexity
of the algorithm, we use a new associative model called associative graph machine
(AG–machine). It carries out bit–serial and fully parallel associative processing of
matrices representing graphs as well as some basic operations on matrices. On the
AG–machine, the algorithm is implemented as procedure TreePaths. We prove its
correctness and evaluate time complexity.

1. Introduction

Updating a minimum spanning tree (MST) after changes in network topolo-
gy is a fundamental problem. Let G = (V, EG) be an undirected graph with
n vertices and m edges and T = (V, E) be its MST. Let one of the following
changes be performed in G: deletion or insertion of an edge, or deletion or
insertion of a vertex along with its incident edges. We want to compute a new
MST for the altered graph by performing changes in the given T . Dynamic
graph algorithms are designed to handle graph changes. They maintain
some property of a changing graph more efficiently than recomputation of
the entire graph with a static algorithm after every change.

In this paper, we study updating tree paths after every change in the
underlying graph. In particular, such a problem arises when we perform
dynamic edge update of an MST.

To solve update problems, different techniques are used. In [9], Tarjan
proposes a special technique, path compression on balanced trees, to com-
pute functions defined on paths in trees under various assumptions. In [3],
Frederickson suggests a graph decomposition and data structures techniques
to deal with the edge update problem. In [1], a general technique, called
sparsification, for designing dynamic graph algorithms is provided. In [8],
Pawagi and Ramakrishnan propose a technique for updating tree paths on
parallel random access machines. Their technique is based on representing
an MST in the form of an inverted tree. In [5], we suggest a new technique
for updating tree paths on a model of associative (content addressable) sys-

∗ This work was supported in part by the Russian Foundation for Basic Research
under Grant 03-01-00399.

72 A. Sh. Nepomniaschaya

tems with bit–serial (vertical) processing (the STAR–machine). It simulates
the run of fine–grained massively parallel SIMD architectures.

Here, we propose a modified version of the associative parallel algorithm
for updating tree paths [6] that can be also used for the vertex update
problem. To speed up time complexity of this algorithm, we use a new asso-
ciative model called associative graph machine (AG–machine) that performs
bit–serial and fully–parallel associative processing of matrices representing
graphs as well as some basic operations on matrices [7]. On one hand, this
model generalizes the STAR–machine. On the other hand, an explanation
of its possible hardware implementation is proposed in [7]. On the AG–
machine, the algorithm is implemented as the procedure TreePaths. We
justify correctness of this procedure and evaluate its time complexity. We
obtain that it takes O(h) time, where h is the number of vertices in the tree
path joining end–points of the deleted and the inserted edges in the current
MST. It is assumed that each elementary operation of the AG–machine (its
microstep) takes one unit of time.

2. Model of the associative graph machine

In this section, we propose a model of the SIMD type with simple single–bit
processing elements (PEs) called associative graph machine (AG–machine).
It carries out both the bit–serial and the bit-parallel processing. To simulate
the access data by contents, the AG–machine uses both the typical operations
for associative systems first presented in Staran [2] and some new operations
to perform bit–parallel processing.

The model consists of the following components:
– a sequential common control unit (CU), where programs and scalar

constants are stored;
– an associative processing unit forming a two–dimensional array of

single–bit PEs;
– a matrix memory for the associative processing unit.
The CU broadcasts each instruction to all PEs in unit time. All ac-

tive PEs execute it simultaneously while inactive PEs do not perform it.
Activation of a PE depends on the data employed.

Input binary data are loaded in the matrix memory in the form of two–
dimensional tables, where each data item occupies an individual row and is
updated by a dedicated row of PEs. In the matrix memory, the rows are
numbered from top to bottom and the columns – from left to right. Both a
row and a column can be easily accessed.

The associative processing unit is represented as a matrix of single–bit
PEs that correspond to the matrix of input binary data. Each column in the
matrix of PEs can be regarded as a vertical register that maintains the entire
column of a table. Our model runs as follows. Bit columns of tabular data

Parallel update of tree paths 73

are stored in the registers which perform the necessary bitwise operations.
To simulate data processing in the matrix memory, we use data types

slice and word for the bit column access and the bit row access, respectively,
and the type table for defining and updating matrices. We assume that any
variable of the type slice consists of n components. For simplicity, let us
call slice any variable of the type slice.

