
Bull. Nov. Comp.Center, Comp. Science, 23 (2005), 85–99
c© 2005 NCC Publisher

Symbolic verification method for definite
iterations over tuples of altered data structures∗

V.A. Nepomniaschy

Abstract. In order to extend the area of application of the symbolic verification
method [19, 20, 21, 22, 23], definite iterations over tuples of altered data structures
are introduced and reduced to the standard definite iterations. This reduction is
extended to definite iterations including the exit statement. The generalization of
the symbolic verification method allows us to apply it to pointer programs. As a
case of study, programs over doubly-linked lists are considered. A program that
merges in-place ordered doubly-linked lists is verified by the symbolic method.

1. Introduction

The axiomatic approach to program verification is based on the Hoare
method and consists of the following stages: annotating programs by pre-,
post-conditions and loop invariants; generating verification conditions with
the help of proof rules and proving the verification conditions [6]. The
loop invariant synthesis is an important problem [8] which is far from being
overcome [26]. In the functional approach to program verification, loops
are annotated by functions expressing the loop effect [10]. However, the
synthesis of such a function remains a difficult problem in most cases [14].
Attempts to extract loop invariants from programs by using special tools [3]
are found to be successful only for quite simple kinds of invariants.

Two ways of overcoming the difficulties of program verification are con-
sidered. In papers on code certification [16, 28], verification of simple but
important program properties is considered in the framework of the ax-
iomatic approach. However, the invariant synthesis problem imposes an
essential limitation on the practical use of this method [28]. An other way
of overcoming the difficulty is to use loops of a special form which allows to
simplify the verification process. A special form of loops called simple is pro-
posed in [1]. The simple loops are similar to for-loops in that they contain
the only control variable called the loop parameter, and also its alteration
in a given finite domain does not depend on other variables modified by
the loop body. Therefore, the simple loops are definite iterations because of
their termination for all values of input variables. Although the reduction
of for -loops to while-loops is often used for verification, attempts to use the

∗This work was supported in part by the Russian Foundation for Basic Research under
grant 04-01-00114.

86 V.A. Nepomniaschy

specific character of for -loops in the framework of the axiomatic approach
should be noted [4, 5, 7]. In the framework of the functional approach, a
general form of the definite iteration as an iteration over all elements of
an arbitrary structure has been proposed in [27] where spreading of such
iterations in practical programming has been justified.

A symbolic method for verification of for-loops with the statement of
assignment to array elements as a loop body has been proposed in [17, 18],
and it has also been extended to the definite iterations over data struc-
tures without restrictions on the iteration bodies in [19, 20]. This method
is based on using a replacement operation that represents the loop effect in
a symbolic form and allows us to express the loop invariant. The symbolic
method uses a special technique for proving verification conditions contain-
ing the replacement operation. Along with data structures defined in [27],
the symbolic method allows us to use hierarchical data structures that are
constructed from given structures [20]. Moreover, the symbolic verification
method is applied to a new kind of definite iterations called iterations over
tuples of data structures [21, 22]. These iterations allow us to represent in
a compact and natural form iterations with several input data structures.
This method has been successfully applied to verification of programs over
arrays and files [20, 21, 22]. However, an attempt to apply this method
to pointer programs has revealed the following problem. The data struc-
tures can be modified by the iteration body, and, therefore, the loops are
not simple. In [23] the symbolic verification method has been extended to
definite iterations over altered data structures and applied to verification of
programs over singly-linked lists.

The purpose of this paper is to develop the symbolic method for a
satisfactory solution of this problem in the case of iterations over tuples
of altered data structures and to apply it to pointer program verification.
An outline of the symbolic verification method for definite iterations over
hierarchical data structures and over tuples of unaltered data structures
is given in Section 2 and Section 3, respectively. Definite iterations over
tuples of altered data structures and their reduction to standard definite
iterations are described in Section 4. Definite iterations over tuples of al-
tered data structures that contain the exit statement are introduced, and
their reduction to the standard definite iterations is described in Section 4,
too. Application of the symbolic method to verification of programs over
doubly-linked lists is presented in Section 5, where a list merge program is
considered. Advantages and prospects of the symbolic verification method
are discussed in Section 6.

2. Definite iteration over hierarchical data structures

We introduce the following notation. Let {s1, . . . , sn} be a multiset consist-
ing of elements s1, . . . , sn, U1−U2 be the difference of multisets U1 and U2,

Symbolic verification method for definite iterations 87

U1
⋃

U2 be the union of multisets, and |U | be the power of a finite multiset U .
The empty set is denoted by ∅. Let [v1, . . . , vm] denote a vector consisting
of elements vi (1 ≤ i ≤ m) and Ø denote the empty vector. A concate-
nation operation con(V1, V2) is defined in the usual fashion for vectors V1

and V2. For a function f(x) we assume that f0(x) = x, f i(x) = f(f i−1(x))
(i = 1, 2, . . .).

