
Joint NCC & IIS Bull., Comp. Science, 15 (2001), 103–123
© 2001 NCC Publisher

Symbolic verification method for definite

iterations over tuples of data structures⋆

V.A.Nepomniaschy

The symbolic method for verifying definite iterations over hierarchical data structures
[12] is extended to allow tuples of data structures and exit from the iteration body un-
der a condition. Transformations of these generalized iterations to the standard ones are
proposed and justified. Useful properties of the transformations are given. A technique
for generating verification conditions and their proving, including induction principles, is
described. For iterations over files, a problem-oriented proving technique is presented too.
Examples which illustrate application of the symbolic method to file program verification
are considered.

1. Introduction

The axiomatic and functional styles of program verification include the fol-
lowing stages: program annotation through the construction of pre -, post-
conditions and loop invariants or functions expressing the loop effect; de-
riving verification conditions with the help of proof rules and proving them
[5, 7]. In both approaches, the loop annotation remains a difficult problem
especially for programs over complex data structures [8, 13].

A natural method to attack the problem is to use simple loops [1], i. e.,
definite iterations similar to for-loops. Although the reduction of for-loops
to while-loops is often used for verification, attempts to use the specific
character of for-loops in the framework of the axiomatic approach should be
noted [2–4, 6]. In the framework of the functional approach, a general form
of a definite iteration as an iteration over all elements of a structure, such
as a list, set, file, array, tree, has been proposed in [14].

A symbolic method of verifying for-loops, that had the statement of as-
signment to array elements as the loop body, has been proposed in [9, 10].
This method is based on inserting a replacement operation into the anno-
tation language. The replacement operation represents the loop effect in a
symbolic form and allows us to formulate a proof rule for these loops with-
out invariants. Using the proof rule, verification conditions including the
replacement operation are generated. To prove the verification conditions, a
special technique which uses theorems about properties of the replacement
operation is developed. In [11], we have extended the symbolic method to the

⋆Supported by the Russian Foundation for Basic Research under Grant 00-01-00909.

104 V.A.Nepomniaschy

definite iteration over data structures without restrictions on the loop bod-
ies. The symbolic method has been developed for the definite iteration over
hierarchical data structures in [12]. The symbolic method is more appro-
priate for so-called flat loops [1] which have no embedded loops. Moreover,
definite iterations from [14] do not accept exit from the iteration body. This
raises the problem how to extend the area of application of the symbolic
method. One approach to tackling this problem is extending the notion of
flat loops and accepting exit from the loop body under a condition.

The purpose of this paper is to introduce a new statement, namely, a
definite iteration over tuples of data structures, which accepts exit from the
iteration body, and to extend the symbolic method to the statement. The
definite iteration over hierarchical data structures [12] is described in Sec-
tion 2. In Section 3, the iteration over tuples of data structures is defined,
and theorems about its reduction to the iteration over hierarchical data
structures and about properties of these structures are proved. A reduction
of an iteration over tuples of data structures with the exit statement to the
iteration described in Section 2 is justified in Section 4. A replacement oper-
ation and its properties are given in Section 5, where a technique for deriving
and proving verification conditions is considered. Definite iterations over files
are described as a case of study in Section 6 along with recursive procedures
for computing the replacement operation. Verification of two file programs
which perform merging (with cleaning) and intersection of ordered files, is
exemplified in Section 7. Results and prospects of the symbolic verification
method are discussed in Section 8.

2. Iteration over hierarchical data structures

We introduce the following notation. Let {s1, . . . , sn} be a multiset consisting
of elements s1, . . . , sn, U1−U2 be the difference between multisets U1 and U2,
U1

⋃
U2 be the union of multisets, and |U | be the power of a finite multiset

U . Let [v1, . . . , vm] denote a vector consisting of elements vi(1 ≤ i ≤ m).
A concatenation operation con(V1, V2) is defined in the usual fashion for
vectors V1 and V2.

Let us remind the notion of a data structure [14]. Let memb(S) be
a finite multiset of elements of a structure S, empty(S) be a predicate
“memb(S) is empty”, choo(S) be a function which returns an element of
memb(S), rest(S) be a function which returns a structure S′ such that
memb(S′) = memb(S)−{choo(S)}. The functions choo(S) and rest(S) will
be undefined if and only if empty(S). This definition, abstracting from the
way of determination of the functions choo(S) and rest(S), is quite flexible.

Symbolic verification method for definite iterations 105

For example, if a tree is defined as a data structure, a tree traversal method
is fixed. So, such different methods result in different data structures.