For variables of the type slice, we employ the same operations as in the
case of the STAR–machine along with the new operation FRST(Y).

The new operation FRST(Y) saves the first (the uppermost) component
′1′ in the slice Y and sets to ′0′ its other components.

For completeness, we recall some elementary operations for slices from
[4] being used in the paper.

SET(Y) sets all components of the slice Y to ′1′;
CLR(Y) sets all components of Y to ′0′;
FND(Y) returns the ordinal number of the first component ′1′ of Y .
In the usual way, we introduce predicates ZERO(Y) and SOME(Y) and

the bitwise Boolean operations X and Y , X or Y , not Y , X xor Y .
The above–mentioned operations are also used for variables of the type

word.
For a variable T of the type table, we use the following two operations:
ROW(i, T) returns the i-th row of the matrix T ;
COL(i, T) returns the i-th column of T .
Moreover, we use two groups of new operations. One group of such

operations is applied to a single matrix, while the other one is used for two
matrices of the same size. All new operations are implemented in hardware.

Now, we present the first group of new operations.
The operation SCOPY(T,X, v) simultaneously writes the given slice X

in those columns of the given matrix T which are marked by ones in the
given comparand v.

The operation not (A, v) simultaneously replaces the columns of the
given matrix A, marked by ones in the comparand v, with their negation.
It will be used as the right part of the assignment statement.

Remark 1. It should be noted that the above presented two operations
use the column parallelism, while the next two operations of this group will
use the row parallelism.

The operation FRST(A) simultaneously replaces each i-th row of the
given matrix A with FRST(ROW(i, A)).

The operation or (A, Y) simultaneously performs disjunction in every
row of the given matrix A and saves the result in the slice Y , that is, ∀i
Y (i) =′ 0′ if and only if ROW(i, A) consists of zeros.

Now, we determine the second group of new operations.
The operation SMERGE(A, B, v) simultaneously writes the columns of

the given matrix B, that are marked by ones in the comparand v, in the

74 A. Sh. Nepomniaschaya

corresponding columns of the result matrix A. If the comparand v consists
of ones, the operation SMERGE copies the matrix B into the matrix A.

The operation op (A,B, v), where op ∈ {or, and, xor}, is simultaneously
performed between those columns of the given matrices A and B that are
marked by ones in the given comparand v. This operation is used as the
right part of the assignment statement, that is, C := op (A, B, v).

Remark 2. We will assume that each elementary operation of the AG–
machine (its microstep) takes one unit of time.

Now, we provide an implementation on the associative graph machine of
a few basic procedures which will be used in this paper.

The procedure WCOPY(w, X,F) writes the binary word w in the rows
of the result matrix F that correspond to ones in the given slice X. Other
rows of F will consist of zeros. On the AG–machine, it is implemented as
follows.

procedure WCOPY(w: word; X: slice; var F: table);
var Y: slice; v: word;
Begin CLR(Y); v:= not w;

SCOPY(F,X,w);
SCOPY(F,Y,v);

End;

This procedure runs as follows. The slice X is simultaneously written in
the matrix F columns that correspond to ′1′ in the given w, while the slice
Y is simultaneously written in other columns of F .

The procedure HIT(T, F, X, Y) defines positions of the corresponding
identical rows in the given matrices T and F using the slice X. It returns
the slice Y , where Y (i) =′ 1′ if and only if ROW(i, T)= ROW(i, F) and
X(i) =′ 1′.

procedure HIT(T,F: table; X: slice; var Y: slice);
var A: table; v: word;
Begin SET(v);

A:= xor (T,F,v);
or (A,Y);

/* Y (j) =′ 0′ iff ROW(j, A) consists of zeros. */
Y:=X and (not Y);

End;

This procedure runs as follows. First, the corresponding columns in the
given matrices T and F are simultaneously compared and the result is saved
in the matrix A. Then the disjunction is simultaneously performed in all
rows of the matrix A. Finally, we take into account the corresponding rows
of matrices T and F selected by ′1′ in X.