Let us remind the notion of a data structure [27]. Let memb(S) be
a finite multiset of elements of a structure S, empty(S) be a predicate
“memb(S) is empty”, choo(S) be a function which returns an element of
memb(S), rest(S) be a function which returns a structure S′ such that
memb(S′) = memb(S) − {choo(S)}. The functions choo(S) and rest(S)
will be undefined if and only if empty(S). This definition abstracting from
the way of the determination of the functions choo(S) and rest(S), is quite
flexible. For example, if a tree is defined as a data structure, a tree traversal
method is fixed. So, such different traversal methods result in different data
structures.

Let us remind a definition of useful functions related to the structure S
[19]. Let vec(S) denote a vector [s1, . . . , sn] such that si = choo(resti−1(S))
(i = 1, . . . , n) in the case of ¬empty(S) and memb(S) = {s1, . . . , sn}. The
vector vec(S) is empty if empty(S). The function vec(S) defines such an
unfolding of the structure S that uniquely gives its use. Structures S1 and
S2 are called equivalent (S1 = S2) when vec(S1) = vec(S2). The following
functions head(S) and last(S) will be undefined in the case of empty(S). A
function head(S) returns a structure such that vec(head(S)) = [s1, . . . , sn−1]
if vec(S) = [s1, . . . , sn] and n ≥ 2. If n = 1, then empty(head(S)). Let
last(S) be a partial function such that last(S) = sn if vec(S) = [s1, . . . , sn].
Let str(s) denote a structure S which contains the only element s. A con-
catenation operation con(S1, S2) is defined in [19] so that

con(vec(S1), vec(S2)) = vec(con(S1, S2)).

Let con(s, S) = con(str(s), S) and con(S, s) = con(S, str(s)). In the case of
¬empty(S), con(choo(S), rest(S)) = con(head(S), last(S)) = S. Moreover,
the property head(rest(S)) = rest(head(S)) provided ¬empty(rest(S)) re-
sults from [19].

Our aim is to introduce parameters in the definition of the structure S.
To this end we remind the rules for construction of a hierarchical structure S
from given structures S1, . . . , Sm [20]. We will use T (S1, . . . , Sm) to denote a
term constructed from the data structures Si (i = 1, . . . ,m) with the help of
the functions choo, last, rest, head, str, con. For a term T which represents
a data structure, we denote the function |memb(T)| by lng(T). The function
can be calculated by the following rules:

lng(Si) = |memb(Si)|,
lng(con(T1, T2)) = lng(T1) + lng(T2),

88 V.A. Nepomniaschy

lng(rest(T)) = lng(head(T)) = lng(T)− 1,
lng(str(s)) = 1.

Let a hierarchical data structure S = STR(S1, . . . , Sm) be defined by the
functions choo(S) and rest(S) constructed with the help of conditional
if − then − else, superposition and Boolean operations from the following
components:

— terms not containing S1, . . . , Sm;

— the predicate empty(Si) and the functions choo(Si), rest(Si), last(Si),
head(Si) (i = 1, . . . , m);

— terms of the form STR(T1, . . . , Tm) such that∑m
i=1 lng(Ti) <

∑m
i=1 lng(Si);

— an undefined element ω.

Note that the undefined value ω of the functions choo(S) and rest(S) means
empty(S).

Let us suppose that the iteration body consists of a sequence of assign-
ment and conditional statements. The iteration body is represented as the
vector assignment statement v := body(v, x), where x is the iteration pa-
rameter, v is a vector of other variables, body(v, x) is a vector of conditional
expressions constructed with the help of the operation if−then−else. Such
a representation is formed by a sequence of suitable substitutions which re-
place both conditional statements by conditional expressions and a sequence
of assignment statements by one vector assignment statement.

Let us consider the following definite iteration over an unaltered data
structure S:

for x in S do v := body (v, x) end (1)

where x is a variable called a loop parameter, v is a data vector of the loop
body (x 6∈ v) and the iteration body v := body(v, x) does not change the
structure S. The result of this iteration is an initial value v0 of the vector v
if empty(S). Let ¬empty(S) and vec(S) = [s1, . . . , sn]. Then the iteration
body iterates sequentially for x defined as s1, . . . , sn.

Let us remind the definition of the replacement operation rep(v, S, body)
which presents the effect of iteration (1) [19]. Let its result for v = v0 be
a vector vn such that n = 0 provided empty(S), vi = body(vi−1, si) for all
i = 1, . . . , n provided ¬empty(S) and vec(S) = [s1, . . . , sn]. The following
theorem which results from [19] presents useful properties of the replacement
operation.

Symbolic verification method for definite iterations 89

Theorem 1.
1.1. Iteration (1) is equivalent to the multiple assignment statement

v := rep(v, S, body).
1.2. rep(v, con(S1, S2), body) = rep(rep(v, S1, body), S2, body).
1.3. rep(v, str(s), body) = body(v, s).