Let us remind the definition of useful functions related to the structure S
[11]. Let vec(S) denote a vector [s1, . . . , sn] such that si = choo(resti−1(S))
(i = 1, . . . , n) in the case of ¬empty(S) and memb(S) = {s1, . . . , sn}. The
vector vec(S) is empty if empty(S). Structures S1 and S2 are called equiv-
alent when vec(S1) = vec(S2). The functions head(S) and last(S) will be
undefined in the case of empty(S). A function head(S) returns a structure
such that vec(head(S)) = [s1, . . . , sn−1], if vec(S) = [s1, . . . , sn] and n ≥ 2.
If n = 1, then empty(head(S)). Let last(S) be a partial function such that
last(S) = sn, if vec(S) = [s1, . . . , sn]. Let str(s) denote a structure S that
contains the only element s. A concatenation operation con(S1, S2) is defined
in [11] so that con(vec(S1), vec(S2)) = vec(con(S1, S2)). Let con(s, S) =
con(str(s), S) and con(S, s) = con(S, str(s)). In the case of ¬empty(S),
con(choo(S), rest(S)) = con(head(S), last(S)) = S [11]. Moreover, the pro-
perty head(rest(S)) = rest(head(S)) provided ¬empty(rest(S)) results from
[11].

Our aim is to introduce parameters in the definition of the structure S.
To this end, we determine rules for construction of a hierarchical structure S
from the given structures S1, . . . , Sm. We will use T (S1, . . . , Sm) to denote a
term constructed from data structures Si (i = 1, . . . ,m) with the help of the
functions choo, last, rest, head, str, con. For a term T which represents a
data structure, we denote the function |memb(T)| by lng(T). The function
can be calculated by the following rules:

lng(Si) = |memb(Si)|,
lng(con(T1, T2)) = lng(T1) + lng(T2),
lng(rest(T)) = lng(head(T)) = lng(T)− 1,
lng(str(s)) = 1.

Let a hierarchical data structure S = STR(S1, . . . , Sm) be defined by the
functions choo(S) and rest(S) constructed with the help of conditional
if − then − else, superposition and Boolean operations from the following
components:

– terms not containing S1, . . . , Sm;

– the predicate empty(Si) and the functions choo(Si), rest(Si), last(Si),
head(Si) (i = 1, . . . ,m);

– terms of the form STR(T1, . . . , Tm) such that

m∑

i=1

lng(Ti) <
m∑

i=1

lng(Si);

106 V.A.Nepomniaschy

– an undefined element ω.

Note that the undefined value ω of the functions choo(S) and rest(S) means
empty(S). This definition of hierarchical structures allows us to apply more
conveniently the following induction principle 1 to proving the properties of
the structures.

Let prop(STR(T1, . . . , Tm)) denote a property expressed by a first-order
logic formula only with free variables S1, ..., Sm, where terms Ti(S1, . . . , Sm)
are defined in Section 2. The formula is constructed from the term
STR(T1, . . . , Tm), functional symbols, variables and constants by means of
Boolean operations and first-order quantifiers. The functional symbols in-
clude memb, empty, vec, choo, rest, last, head, str, con.

Induction principle 1. The property prop(STR(S1, . . . , Sm)) holds for all
structures S1, . . . , Sm, if there exists an integer c ≥ 0 such that the following
conditions hold:

(1) for all structures S1, . . . , Sm such that
∑m

i=1 lng(Si) ≤ c, the property
prop(STR(S1, . . . , Sm)) holds;

(2) for all structures S1, . . . , Sm such that
∑m

i=1 lng(Si) > c, there exist
terms T1, . . . , Tm for which

m∑

i=1

lng(Ti) <
m∑

i=1

lng(Si)

and
prop(STR(T1, . . . , Tm))→ prop(STR(S1, . . . , Sm)).

Let us consider a definite iteration of the form

for x in S do v := body (v, x) end, (1)

where S is a data structure that may be hierarchical, x is a variable called a
loop parameter, v is a data vector of the loop body (x 6∈ v) and the iteration
body v := body(v, x) does not change the structure S. The result of this
iteration is an initial value v0 of the vector v if empty(S). Let ¬empty(S)
and vec(S) = [s1, . . . , sn]. Then the iteration body iterates sequentially for
x defined as s1, . . . , sn.

3. Iterations over tuples of data structures

To define a definite iteration over a tuple of data structures S1, . . . , Sm

(possibly hierarchical), we will use a function sel(x1, . . . , xm) for selection
of one structure from the structures S1, . . . , Sm, where xi ∈ memb(Si)

⋃
{ω}

Symbolic verification method for definite iterations 107

(i = 1, . . . ,m). The function sel(x1, . . . , xm) returns an integer j (1 ≤ j ≤
m) such that xj 6= ω, and also sel(ω, . . . , ω) is undefined. In the case of
xj 6= ω and xi = ω for all i 6= j (i = 1, . . . ,m), sel(x1, . . . , xm) = j and the
definition of the function sel can be omitted.