Parallel update of tree paths 75

The procedure MATCH(T,X, w, Y) defines positions of rows in the given
matrix T that coincide with the given pattern w. It returns the slice Y ,
where Y (i) =′ 1′ if and only if ROW(i, T) = w and X(i) =′ 1′.

procedure MATCH(T: table; X: slice; w: word; var Y: slice);
var A: table;
Begin WCOPY(w,X,A);

HIT(T,A,X,Y);
End;

This procedure runs as follows. First, the given pattern w is written in
the matrix A rows marked by ′1′ in the given slice X. Then the procedure
HIT is applied to matrices T and A.

On the AG–machine, these procedures take O(1) time each, while on the
STAR–machine, they require O(k) time, where k is the number of columns
in the corresponding matrix [4].

3. Updating tree paths

Let G = (V, E) denote an undirected graph, where V is the set of vertices
and E is the set of edges. Let wt(e) denote the weight of the edge e. We
assume that V = {1, 2, . . . , n}, |V | = n, and |E| = m.

A connected component is a maximal connected subgraph of G.
A minimum spanning tree T = (V, E′) is a connected acyclic subgraph

of G, where E′ ⊆ E and the sum of weights of the corresponding edges is
minimum.

A path from v1 to vk in the graph G is a sequence v1, e1, v2, e2, . . . , ek−1, vk

of alternating vertices and edges such that ei ∈ E and ei = (vi, vi+1) for
1 ≤ i < k.

We will deal with paths in the MST T . It means that edges from any
tree path will belong to the set E′.

Let every edge (u, v) be matched with the triple (u, v, wt(u, v)). Note
that vertices and weights are written in binary code. On the AG–machine,
a graph is represented as association of matrices left, right, and weight,
where every triple (u, v, wt(u, v)) occupies an individual row, and u ∈ left,
v ∈ right, and wt(u, v) ∈ weight. A minimum spanning tree is represented
as a slice, where positions of edges belonging to it are marked by ′1′.

We also use a matrix of tree paths M consisting of m rows and n columns.
Its every i-th column saves the tree path from the root v1 to vertex vi.
Initially, it is obtained along with the MST [5].

Now, we illustrate the representation of the given graph G, its MST T ,
and the corresponding matrix of tree paths M on the AG–machine.

76 A. Sh. Nepomniaschaya

2

6

5

3

3

4

4

4

7
2

1

7

6

6

2

6

5

3

3

4

4

4

7
2

1

Figure 1. Graph G and its MST

Tables Slices
left right weight S T

1 001 010 010 1 1
2 001 011 111 1 0
3 010 011 100 1 1
4 010 100 110 1 0
5 011 100 101 1 0
6 100 101 011 1 1
7 011 101 100 1 1
8 100 110 111 1 1

Table M
1 2 3 4 5 6

1 0 1 1 1 1 1
2 0 0 0 0 0 0
3 0 0 1 1 1 1
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 1 0 1
7 0 0 0 1 1 1
8 0 0 0 0 0 1

In [6], we have proposed two associative parallel algorithms for dynamic
edge update of an MST. These algorithms employ the matrix of tree paths
M . After finding a new MST, the matrix of tree paths changes by means of
the auxiliary procedure TreePaths.

Let us agree that pi,j (1 < i, j ≤ n) denotes a tree path from the MST
joining vertices vi and vj and pi denotes a tree path from vertex v1 to vertex
vi. Obviously, every i-th column of the matrix M saves the tree path pi, that
is, positions of edges from the MST joining vertices v1 and vi are marked
by ′1′ as shown in our example.

The matrix M has the following two properties:
(1) ∀i 6= j, pi,j = pi xor pj , where 1 < i, j ≤ n.
(2) Let an edge γ from the i-th row of the graph representation be deleted

from the MST. Then vertices marked by ′1′ in the i-th row of M form a
separate connected component.

Really, let in our example the edge (3, 5) be deleted from the MST T .
Then vertices {4, 5, 6} marked by ′1′ in the 7-th row of the matrix M form
a separate connected component.

Remark 3. If a tree path pi is the initial part of the tree path pj , then
obviously pi,j = pj and (not pi).

Let a new MST be obtained from the underlying one by deleting an edge
(say, γ) located in the l-th position and inserting an edge (say, δ) located
in the k-th position. Let C be a connected component of G obtained after

Parallel update of tree paths 77

deleting γ. The algorithm for updating tree paths will determine new tree
paths for all vertices from C.