Corollary 1.
1.1. ¬empty(S) → rep(v, S, body) = body(rep(v, head(S), body), last(S)).
1.2. ¬empty(S) → rep(v, S, body) = rep(body(v, choo(S)), rest(S), body).

The replacement operation allows us to formulate the following proof
rule without invariants for iteration (1). Let R(y ← exp) be the result of
substitution of an expression exp for all occurrences of a variable y into a
formula R. Let R(vec ← vexp) denote the result of a synchronous substi-
tution of the components of an expression vector vexp for all occurrences of
corresponding components of a vector vec into a formula R.

rl1. {P}prog{Q(v ← rep(v, S, body))} `
{P}prog; for x in S do v := body(v, x) end {Q},

where P is a pre-condition, Q is a post-condition which does not depend
on the loop parameter x, prog is a program fragment, and {P} prog {Q}
denotes partial correctness of a program prog with respect to P and Q.

The following corollary is evident from Theorem 1.1.

Corollary 2. The proof rule rl1 is derived in the standard system of
proof rules for usual statements including the multiple assignment state-
ment.

Projections of vectors body(v, x) and rep(v, S, body) on a variable y are
denoted by bodyy(v, x) and repy(v, S, body), respectively.

3. Iterations over tuples of unaltered data structures

Let us remind a definition of a definite iteration over a tuple of unaltered data
structures S1, . . . , Sm (possibly hierarchical) [21]. We will use a function
sel(x1, . . . , xm) for selection of one structure from the structures S1, . . . , Sm,
where xi ∈ memb(Si)

⋃{ω} (i = 1, . . . , m). The function sel(x1, . . . , xm)
returns an integer j (1 ≤ j ≤ m) such that xj 6= ω, and also sel(ω, . . . , ω)
is undefined. In the case of xj 6= ω and xi = ω for all i 6= j (i = 1, . . . ,m),
sel(x1, . . . , xm) = j and the definition of the function sel can be omitted.

Let us consider the iteration over a tuple of structures S1, . . . , Sm of the
form

for x1 in S1, . . . , xm in Sm do t := sel(x1, . . . , xm); v := body (v, xt, t) end
(2)

90 V.A. Nepomniaschy

where v is a data vector (xi /∈ v for all i = 1, . . . , m) and the iteration
body does not change the structures S1, . . . , Sm. If empty(Si) for each
i = 1, . . . ,m, then the iteration result is an initial value v0 of the vec-
tor v. Otherwise, we assume xi = choo(Si) for each i = 1, . . . , m, where
choo(Si) = ω provided empty(Si). A new value v1 of the vector v is defined
so that v1 = body(v0, xt, t). The structure St is replaced by the structure
rest(St), and the other structures Si (i 6= t) are not changed. The process is
applied to v1 and the resulted structures until all structures become empty.
The resulted value vd (d =

∑m
i=1 | memb(Si) |) of the vector v is assumed

to be the result of iteration (2).
Here the purpose is to reduce iteration (2) to iteration (1) with the help

of hierarchical structures. We use the following notation in order to define
a hierarchical structure

S = STR(S1, . . . , Sm)

from the structures S1, . . . , Sm and the function sel(x1, . . . , xm). Let

EMPTY = (empty(S1) ∧ . . . ∧ empty(Sm)),
t1 = sel(choo(S1), . . . , choo(Sm)),
REST = STR(S1, . . . , rest(St1), . . . , Sm) provided ¬EMPTY . Then

(choo(S), rest(S)) = if EMPTY then (ω, ω)else ((choo(St1), t1), REST).
Notice that this definition is consistent with the definition of hierarchi-
cal structures from Section 2, since the quantifiers bounded by the set
{1, . . . , m}, can be expressed by applying conjunction or disjunction m
times, and empty(S) ≡ (choo(S) = ω). The following theorem is similar
to Theorem 1 [21].

Theorem 2. Iteration (2) over a tuple of unaltered data structures
S1, . . . , Sm is equivalent to the iteration

for (x, τ) in S do v := body (v, x, τ) end (3)

where the hierarchical structure S = STR(S1, . . . , Sm) is defined by means
of the function sel(x1, . . . , xm).

Let us consider the following definite iteration over a tuple of unaltered
data structures with a body including the statement of termination of the
iteration EXIT:

for x1 in S1, . . . , xm in Sm do t := sel(x1, . . . , xm); v := body(v, xt, t);
if cond(x1, . . . , xm) then EXIT end (4)

where xi 6∈ v (i = 1, . . . , m), the condition

cond(x1, . . . , xm)(xi ∈ memb(Si) ∪ {ω})

Symbolic verification method for definite iterations 91

does not depend on variables from v, and the iteration body does not change
the structures Sj (j = 1, . . . , m).