Let us consider the iteration over the tuple of structures S1, . . . , Sm with
the selection function sel(x1, . . . , xm) = t of the form

for x1 in S1, . . . , xm in Sm do v := body (v, xt, t) end, (2)

where v is a data vector (xi /∈ v for all i = 1, . . . ,m) and the iteration
body does not change the structures S1, . . . , Sm. If empty(Si) for each i =
(1, . . . ,m), then the iteration result is an initial value v0 of the vector v.
Otherwise, we assume t = sel(x1, . . . , xm), where xi = choo(Si) for each
i = 1, . . . ,m, and also choo(Si) = ω provided empty(Si). A new value v1
of the vector v is defined so that v1 = body(v0, xt, t). The structure St is
replaced by the structure rest(St), and the other structures Si (i 6= t) are
not changed. The process is applied to v1 and the resulted structures until
all structures become empty. The resulted value vk (k =

∑m
i=1 | memb(Si) |)

of the vector v is assumed to be the result of iteration (2).
Here the purpose is to reduce iteration (2) to iteration (1) with the help

of hierarchical structures. We introduce the following notation in order to
define a hierarchical structure

S = STR(S1, . . . , Sm)

from the structures S1, . . . , Sm and the function sel(x1, . . . , xm). Let

EMPTY = (empty(S1) ∧ . . . ∧ empty(Sm)),
t1 = sel(choo(S1), . . . , choo(Sm)),
REST = STR(S1, . . . , rest(St1), . . . , Sm),

provided ¬EMPTY . Then

(choo(S), rest(S)) = if EMPTY then (ω, ω)else ((choo(St1), t1), REST).

Notice that this definition is consistent with the definition of hierarchi-
cal structures from Section 2, since the quantifiers bounded by the set
{1, . . . ,m} can be expressed by applying conjunction or disjunctionm times,
and empty(S) ≡ (choo(S) = ω).

Theorem 1. Iteration (2), where t = sel(x1, . . . , xm), is equivalent to the
iteration

for (x, τ) in S do v := body (v, x, τ) end, (3)

where the hierarchical structure S = STR(S1, . . . , Sm) is defined by means
of the function sel(x1, . . . , xm).

108 V.A.Nepomniaschy

Proof. We will use induction on
∑m

i=1 | memb(Si) |= k. If k = 0, then
empty(Si) for each i = 1, . . . ,m, and, therefore, empty(S). Let us suppose
k > 0 and iterations (2) and (3) are equivalent if

∑m
i=1 | memb(Si) |= k− 1.

It is evident that iteration (2) is equivalent to the program

v := body(v, choo(St1), t1); for x1 in S1, . . . , xt1 in rest(St1), . . . , xm in Sm

do v := body (v, xt, t) end. (4)

By the inductive hypothesis, program (4) is equivalent to the program

v := body(v, choo(St1), t1); for (x, τ) in REST do

v := body (v, x, τ) end. (5)

It remains to notice that program (5) is equivalent to iteration (3) according
to

rest(S) = REST,
choo(S) = (choo(St1), t1),
S = con(choo(S), rest(S))

provided k > 0. ✷

We introduce the following notions in order to formulate useful properties
of the hierarchical structure S = STR(S1, . . . , Sm). We will use memb1(S)
to denote the multiset of the first components of elements of memb(S). Let
veci(S) be the subsequence of vec(S) which consists of all elements (r, i)
for a suitable r, and veci1(S) be the sequence of the first components of
elements of veci(S) (i = 1, . . . ,m).

Theorem 2.

2.1. memb1(S) =
⋃m

i=1 memb(Si).

2.2. veci1(S) = vec(Si) for each i = 1, . . . ,m.

Proof. We will use induction on
∑m

i=1 | memb(Si) |= k. If k = 0, then
empty(S), and empty(Si) for each i = 1, . . . ,m, and Theorem 2 holds. Let
us suppose k > 0 and Theorem 2 holds for

∑m
i=1 | memb(Si) |= k − 1.

2.1. By the induction hypothesis,

memb1(S) = memb1(con(choo(S), rest(S)))
= {choo (St1)}

⋃
memb1(rest(S))

= {choo (St1)}
⋃ ⋃t1−1

i=1
memb(Si)

⋃
memb (rest(St1))

⋃
⋃m

i=t1+1 memb (Si)
=

⋃m
i=1memb(Si)

according to memb(St1) = {choo(St1)}
⋃
memb(rest(St1)).

2.2. By the induction hypothesis,

Symbolic verification method for definite iterations 109

veci1(S) = veci1(con(choo(S), rest(S)))
= con(veci1(str(choo(S))), veci1(rest(S)))
= if i = t1 then con(choo(Si), vec(rest(Si)))

else vec(Si) = vec(Si)

according to veci1(str(choo(S))) is the empty sequence and veci1(rest(S)) =
vec(Si) when i 6= t1. ✷

In the case of S = STR(S1, S2), head(S) and last(S) can be expressed
simply in terms of head(Si) and last(Si) (i = 1, 2).