Let vdel and vins be end–points of the corresponding edges γ and δ that
belong to C. Let M1 be a copy of the matrix of tree paths M . The matrix
M1 will save tree paths before updating the current MST. Let a slice P
save positions of tree edges joining vins and vdel. Obviously, directions of
edges on the path [vdel → vins] will be reversed in the new MST.

Let pi (1 < i ≤ n) denote a tree path before updating the MST and p′i
denote a tree path after updating the MST.

The associative parallel algorithm starts at vertex vins. Note that p′ins

is known. The algorithm carries out the following stages.
At the first stage, copy the matrix M into the matrix M1. Then save

the l-th row of the matrix M1 by means of a variable (say, comp). Further,
write the given p′ins in the corresponding column of M . Finally, fulfil the
statement r := ins.

While P is a non-empty slice, repeat stages 2 and 3.
At the second stage, determine vertices not belonging to P that form a

subtree of the MST with root vr if any. For every vj 6= vr from this subtree,
compute p′j as follows:

p′j := (pj and (not pr)) or p′r. (1)

Write p′j in the corresponding column of M . Then mark vertices from this
subtree by ′0′ in comp.

At the third stage, select position i of an edge from P incident on vertex
vr. Then define its end–point (say, vq) being adjacent with vr. Further,
determine the new tree path p′q and write it in the corresponding column of
M . Now, mark the edge position i by ′0′ in the slice P . Finally, perform
the statement r := q.

At the fourth stage, since P is an empty slice, the vertices marked by
′1′ in comp form a subtree of the MST with root vr determined just now.
For every vj 6= vr from this subtree, define p′j using formula (1). Write p′j
in the corresponding column of M. Then mark vertices from this subtree by
′0′ in comp.

The algorithm terminates when the slice P and the variable comp consist
of zeros.

Let us illustrate the run of this algorithm.
In Figure 2, the connected component C consists of vertices v8, v9, . . . , v18;

del = 8 and ins = 14. The algorithm starts at vertex v14. Then the new
tree paths are recomputed for vertices v15, v16, v17, and v18 from the subtree
rooted at v14. Further, a new tree path is first defined for v13 and then for
v8. Finally, new tree paths are recomputed for vertices v9, v10, v11, and v12

from the subtree rooted at v8.

78 A. Sh. Nepomniaschaya

1

2

3

4

5

7

6

8

12
13

14

9

15

18

10

11

17

16

Figure 2. MST before deleting the edge (4,8)

1

2

3

4

5

7

6

8

12
13

14

9

15

18

10

11

17

16

Figure 3. MST after inserting the edge (7,14)

Remark 4. It should be noted that according to formula (1), we first
determine the old tree path between vertices vr and vj . Then we connect
this path and the new tree path to vertex vr.

On the AG–machine, this algorithm is implemented as procedure Tree-
Paths which uses the following input parameters: matrices left, right, and
code, vertices vins and vdel, and the position l of the deleted edge. It returns
the matrix M for the new MST and slices W and P .

Initially, the slice W saves the new tree path from v1 to vins, the slice
P saves positions of edges from the tree path joining vins and vdel, and the
slice C saves vertices whose tree paths will be recomputed.

Remark 5. In [6], the connected component C is given as a slice that
saves vertices marked by ′1′ in the l-th row of the matrix M . However, in
the case of the AG–machine, it is convenient to immediately use the l-th
row of M , where the deleted edge is located.

We first propose the auxiliary procedure Update. Using formula (1),
it computes in parallel new tree paths for any subtree with root vr whose
vertices do not belong to the path from P . In this procedure, vertices of
the subtree are marked by ′1′ in node1, the slice W saves p′r and the slice Z
saves pr.

Parallel update of tree paths 79

procedure Update(M1: table; W,Z: slice; var node1: word;
var M: table);

var A,B: table;
/* Recall that p′j := (pj and (not pr)) or p′r */
Begin SCOPY(A,Z,node1);
/* The old tree path from v1 to vr is written in A. */

SCOPY(B,W,node1);
/* The new tree path from v1 to vr is written in B. */

A:= not (A,node1);
A:= and (M1,A,node1);
B:= or (B,A,node1);

/* The matrix B saves new tree paths for all vj . */
SMERGE(M,B,node1);

End;

Before presenting the procedure TreePaths, we explain how to determine
a subtree with root vr. To this end, we first determine the position i of an
edge from P incident on vr. Then all vertices reachable from vr will be
marked by ′1′ in the i-th row of the matrix M1. Among them, we exclude
the vertices updated before.