We will use b1 to denote cond(choo(S1), . . . , choo(Sm)). Let us describe
operational semantics of iteration (4). If EMPTY , then the result of it-
eration (4) is an initial value v0 of the vector v. Otherwise, the result of
iteration (4) is v1 = body(v0, choo(St1), t1), when b1 is true. If b1 is false,
then this process is continued with v = v1 and the structure rest(St1) in-
stead of St1 , when the other structures Si (i 6= t1) are not changed. A value
vl resulting from this process is the result of iteration (4).

Here the purpose is to reduce iteration (4) to iteration (1) with the
help of hierarchical structures. Let us define a hierarchical structure T =
STR(S1, . . . , Sm) with the help of the function sel(x1, . . . , xm) and the con-
dition cond(x1, . . . , xm).
Let (choo(T), rest(T)) = if EMPTY then (ω, ω) else ((choo(St1), t1),
if b1 then ω else REST). The following theorem is similar to Corollary 1
[21].

Theorem 3. Iteration (4) over a tuple of unaltered data structures
S1, . . . , Sm is equivalent to the iteration

for (x, τ) in T do v := body(v, x, τ) end (5)

where the hierarchical structure T = STR(S1, . . . , Sm) is defined with the
help of the function sel(x1, . . . , xm) and the condition cond(x1, . . . , xm).

4. Iterations over tuples of altered data structures

The definite iteration over tuples of altered data structures has the form
(2), where the structure Si can depend on variables from the vector v
(i = 1, . . . ,m). Let wi denote a vector consisting of all variables on which
the structure Si = Si(wi) depends (i = 1, . . . ,m). If Si does not depend on
variables from v, then wi is the empty vector and it can be omitted. Let
Init denote an admissible set consisting of initializations of variables from
v. The set Init can depend on a program containing iteration (2).

Let vj(wij , respectively) denote a vector consisting of values of variables
from v (wi, respectively). Let us say that vj extends wij(vj ⊃ wij) if, for
each variable y from the vector wi and its value yj ∈ wij , the property
yj ∈ vj holds.

Let us define operational semantics of iteration (2) for a vector v0 consist-
ing of initial values of variables from v such that v0 ∈ Init. Let Si0 = Si(wi0)
provided wi0 ⊂ v0 (i = 1, . . . , m), d =

∑m
i=1 | memb(Si0) |.

We introduce the following notation:
vec0(Si0) = if eempty(Si0) then vec(Sio) else Ø,
tj = sel(choo(vecj−1(S10)), . . . , choo(vecj−1(Sm0))),
vecj(Si0) = if i 6= tj then vecj−1(Si0) else rest(vecj−1(Si0)),

92 V.A. Nepomniaschy

V ECj0 = [vecj(S10), . . . , vecj(Sm0)],
vj = body(vj−1, choo(vecj−1(Stj0)), tj) (j = 1, . . . , d).

We impose a restriction RTR1 on the iteration (2) such that at the j-th
step of the iterative process the iteration body does not change V ECj0 for
j = 1, . . . , d − 1. Therefore, after the j-th step of the iterative process, the
vector of undelivered elements of the structure Si coincides with vecj(Si0)
when v = vj−1 and xi = choo(vecj−1(Si0)) (i = 1, . . . , m).

The result of the iterative process is defined to be vd. The following
claim follows immediately from the operational semantics of iteration (2).

Claim 1. Iteration (2) with an initial value v0 ∈ Init of the vector
v provided Si = Si(wi) and wi0 ⊂ v0 (i = 1, . . . ,m) is equivalent to the
program

w1 := w10; . . . , wm := wm0; for x1 in S1(w10), . . . , xm in Sm(wm0)
do t := sel(x1, . . . , xm); v := body(v, xt, t) end. (6)

It should be noted that, in the case of wk = Ø, the statement wk := wk0 is
omitted in (6) and Sk(wk0) is replaced by Sk.

Let us define operational semantics of iteration (4) for a vector v = v0 ∈
Init in the case when the structure Si depends on variables from the vector
wi (i = 1, . . . , m). Let bj = cond(choo(vecj−1(S10)), . . . , choo(vecj−1(Sm0)))
(j = 1, . . . , d). We impose a restriction RTR2 on iteration (4) such that at
the j-th step of the iterative process the iteration body does not change
V ECj0 when eb1 ∧ . . .∧ebj (j = 1, . . . , d − 1). vd is defined as the result of
the iterative process in the case of eb1 ∧ . . .∧ebd. Otherwise, there exists j
such that
2 ≤ j ≤ d∧eb1 ∧ . . .∧ebj−1 ∧ bj or j = 1∧ b1. In this case vj is defined to be
the result of the iterative process.

The following claim follows immediately from the operational semantics
of iteration (4).