Theorem 3. If S = STR(S1, S2) and ¬empty(S), then

¬empty(S1), head(S) = STR (head (S1), S2) and last(S) = (last (S1), 1)
or

¬empty(S2), head(S) = STR(S1, head(S2)) and last(S) = (last(S2), 2).

Proof. For definiteness, we suppose t1 = 1. We will use induction on
| memb(S) | = k. The induction basis is the case k = 1 when ¬empty(S1),
empty(head(S1)), empty(S2), empty(head(S)), last(S) = (last(S1), 1), and
Theorem 3 holds. In the case of k > 1,

head(S) = head(con(choo(S), rest(S)))
= con(choo(S), head(rest(S)))
= con(choo(S), head(STR(rest(S1), S2)))

and last(S) = last(rest(S)). By the induction hypothesis for the structure
rest(S) = STR(rest(S1), S2), two cases are possible.

1. ¬empty(rest(S1)) and

head(STR(rest(S1), S2)) = STR(head(rest(S1)), S2).

Let us denote the structure STR(head(S1), S2) by HS. Then,

head(S) = con(choo(S), STR(head(rest(S1)), S2)),
HS = con(choo(HS), rest(HS))

= con(choo(HS), STR(rest(head(S1)), S2)).

From ¬empty(head(S)), choo(HS) = choo(S) and

rest(head(S1)) = head(rest(S1)),

it follows that head(S) = HS. Moreover,

last(rest(S)) = (last(rest(S1)), 1) = (last(S1), 1).

110 V.A.Nepomniaschy

2. ¬empty(S2) and

head(STR(rest(S1), S2)) = STR(rest(S1), head(S2)).

Let us denote the structure STR (S1, head (S2)) by SH. Then,

choo(S2) = choo(head(S2))

provided

¬empty(head(S2)),
head(S) = con(choo(S), STR(rest(S1), head(S2))),
SH = con(choo(SH), rest(SH)),
rest(SH) = STR(rest(S1), head(S2)).

From choo(S) = choo(SH) = (choo(S1), 1) it follows that head(S) = SH.
Moreover, last(rest(S)) = last(S2). ✷

The following example shows that Theorem 3 does not hold for the
structure S = STR(S1, S2, S3). Let memb(Si) = {ai} (i = 1, 2, 3), where
a1 < a2 < a3. We define the function sel(x1, x2, x3) as

if x1 6= ω ∧ x2 6= ω ∧ x3 6= ω then 1
else if xi = ω ∧ xj 6= ω ∧ xl 6= ω then max(j, l),

where i, j, l are different. Then

vec(S) = [(a1, 1)(a3, 3)(a2, 2)],
vec(head(S)) = [(a1, 1)(a3, 3)],
last(S) = (a2, 2) = (last(S2), 2).

Therefore, vec(STR(S1, head(S2), S3)) = [(a3, 3)(a1, 1)] 6= vec(head(S)).

Let us consider a special case when the iteration body does not depend
on t, i. e., the iteration has the form

for x1 in S1, . . . , xm in Sm do v := body(v, xt) end. (2′)

In this case, the definition of STR(S1, . . . , Sm) and Theorems 1–3
can be simplified. Let (choo(S′), rest(S′)) = if EMPTY then (ω, ω)
else (choo(St1), REST).

Theorem 1′. Iteration (2′), where t = sel(x1, . . . , xm), is equivalent to the
iteration

for x in S′ do v := body(v, x) end, (3′)

where the hierarchical structure S′ = STR(S1, . . . , Sm) is defined by means
of the function sel(x1, . . . , xm).

Symbolic verification method for definite iterations 111

To formulate a theorem similar to Theorem 2.2, we introduce the follow-
ing notion. A relation a < b is satisfiable for a vector [v1, . . . , vn], if there
exist integers i, j such that 1 ≤ i < j ≤ n, a = vi and b = vj.

Theorem 2′.

2′.1. memb(S′) =
⋃m

i=1memb(Si).

2′.2. If there exists i (1 ≤ i ≤ m) such that a relation a < b is satisfiable for
the vector vec(Si), then the relation a < b is satisfiable for the vector
vec(S′).

Theorem 3′. If S′ = STR(S1, S2) and ¬empty(S′), then ¬empty(S1),
head(S′) = STR(head(S1), S2) and last(S′) = last(S1), or ¬empty(S2),
head(S′) = STR(S1, head(S2)) and last(S′) = last(S2).

It should be noted that the proofs of Theorems 1′, 2′.1, 3′ are similar to
the proofs of Theorems 1, 2.1, 3, respectively. It remains to prove Theorem
2′.2. If the relation a < b is satisfiable for the vector vec(Si), then there exists
an integer l (l ≥ 0) such that a = choo(restl(Si)), b ∈ memb(restl+1(Si)).
By Theorem 2′.1, memb(Si) ⊆ memb(S′). From this it follows that there
exist structures S̄j (j = 1, . . . ,m) and an integer r (r ≥ 0) such that

restr(S′) = STR(S̄1, . . . , S̄m),
a = choo(restr(S′)),
i = sel(choo(S̄1), . . . , choo(S̄m)),
S̄i = restl(Si).