Now, we propose the procedure TreePaths.

procedure TreePaths(left,right: table; code: table;
l,ins,del: integer; var M: table; var P,W: slice(left));

/* New tree paths for vertices from the connected component C
will be written in the matrix M . */

var M1: table;
N1,N2,X,Z: slice(left);
S,Y: slice(code);
comp,current,node1,prev: word(M);
node: word(code);
i,q,r: integer;

/* Initialization. */
1. Begin CLR(prev); SET(Y); SET(node1);
/* The first stage. */
2. SMERGE(M1,M,node1);
/* The matrix M1 is a copy of the matrix M. */
3. comp:=ROW(l,M1);
4. Z:= COL(ins,M1); COL(ins,M):= W;
/* A new path from v1 to vins is written

in the corresponding column of M . */
5. r:= ins; node:= ROW(r,code);
/* The second stage. */
6. while SOME(P) do

80 A. Sh. Nepomniaschaya

7. begin MATCH(left,P,node,N1);
8. MATCH(right,P,node,N2);
9. X:= N1 or N2; i:= FND(X);
/* We define the position i of an edge from P incident on vr. */
10. node1:= ROW(i,M1);
/* Vertices whose tree paths include the edge from the i-th

position are marked by ′1′ in node1. */
11. comp:= comp and (not node1);
12. current:= node1;
13. node1:= node1 and (not prev);
14. prev:= current;
/* By means of prev, we save the updated vertices. */
15. node1(r):= ‘0’;
/* Here, vr is a subtree root. */
16. if SOME(node1) then Update(M1,W,Z,node1,M);
/* The third stage. */
17. if N1(i)=‘1’ then node:= ROW(i,right)
18. else node:= ROW(i,left);
/* The binary code of a new subtree root is saved in node. */
19. MATCH(code,Y,node,S);
20. q:=FND(S);
/* Here, vq is a new subtree root. */
21. W(i):= ‘1’; COL(q,M):= W;
/* A new tree path from v1 to vq is written

in the corresponding column of M . */
22. Z:= COL(q,M1); P(i):= ‘0’;
23. r:= q;
24. end;
/* The fourth stage. */
25. comp(r):= ‘0’;
26. if SOME(comp) then Update(M1,W,Z,comp,M);
27. End;

Correctness of this procedure is established by means of the following
theorem.

Theorem. Let a graph G be given as association of matrices left and
right and the matrix code save binary representations of vertices. Let an
edge from the l-th position be deleted from the MST and comp be the cor-
responding connected component. Let del be end–point of the deleted edge
and ins be end–point of the inserted edge that belong to comp. Then the
procedure TreePaths returns the updated matrix M and slices P and W.

Parallel update of tree paths 81

Proof. (Sketch) We prove this by the induction on the number of edges
k belonging to the slice P .

Basis is checked for k = 1. On performing lines 1–5, the matrix M1
is a copy of M , the variable comp saves the connected component obtained
after deleting the edge from the l-th row in the graph representation, the
variable prev consists of zeros, the slice Z saves pins and p′ins is written in
the corresponding column of M , the current vertex vr coincides with vins,
and the variable node saves its binary code.

Further, on fulfilling lines 7–10, we first determine the position i of an
edge from P incident on vins. Then, we determine all vertices whose tree
paths include this edge and save them by ′1′ in the variable node1. On
performing lines 11–15, we first mark by ′0′ those vertices of the connected
component comp that belong to node1. Then the variable node1 will save
a subtree with root vins whose vertices do not belong to the tree path from
P . If node1 is non–empty, we determine in parallel the new tree paths for
all vertices from this subtree (line 16). Further, we execute the next stage.

At the third stage, on performing lines 17–20, the variable node saves
the binary code of vdel. Then on fulfilling lines 21–23, we first write a new
tree path to vertex vdel in the corresponding column of M . After that, we
save pdel in the slice Z, mark by ′0′ the edge position i in the slice P , and
perform the statement r := del.