Claim 2. Iteration (4) with an initial value v0 ∈ Init of the vector v
provided Si = Si(wi) and wi0⊂v0 (i = 1, . . . ,m) is equivalent to the program

w1 := w10; . . . , wm := wm0; for x1 in S1(w10), . . . , xm in Sm(wm0) do
t := sel(x1, . . . , xm); v := body(v, xt, t); if cond(x1, . . . , xm) then EXIT

end. (7)

5. Case of study: iterations over doubly-linked lists

5.1. Specification means
In order to generate verification conditions of pointer programs, we will

use the method from [11]. A section of a heap which presents a computer
memory is associated with a pointer type. Let L be a set of heap elements

Symbolic verification method for definite iterations 93

to which pointers can refer. An element to which a pointer p refers, is
denoted by p ↑ in programs or by ⊂ p⊃ in specifications, or by L ⊂ p⊃ in
specifications when the element belongs to L. The predicate ⊂ p⊃∈ L is
denoted by pnto(L, p). Let L be a set of records with the field k. We use
upd(l, k, e) to denote an element resulted from the element l by replacing
the field l.k with the value of the expression e. Let upd(L,⊂p⊃, k, e) be a
set resulted from the set L by replacing the field L ⊂p⊃ .k with the value
of the expression e. To generate verification conditions, we will use for the
statement q ↑.k := e its equivalent form L := upd(L,⊂ q⊃, k, e) in the case
of pnto(L, q).

In this section we assume that a set L that forms a double-linked list
consists of records with the fields key, next and prev. The key field contains
an integer that serves as an identification name for an element. The next
and prev fields contain a pointer or nil.

The predicate reachn(L, r, q) (reachp(L, r, q), respectively) means that
the element ⊂ q ⊃ is reached from the element ⊂ r ⊃ in the set L via
pointers from the next (prev, respectively) field. Let rootn(L) (rootp(L),
respectively) be a pointer to a head element of the set L with respect to n-
reachability (p-reachability, respectively), i.e. such an element from which
all other elements of the set L can be reached via pointers from the next
(prev, respectively) field. Let l = lastn(L) (l = lastp(L), respectively) be
such an element of the set L that the field l.next (l.prev, respectively) con-
tains nil or a pointer to an element which does not belong to the set L.

The predicate dset(L) means that the set L is doubly-linked, i.e. there
exist pointers rootn(L) and rootp(L) as well as elements lastn(L) and lastp(L)
such that lastp(L) = ⊂ rootn(L) ⊃ and lastn(L) = ⊂ rootp(L) ⊃. No-
tice that there exist the only pointer rootn(L) (rootp(L), respectively) and
the only element lastn(L) (lastp(L), respectively) for the doubly-linked set
L. A doubly-linked set L can be considered as a structure L such that
choo(L) =⊂rootn(L)⊃ and rest(L) results from the set L by removing the
element choo(L) .

The predicate dlist(L) means that the set L is a doubly-linked list, i.e.
dset(L) and lastn(L).next = lastp(L).prev = nil. An other useful kind of
doubly-linked sets, so-called semilists, is defined by the predicate dpset(L)
which means dset(L) and lastn(L).next = nil.

Let us define several useful operations over doubly-linked sets. A doubly-
linked set which contains the only element l is denoted by dset(l). Let us
consider disjoint doubly-linked sets L1 and L2 such that

¬pnto(L1, lastn(L2).next) and ¬pnto(L2, lastp(L1).prev).

We define their concatenation as a doubly-linked set L = con(L1, L2) such
that L = L′1 ∪ L′2, where L′1 (L′2, respectively) results from L1 (L2, respec-
tively) by placing the pointer rootn(L2) (rootp(L1), respectively) into the

94 V.A. Nepomniaschy

field lastn(L1).next (lastp(L2).prev, respectively). Let us extend the defi-
nition of con(L1, L2) such that con(L1, L2) = Li, where i=1 if L2 = ∅, and
i=2 if L1 = ∅. We consider con(L, l) and con(l, L) to be a short form for
con(L, dset(l)) and con(dset(l), L), respectively.

A sequence which is the projection of the doubly-linked set L on the key
field in the direction given by pointers in the next field, is denoted by L.key.
In the case of the empty set L, let L.key be the empty sequence.

For a sequence seq of different integers we denote by sord(seq) a predicate
whose value is true, if the sequence seq has been sorted in the order <, and
false otherwise. Let set(seq) be the set of all elements of the sequence seq.

5.2. Merging ordered doubly-linked lists
The following annotated program prog1 merges in-place ordered doubly-

linked lists L1 and L2 into an ordered list L, where sets of keys of elements
of L1 and L2 are disjoint.
{P}z := nil; y1 := rootn(L1); y2 := rootn(L2);
for x1 in L1, x2 in L2 do t := sel(x1, x2);
if z 6= nil then begin z ↑ .next := yt; yt ↑ .prev := z end;
z := yt; yt := xt.next; if x1 = ω ∨ x2 = ω then EXIT end {Q},
where sel(x1, x2) = if x1.key < x2.key then 1 else 2,
yt = if t = 1 then y1 else y2,
P : L1 = L10 ∧ L2 = L20 ∧ dlist(L10) ∧ dlist(L20) ∧ L = L10 ∪ L20 ∧
sord(L10.key) ∧ sord(L20.key) ∧ set(L10.key) ∩ set(L20.key) = ∅,
Q : dlist(L) ∧ sord(L.key) ∧ set(L.key) = set(L10.key) ∪ set(L20.key).
It should be noted that the program prog1 has variables L1, L2, L, y1, y2, z, x1,
x2, t, and the elements z ↑ and yt ↑ can be written in the form L⊂z⊃ and
L⊂yt⊃, respectively. Moreover, yi is a pointer to a scanned element of the
list Li (i = 1, 2), and z is a pointer to an element of the set L which has been
selected by the function sel at the previous step of the iterative process.