By Theorem 2′.1, b ∈ memb(restl+1(Si)) ⊆ memb(restr+1(S′)). From this
it follows that the relation a < b is satisfiable for the vector vec(S′). ✷

4. Iterations over tuples of data structures with

exit statement

Let us consider the following definite iteration over a tuple of data structures
with a body including the statement of termination of the iteration EXIT:

for x1 in S1, . . . , xm in Sm do v := body1(v, xt, t); if cond(x1, . . . , xm)

then EXIT ; v := body2(v, xt, t) end, (6)

where t = sel(x1, . . . , xm), xi 6∈ v (i = 1, . . . ,m), the condition cond(x1, . . . ,
xm) (xi ∈ memb(Si)

⋃
{ω}) does not depend on variables from v, and the

iteration body does not change the structures Sj (j = 1, . . . ,m).

112 V.A.Nepomniaschy

We will use b1 to denote cond(choo(S1), . . . , choo(Sm)), along with the
notions EMPTY , t1, REST from Section 3. Let us describe operational
semantics of iteration (6). If EMPTY , then the result of iteration (6) is an
initial value v0 of the vector v. Otherwise, the result of iteration (6) is v1 =
body1(v0, choo(St1), t1), when b1 is true. If b1 is false, then this process is
continued with v = v2 = body2(v1, choo(St1), t1) and the structure rest(St1)
instead of St1, when the other structures Si (i 6= t1) are not changed. A
value vl resulting from this process is the result of iteration (6).

Here the purpose is to reduce iteration (6) to iteration (1) with the help
of hierarchical structures. Let us define a hierarchical structure
T = STR(S1, . . . , Sm) using the selection function sel(x1, . . . , xm) and the
condition cond(x1, . . . , xm). The structure elements are triples (s, i, c), where
s ∈ memb(Sj) (1 ≤ j ≤ m), 1 ≤ i ≤ m, c ∈ {true, false}. Let

(choo(T), rest(T)) = if EMPTY then (ω, ω)else
if b1 then ((choo(St1), t1, true), ω)

else ((choo(St1), t1, false), REST).

The element last(T) can be represented in the form (last1(T), last2(T),
last3(T)).

Theorem 4. Iteration (6), where t = sel(x1, . . . , xm), is equivalent to the
program

if ¬empty(T) then begin for (x, τ, false) in head(T) do (7)

v := body1(v, x, τ); v := body2(v, x, τ) end; v := body1(v, last1(T), last2(T));

if ¬last3(T) then v := body2(v, last1(T), last2(T)) end,

where the hierarchical structure T = STR(S1, . . . , Sm) is defined by means
of the function sel(x1, . . . , xm) and the condition cond(x1, . . . , xm).

Proof. We will use induction on k =
∑m

i=1 | memb(Si) |. If k = 0 then
empty(Si) for each i = 1, . . . ,m, and, therefore, empty(T) and Theorem 4
holds. Let us suppose k > 0 and Theorem 4 holds for k−1. Hence ¬empty(T).
Two cases are possible.

1. b1 = true. Then iteration (6) is equivalent to the statement v := body1(v,
choo(St1), t1). The structure T consists of one element last(T) = (choo(St1),
t1, true), and empty(head(T)). Therefore, program (7) is equivalent to the
statement v := body1(v, choo(St1), t1).

2. b1 = false. Then iteration (6) is equivalent to the program

v := body1(v, choo(St1), t1); v := body2(v, choo(St1), t1); (8)

for x1 in S1, . . . , xt1 in rest(St1), . . . , xm in Sm do v := body1(v, xt, t);

if cond(x1, . . . , xm) then EXIT ; v := body2(v, xt, t) end.

Symbolic verification method for definite iterations 113

Two cases are possible.

2.1. k = 1. Then empty(rest(St1)) and empty(Si) for each i 6= t1 (i =
1, . . . ,m). Therefore, program (8) is equivalent to the program

v := body1(v, choo(St1), t1); v := body2(v, choo(St1), t1). (9)

In this case the structure T consists of one element last(T) = (choo(St1), t1,
false), and empty(head(T)). Hence, program (7) is equivalent to program
(9).

2.2. k > 1. Then ¬empty(rest(T)). By the induction hypothesis, program
(8) is equivalent to the program

v := body1(v, choo(St1), t1); v := body2(v, choo(St1), t1); (10)

for (x, τ, false) in head(rest(T))do v := body1(v, x, τ);

v := body2(v, x, τ) end; v := body1(v, last1(rest(T)), last2(rest(T)));

if ¬last3(rest(T)) then v := body2(v, last1(rest(T)), last2(rest(T))).