Since P is an empty slice, we perform the fourth stage. Here, the variable
comp saves the subtree rooted at vertex vdel. If comp becomes empty after
deleting root vdel, we jump to the procedure end. Otherwise, we determine
in parallel new tree paths for all vertices of the subtree with root vdel. Since
comp becomes empty after performing Update, we go to the end.

Step of induction. Let the assertion be true for k ≥ 1. We will prove
this for k + 1.

Let the slice P save positions of k + 1 edges from the tree path [vdel →
vins]. Let the edge (vdel, vt) belong to this path. Then we represent the
tree path [vdel → vins] as (vdel, vt)[vt → vins], where the path [vt → vins]
consists of k edges. By the induction hypothesis, after updating the tree
path [vt → vins], the new tree paths for vertices from subtrees rooted at
vertices vins, . . . , vt from P are written in the corresponding columns of M ,
the variable prev saves the subtree rooted at vt, the variable q saves vertex
vt, the slice Z saves pt while W saves p′t, and the slice P saves position of the
edge (vt, vdel). Since P is non–empty, we perform the (k + 1)-th iteration.

Further, we reason in the same manner as in the basis.
Hence, after executing the procedure TreePaths, the matrix M saves new

tree paths for all vertices of the updated MST.

Let us evaluate time complexity of the procedure TreePaths. Since the
basic procedure MATCH and the auxiliary procedure Update take O(1) time

82 A. Sh. Nepomniaschaya

each, we obtain that the procedure TreePaths takes O(h) time, where h is
the number of vertices in the tree path joining end–points of the deleted
and the inserted edges in the current MST. On the STAR–machine, such a
procedure takes O(k log n) time [5], where k is the number of all vertices in
the connected component obtained after deleting an edge from the MST.

4. Conclusions

In this paper, we have described an efficient implementation of the associa-
tive parallel algorithm for updating tree paths on the AG–machine. This
model carries out both the bit–serial and the bit–parallel processing. The
algorithm is given as procedure TreePaths whose correctness is proved. We
have obtained that it takes O(h) time, where h is the number of vertices in
the tree path joining end–points of the deleted and the inserted edges in the
current MST. The proposed implementation of this procedure can be used
to design an associative parallel algorithm for dynamic vertex update of an
MST on the AG–machine.

References

[1] Eppstein D., Galil Z., Italiano G.F., Nissenzweig A. Sparsification – A tech-
nique for speeding up dynamic graph algorithms // J. of the ACM. – 1997. –
Vol. 44, N 5. – P. 669–696.

[2] Foster C.C. Content Addressable Parallel Processors. – New York: Van Nos-
trand Reinhold Company, 1976.

[3] Frederickson G.N. Data structures for on-line updating of minimum spanning
trees, with applications // SIAM J. Comput. – 1985. – Vol. 14. – P. 781–798.

[4] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae: IOS Press, Amsterdam. – 2000. – Vol. 43. – P. 227–243.

[5] Nepomniaschaya A. S. A new technique for updating tree paths on associa-
tive parallel processors // Bull. of the Novosibirsk Computing Center. Ser.:
Computer Science. – 2004. – Is. 21. – P. 85–97.

[6] Nepomniaschaya A.S. Associative parallel algorithms for dynamic edge update
of minimum spanning trees // Proc. 7th Int. Conf. PaCT 2003. – Lect. Notes
in Comp. Sci. – 2003. – Vol. 2763. – P. 141–150.

[7] Nepomniaschaya A., Kokosinski Z. Associative Graph Processor and its Pro-
perties // Proc. of the International Conference on Parallel Computing in
Electrical Engineering (PARELEC 2004), Dresden, Germany. – 2004. – P.
297–302.

Parallel update of tree paths 83

[8] Pawagi S., Ramakrishnan I.V. An O(log n) algorithm for parallel update of
minimum spanning trees // Inform. Process. Letters. – 1986. – Vol. 22. – P.
223–229.

[9] Tarjan R.E. Applications of path compression on balanced trees // J. of the
ACM. – 1979. – Vol. 26, N 4. – P. 690–715.

84