The iteration contained in prog1 is considered for the initialization Init:
L1 = L10, L2 = L20, L = L10∪L20, z = nil, y1 = rootn(L10), y2 = rootn(L20),
where dlist(L10) and dlist(L20) hold because the precondition P is true.

Claim 3. The restriction RTR2 holds for the iteration from prog1 under
the condition of the initialization Init.

Proof. Let v = v0 ∈ Init. We will use the induction on j = 1, . . . , d−1.
If j = 1, then z = nil and the set L = L10 ∪ L20 does not change after the
first step of the iterative process. Therefore, the restriction RTR2 holds for
j = 1. Let us suppose that j > 1 and eb1 ∧ . . .∧ebj . Two elements L⊂z⊃
and L⊂ yt ⊃ of the set L can be changed at the j-th step of the iterative
process. Detecting that the element L⊂z⊃ has been selected at the (j-1)-th
step and the element L⊂yt⊃ has been selected at the j-th step, we see that
these elements do not belong to V ECj0. Claim 3 follows from this and the
inductive hypothesis.

Symbolic verification method for definite iterations 95

By Claim 2, the program prog1 is equivalent to the following program
prog2 for the initialization Init:
{P}z := nil; y1 := rootn(L1); y2 := rootn(L2);L1 := L10, L2 := L20;
for x1 in L10, x2 in L20 do t := sel(x1, x2);
if z 6= nil then begin z ↑ .next := yt; yt ↑ .prev := z end;
z := yt; yt := xt.next; if x1 = ω ∨ x2 = ω then EXIT end {Q}.

By Theorem 3, the program prog2 is equivalent to the following program
prog3:
{P}z := nil; y1 := rootn(L1); y2 := rootn(L2);L1 := L10, L2 := L20;
for (x, τ) in S do if z6=nil then begin z↑.next:= yτ ; yτ↑.prev := z end;
z := yτ ; yτ := x.next end {Q},
where the hierarchical structure S = STR(L10, L20) is defined in the follow-
ing way:
(choo(S), rest(S)) = if EMPTY then (ω, ω) else ((choo(Lt10), t1),
if b1 then ω else REST),
t1 = sel(choo(L10), choo(L20)), b1 = (choo(L10) = ω ∨ choo(L20) = ω),
REST = if t1 = 1 then STR(rest(L10), L20) else STR(L10, rest(L20)).

The body of the iteration that is contained in prog3 can be written in the
form (L, y1, y2, z) := body(L, y1, y2, z, x, τ), where body(L, y1, y2, z, x, τ) =
(if z 6= nil then upd(upd(L,⊂z⊃, next, yτ),⊂yτ ⊃, prev, z) else L,
if τ = 1 then x.next else y1, if τ = 1 then y2 else x.next, yτ).

The following verification condition VC is generated from prog3 with the
help of the proof rule rl1.
V C : P (L,L1, L2, L10, L20) → Q(L′, L10, L20),
where L′ = repL((L, rootn(L1), rootn(L2), nil), S, body).

In order to prove the condition VC by induction, we replace doubly-
linked lists by semilists. The verification condition VC immediately follows
from the property
prop(L,L1, L2, L10, L20) = (P ′(L, L1, L2, L10, L20) → Q′(L′, L10, L20)),
where P ′(L,L1, L2, L10, L20) : L1 = L10∧L2 = L20∧dpset(L10)∧dpset(L20)∧
L = L10 ∪ L20∧epnto(L20, choo(L10).prev)∧epnto(L10, choo(L20).prev) ∧
sord(L10.key) ∧ sord(L20.key) ∧ set(L10.key) ∩ set(L20.key) = ∅,
Q′(L,L10, L20) : dpset(L) ∧ sord(L.key) ∧ choo(L).key = choo(Lt10).key ∧
choo(L).prev = choo(Lt10).prev ∧ set(L.key) = set(L10.key)∪ set(L20.key).

Claim 4. The property prop(L,L1, L2, L10, L20) holds.
Proof. Let us suppose t1 = 1. We will use induction on k =|memb(S) |

(k ≥ 2). If k = 2, then |memb(L10) |= 1 and L′ = con(L10, L20). Indeed,
the structure STR(rest(L10), L20) consists of the only element (choo(L20), 2)
and L′=repL((L10 ∪ L20, rootn(L10), rootn(L20), nil), S, body)=
upd(upd(L10 ∪L20,⊂ rootn(L10) ⊃, next, rootn(L20)),⊂ rootn(L20) ⊃, prev,
rootn(L10)) by Theorem 1.3 and Corollary 1.2. Therefore, from P ′(L,L1, L2)
it follows that dpset(con(L10, L20)) and sord(con(L10, L20).key).
Q′ (L′, L10, L20) follows immediately from this.