From
last(T) = last(rest(T)),
head(T) = con(choo(T), head(rest(T))),
choo(T) = choo(head(T)) = (choo(St1), t1, false)

it follows that program (10) is equivalent to program (7). ✷

Theorem 4 can be simplified when the body of iteration (6) begins or
ends with the exit statement, i. e., bodyi(v, xt, t) = v for i = 1 or i = 2. At
first, we consider the case i = 2. In the case, elements of a new structure R
come from corresponding elements of the structure T by elimination of the
third component. Let

(choo(R), rest(R)) = if EMPTY then (ω, ω) else ((choo(St1), t1),
if b1 then ω else REST).

Corollary 1. The iteration

for x1 in S1, . . . , xm in Sm do v := body(v, xt, t); if cond(x1, . . . , xm)

then EXIT end, (11)

where t = sel(x1, . . . , xm), is equivalent to the iteration

for (x, τ) in R do v := body(v, x, τ) end, (12)

where the hierarchical structure R = STR(S1, . . . , Sm) is defined by means
of the function sel(x1, . . . , xm) and the condition cond(x1, . . . , xm).

114 V.A.Nepomniaschy

Proof. By Theorem 4, iteration (11) is equivalent to the program

if ¬empty(R) then begin for (x, τ) in head(R) do v := body(v, x, τ) end;
v := body(v, last1(R), last2(R)) end,

which is equivalent to iteration (12). ✷

Let us consider the case when the iteration body begins with the exit
statement. We will use pr(T) to denote a structure consisting of elements
which are the projections of corresponding elements of the structure T on the
first and second components. Then R = pr(T). Let us define the following
hierarchical structure K = STR(S1, . . . , Sm) as

(choo(K), rest(K)) = if EMPTY ∨ b1 then (ω, ω) else
((choo(St1), t1), REST).

Claim 1. K = if empty(T) ∨ ¬last3(T) then pr(T) else pr(head(T)).

Proof. We will use induction on | memb(T) |= l. If l = 0, then empty(T),
empty(pr(T)) and Claim 1 holds. Let us suppose l > 0 and Claim 1 holds
for l − 1. Two cases are possible.

1. b1 = true. Then empty(K) and the structure T consists of the one element
(choo(St1), t1, true). Therefore, empty(head(T)), last3(T) = true and Claim
1 holds.

2. b1 = false. We will denote the structure REST from the definitions of
T and K as RESTT and RESTK , respectively. Then

choo(T) = (choo(St1), t1, false),
rest(T) = RESTT ,
choo(K) = pr(choo(T)),
rest(K) = RESTK .

Two cases are possible.

2.1. last3(T) = false. Then empty(rest(T)) or last3(rest(T)) = false. By
the induction hypothesis, rest(K) = RESTK = pr(RESTT) = pr(rest(T)).
From this it follows that

K = con(choo(K),
rest(K)) = con(pr(choo(T)),
pr(rest(T))) = pr(T).

2.2. last3(T) = true. Then ¬empty(rest(T)) and last3(rest(T)) = true.
By the induction hypothesis, rest(K) = RESTK = pr(head(RESTT)) =
pr(head(rest(T))). From this it follows that

Symbolic verification method for definite iterations 115

K = con(pr(choo(T)),
pr(head(rest(T)))) = pr(con(choo(T),
head(rest(T)))) = pr(head(T)). ✷

Corollary 2. The iteration

for x1 in S1, . . . , xm in Sm do if cond(x1, . . . , xm) then EXIT ;

v := body(v, xt, t) end, (13)

where t = sel(x1, . . . , xm), is equivalent to the iteration

for (x, τ) in K do v := body(v, x, τ) end (14)

where the hierarchical structure K = STR(S1, . . . , Sm) is defined by means
of the function sel(x1, . . . , xm) and the condition cond(x1, . . . , xm).

Proof. If empty(T), then empty(K) by Claim 1. It remains to apply The-
orem 4. When ¬empty(T), we consider two cases.

1. last3(T) = true. Then by Claim 1, K = pr(head(T)). From Theorem 4 it
follows that iteration (13) is equivalent to iteration (14).

2. last3(T) = false. Then by Claim 1, K = pr(T). By Theorem 4, iteration
(13) is equivalent to the program

for (x, τ) in head(K) do v := body(v, x, τ) end;
v := body(v, last1(K), last2(K))

which is equivalent to iteration (14). ✷

In the case when the body of iteration (6) does not depend on t, Theorem
4 and Corollaries 1, 2 can by simplified. Let us define hierarchical structures
T ′, R′, K ′ similar to the structures T , R, K, respectively.

(choo(T ′), rest(T ′)) = if EMPTY then (ω, ω) else if b1 then

((choo(St1), true), ω) else ((choo(St1), false), REST),
(choo(R′), rest(R′)) = if EMPTY then (ω, ω) else (choo(St1),

if b1 then ω else REST),
(choo(K ′), rest(K ′)) = if EMPTY ∨ b1 then (ω, ω)

else (choo(St1), REST).

Theorem 4′. The iteration

for x1 in S1, . . . , xm in Sm do v := body1(v, xt); if cond(x1, . . . , xm)
then EXIT ; v := body2(v, xt) end,

where t = sel(x1, . . . , xm), is equivalent to the program

if ¬empty(T ′) then begin for (x, false) in head(T ′) do
v := body1(v, x); v := body2(v, x) end; v := body1(v, last1(T

′));

116 V.A.Nepomniaschy

if ¬last2(T
′) then v := body2(v, last1(T

′)) end,

where the hierarchical structure T ′ = STR(S1, . . . , Sm) is defined by means
of the function sel(x1, . . . , xm) and the condition cond(x1, . . . , xm).

Corollary 1′. The iteration

for x1 in S1, . . . , xm in Sm do v := body(v, xt);
if cond(x1, . . . , xm) then EXIT end,

where t = sel(x1, . . . , xm), is equivalent to the iteration

for x in R′ do v := body(v, x) end,

where the hierarchical structure R′ = STR(S1, . . . , Sm) is defined by means
of the function sel(x1, . . . , xm) and the condition cond(x1, . . . , xm).

Corollary 2′. The iteration

for x1 in S1, . . . , xm in Sm do if cond(x1, . . . , xm) then EXIT ;
v := body(v, xt) end,

where t = sel(x1, . . . , xm), is equivalent to the iteration

for x in K ′ do v := body(v, x) end,

where the hierarchical structure K ′ = STR(S1, . . . , Sm) is defined by means
of the function sel(x1, . . . , xm) and the condition cond(x1, . . . , xm).

It should be noted that proofs of Theorem 4′ and Corollaries 1′, 2′ are
similar to the proofs of Theorem 4 and Corollaries 1, 2, respectively.

5. Replacement operation and its application

To present the effect of iteration (1), let us define a replacement opera-
tion rep(v, S, body) to be a vector vn such that v0 = v provided empty(S),
vi = body(vi−1, si) for all i = 1, . . . , n provided ¬empty(S) and vec(S) =
[s1, . . . , sn]. Therefore, rep(v, str(s), body) = body(v, s). The following the-
orem similar to Theorems 4 and 6 [11] presents useful properties of the
replacement operation.

Theorem 5.

5.1. rep(v, con(S1, S2), body) = rep(rep(v, S1, body), S2, body).

5.2. Iteration (1) is equivalent to the multiple assignment

v := rep(v, S, body).

Corollary 3.

3.1. ¬empty(S)→ rep(v, S, body) = body(rep(v, head(S), body), last(S)).

Symbolic verification method for definite iterations 117

3.2. ¬empty(S)→ rep(v, S, body) = rep(body(v, choo(S)), rest(S), body).

The replacement operation allows us to formulate the following proof
rule without invariants for iteration (1). Let R(y ← exp) be a result of
substitution of an expression exp for all occurrences of a variable y into a
formula R. Let R(vec← vexp) denote the result of a synchronous substitu-
tion of the components of an expression vector vexp for all occurrences of
the corresponding components of a vector vec into a formula R.

rl1. {P}prog{Q(v ← rep(v, S, body))} ⊢
{P}prog; for x in S do v := body(v, x) end {Q},

where the post-condition Q does not depend on the loop parameter x.

The following corollary is evident from Theorem 5.2.

Corollary 4. The proof rule rl1 is derived in the standard system of proof
rules for usual statements including the multiple assignment.

To prove the verification conditions including the replacement operation
rep(v, S, body), the following induction principle is used.

Let prop(rep(v, S, body)) denote a property expressed by a first-order
logic formula with the only free variable S. The formula is constructed from
the replacement operation rep(v, S, body), functional symbols, variables and
constants by means of Boolean operations, first-order quantifiers and sub-
stitution of constants for variables from v.

Induction principle 2. The property prop(rep(v, S, body)) holds for each
structure S, if there exists an integer c ≥ 0 such that two conditions hold:

(1) for each structure S such that lng(S) ≤ c, the property prop(rep(v, S,
body)) holds;

(2) for each structure S such that lng(S) > c, there exists a term T (S) for
which lng(T (S)) < lng(S) and prop(rep(v, T (S), body)) → prop(rep(v, S,
body)).

6. Case of study: iterations over files

In the case of definite iterations over files, we will apply a problem-oriented
technique for proving verification conditions containing the replacement op-
eration. The technique requires to impose some restrictions on the body of
iteration (1). We assume that this body has the form (f, v) := body(f, v, x),
where x is an iteration parameter, f is a file and v is a vector of other
variables. We also suppose that the projections of body on f and v can
be represented in the form bodyf (f, v, x) = con(f, e(v, x)), bodyv(f, v, x) =

118 V.A.Nepomniaschy

bdv(v, x), where the expression e(v, x) presents a file and, moreover, e(v, x)
and bdv(v, x) do not depend on f . Notice that the representation of the it-
eration body is natural when the iteration realizes writing in the file f . We
consider rep(S) to be a short form for rep((f, v), S, body). Let repf (S) and
repv(S) be the projections of rep(S) on f and v, respectively.