96 V.A. Nepomniaschy

Let us suppose that k > 2 and prop(L,L1, L2, L10, L20) holds for
| memb(S) |< k. Two cases are possible.
1. t2 = 1. Then L′ = {choo(L10)} ∪ L′′, where L′′ =
repL((rest(L10) ∪ L20, rootn(rest(L10)), rootn(L20), nil),
STR(rest(L10), L20), body) = repL((rest(L10) ∪ L20, choo(rest(L10)).next,
rootn(L20), rootn(rest(L10))), STR(rest2(L10), L20), body).
By the inductive hypothesis for L′′, it follows from
P ′(L′′, L1, L2, rest(L10), L20) that Q′(L′′, rest(L10), L20).
Therefore, L′ = con(choo(L10), L′′). Q′(L′, L10, L20) follows from this,
sord(L′′.key), choo(L10).key < choo(rest(L10)).key and
⊂rootn(L′′)⊃.key = choo(rest(L10)).key.

2. t2 = 2. Then L′ =
{upd(choo(L10), next, rootn(L20))}∪upd(L′′,⊂rootn(L′′)⊃, prev, rootn(L10)),
where
L′′ = repL((rest(L10) ∪ L20, rootn(rest(L10)), rootn(L20), nil),
STR(rest(L10), L20), body) =
repL((rest(L10) ∪ L20, choo(L10).next, choo(L20).next, root(L20)),
STR(rest(L10), rest(L20)), body).
By the inductive hypothesis for L′′, it follows from
P ′(L′′, L1, L2, rest(L10), L20) that Q′(L′′, rest(L10), L20). Therefore,
L′ = con(choo(L10), L′′). Q′(L′, L10, L20) follows from this,
sord(L′′.key), choo(L10).key < choo(L20).key and choo(L′′) = choo(L20).

6. Conclusion

A generalization of the symbolic method that allows modification of data
structures in tuples by the iteration body and termination of the itera-
tion by EXIT statement under a condition is described in this paper. The
generalization extends application domains of the symbolic method since
generalized iterations allow us to represent a new important case of while-
loops and to apply the method to verification of pointer programs with
several input data structures.

Restrictions RTR1 and RTR2 imposed on iterations over tuples of al-
tered data structures allow us to change only current and previously pro-
cessed values of iteration parameters and to retain the important property
of termination of the iterations. The idea of reduction of these iterations to
the iterations over tuples of unaltered data structures by introducing special
variables that store initial values of variables from the iteration body was
found to be fruitful as demonstrated by Claims 1,2 and by the example in
Section 5.2.

Instead of loop invariants, the symbolic method uses properties of the
replacement operation which, as a rule, are simpler than the invariants.
To represent the invariants, new notions related to a specific character of

Symbolic verification method for definite iterations 97

programs to be verified are often required. Proof of verification conditions
including the replacement operation does not require introduction of such
notions. Instead, it uses properties of both hierarchical data structures and
the replacement operation that are expressed by Theorem 1 and Corollary 1.

Verification of pointer programs has been considered in [2, 9, 12, 24, 25]
in the framework of axiomatic approach. Interesting examples of pointer
program verification which include a program for in-place merge of ordered
singly-linked lists have been given in [2], where a verification method based
on the method proposed in [15] has been developed. An application of the
tool Isabelle/HOL to pointer program verification using the method [2] has
been described in [12]. Verification of a program over doubly-linked lists for
elimination of elements with zero keys has been presented in [25], where a
Hoare-like logic oriented to pointer program verification has been proposed.
This logic has been formalized in [24] as the separation logic. The symbolic
verification method has two advantages as compared with [2] and [25], since
it does not use both loop invariants and special list representations. For
Hoare-style verification of pointer programs, decidable logics and simulation
of data structures including doubly-linked lists have been adapted in [9].
Such a new verification method uses loop and simulation invariants. Cor-
rectness proofs of some routines over singly-linked lists have been considered
in [13] as a case study of a reliable library of object-oriented components.

The symbolic verification method is promising for applications. It is
suggested to extend this method to definite iterations over tuples of altered
data structures that contain the exit statement under a condition which can
depend on variables from the iteration body.

References

[1] Abd-El-Hafiz S.K., Basili V.R. A knowledge-based approach to the analysis of
loops // IEEE Trans. of Software Eng. — 1996. — Vol. 22, N 5. — P. 339–360.

[2] Bornat R. Proving pointer programs in Hoare logic // Proc. MPC 2000. —
Lect. Notes Comput. Sci. — 2000. — Vol. 1837. P. 102–126.

[3] Ernst M.D., Cockrell J., Griswold W.G., Notkin D. Dynamically discovering
likely program invariants to support program evolution // IEEE Trans. Soft-
ware Eng. — 2001. — Vol. 27, N 2. — P. 99–123.

[4] Gries D., Gehani N. Some ideas on data types in high-level languages // Comm.
ACM. — 1977. — Vol. 20, N 6. — P. 414–420.

[5] Hehner E.C.R., Gravell A.M. Refinement semantics and loop rules // Proc.
FM’99. — Lect. Notes Comput. Sci. — 1999. — Vol. 1709. — P. 1497–1510.

[6] Hoare C.A.R. An axiomatic basis of computer programming // Comm. ACM.
— 1969. — Vol. 12, N 10. — P. 576–580.

98 V.A. Nepomniaschy

[7] Hoare C.A.R. A note on the for statement // BIT. — 1972. — Vol. 12, N 3.
— P. 334–341.

[8] Hoare C.A.R. The verifying compiler: a grand challenge for computing research
// Proc. PSI 2003. — Lect. Notes Comput. Sci. — 2003. — Vol. 2890. —
P. 1–12.

[9] Immerman N. et al. Verification via structure simulation // Proc. CAV 2004.
— Lect. Notes Computer Sci. — 2004. — Vol. 3114. — P. 281–294.

[10] Linger R.C., Mills H.D., Witt B.I. Structured Programming: Theory and Prac-
tice. — Addison–Wesley, 1979.

[11] Luckham D.C., Suzuki N. Verification of array, record and pointer operations
in Pascal // ACM Trans. on Programming Languages and Systems. — 1979.
— Vol. 1, N 2. — P. 226–244.

[12] Mehta F., Nipkow T. Proving pointer programs in higher-order logic // Proc.
CADE-19. — Lect. Notes Comput. Sci. — 2003. — Vol. 2741. — P. 121–135.

[13] Meyer B. Towards practical proofs of class correctness // Proc. ZB 2003. —
Lect. Notes Comput. Sci. — 2003. — Vol. 2651. — P. 359–387.

[14] Mills H.D. Structured programming: retrospect and prospect // IEEE Soft-
ware. — 1986. — Vol. 3, N 6. — P. 58–67.

[15] Morris J.M. A general axiom of assignment // Lect. Notes of Internat. Summer
School “Theoretical foundations of programming methodology”. — D. Reidel,
1982. — P. 25–41.

[16] Necula G.C. Proof-carrying code // Proc. 24th Annual ACM Symp. on Prin-
ciples of Programming Languages. — ACM Press, 1997. — P. 106–119.

[17] Nepomniaschy V.A. Loop invariant elimination in program verification // Pro-
gramming and Computer Software. — 1985. — N 3. — P. 129–137 (English
translation of Russian Journal “Programmirovanie”).

[18] Nepomniaschy V.A. On problem–oriented program verification // Program-
ming and Computer Software. — 1986. — N 1. — P. 1–9.

[19] Nepomniaschy V.A. Symbolic verification method for definite iteration over
data structures // Information Processing Letters. — 1999. — Vol. 69. — P.
207–213.

[20] Nepomniaschy V.A. Verification of definite iteration over hierarchical data
structures // Proc. FASE/ETAPS’99. — Lect. Notes Comput. Sci. — 1999.
— Vol. 1577. — P. 176–187.

[21] Nepomniaschy V.A. Symbolic verification method for definite iteration over
tuples of data structures // Joint NCC& IIS Bull., Ser.: Comput. Sci. —
2001. — Is. 15. — P. 103–123.

Symbolic verification method for definite iterations 99

[22] Nepomniaschy V.A. Verification of definite iteration over tuples of data struc-
tures // Programming and Computer Software. — 2002. — N 1. — P. 1–10.

[23] Nepomniaschy V.A. Symbolic verification method for definite iteration over
altered data structures // Programming and Computer Software. — 2005. —
N 1. — P. 1–12.

[24] O’Hearn P., Reynolds J., Yang H. Local reasoning about programs that alter
data structures // Proc.CSL 2001. — Lect. Notes Comput. Sci. — 2001. —
Vol. 2142. — P. 1–19.

[25] Reynolds J.C. Reasoning about shared mutable data structure // Proc. Symp.
in celebration of the work of C.A.R. Hoare, Oxford, 1999.

[26] Stark J., Ireland A. Invariant discovery via failed proof attempts // Proc.
LOPSTR’98. — Lect. Notes Comput. Sci. — 1999. — Vol. 1559. — P. 271–
288.

[27] Stavely A.M. Verifying definite iteration over data structures // IEEE Trans.
Software Engineering. — 1995. — Vol. 21, N 6. — P. 506–514.

[28] Whalen M., Schumann J., Fischer B. Synthesizing certified code // Proc. FME
2002. — Lect. Notes Comput. Sci. — 2002. — Vol. 2391. — P. 431–450.

100