Theorem 6. In the case of ¬empty(S)

6.1. repf (S) = con(repf (head(S)), e(repv(head(S)), last(S))),

6.2. repf (S) = con(f, e(v, choo(S)), repf ((∅, bdv(v, choo(S))), rest(S), body)),
where ∅ is the empty file.

Proof. Theorem 6.1 immediately follows from Corollary 3.1. To prove The-
orem 6.2, we will use induction on n =| memb(S) |. If n = 1, then Theorem
6.2 follows from

repf ((f, v), S, body) = bodyf (f, v, choo(S)) = con(f, e(v, choo(S)))

and
repf ((∅, bdv(v, choo(S))), rest(S), body) = ∅.

Let us suppose n > 1 and Theorem 6.2 holds for n−1. We will use bf and bv
to denote bodyf (f, v, choo(S)) and bodyv(f, v, choo(S)), respectively. From
Corollary 3.2 and the induction hypothesis, it follows that

repf (S) = repf ((bf, bv), rest(S), body)
= con(bf, e(bv, choo(rest(S))), repf ((∅, bdv(bv, choo(rest(S)))),

rest2(S), body)).

It remains to notice that bf = con(f , e(v, choo(S))), bv = bdv(v, choo(S)),
and, by the induction hypothesis, repf ((∅, bv), rest (S), body) =

con(∅, e (bv, choo(rest(S))), repf ((∅, bdv(bv, choo(rest(S)))), rest
2(S), body).

✷

7. Illustrative examples

Example 1. Merging of ordered files with cleaning.
To specify a merging program, we introduce the following notation. Let

set(f) be a set of all elements of the file f . Let ord(f) (respectively, sord(f))
denote a predicate whose value is true, if the file f has been sorted in ascend-
ing order ≤ (respectively, <) of elements, and false otherwise. We assume
that ord(∅) = sord(∅) = true. Let file(z) be a function which returns a file
consisting of one element z.

We consider the following program for merging (with cleaning) of ordered
files f1 and f2 to an ordered file g:

Symbolic verification method for definite iterations 119

{P} g := ∅; y := ω; for x1 in f1, x2 in f2 do (15)

if y 6= xt then begin g := con(g, xt); y := xt end end {Q},

where t = sel(x1, x2) = if x1 ≤ x2 then 1 else 2 for x1 6= ω and x2 6= ω,
P = ord(f1) ∧ ord(f2), Q = (sord(g) ∧ set(g) = set(f1)

⋃
set(f2)).

By Theorem 1′, program (15) is equivalent to the following program

{P} g := ∅; y := ω; for x in F do (g, y) := (bodyg(g, y, x), bodyy(y, x))

end {Q}, (16)

where

bodyg(g, y, x) = con(g, e(y, x)), e(y, x) = if y 6= x then x else ∅,
bodyy(y, x) = if y 6= x then x else y,

and the hierarchical structure F = STR(f1, f2) is defined as

(choo(F), rest(F)) = if EMPTY then (ω, ω) else (choo(ft1), REST).

By the proof rule rl1 from Section 5, one verification condition

P → Q(g ← repg((∅, ω), F, body))

is generated from program (16).
From bodyy(y, x) = x, Corollary 3.1, Theorem 6.1 and induction principle

2 for c = 1, Claim 2 follows.

Claim 2. In the case of ¬empty(F), the following properties hold:

2.1. repy(F) = last(F),

2.2. repg(F) = if empty(head(F)) then file(last(F)) else
con(repg(head(F)), e(last(head(F)), last(F))),

2.3. last(repg(F)) = last(F).

From Theorem 2′.2, 3′ and induction principle 1 for c = 1, Claim 3
follows.

Claim 3. ord(f1) ∧ ord(f2)→ ord(vec(F)).

To prove the verification condition, we will use induction principle 2 for
c = 1. In the case of empty(F), empty(fi) (i = 1, 2), repg(F) = ∅ and Claim
3 is evident. In the case of ¬empty(F) and empty(head(F)), Claim 3 follows
from Claim 2.2, Theorem 2′.1 and repg(F) = file(last(F)). Let us suppose
¬empty(head(F)) and ¬empty(f1). By Claim 2.2,

120 V.A.Nepomniaschy

repg(F) = con(repg(head(F)), e(last(head(F)), last(F))).

By Theorem 3′, head(F) = STR(head(f1), f2) and last(F) = last(f1). From
the induction hypothesis for head(F), ord(head(f1))and ord(f2), it follows
that sord(repg(head(F))) and set(repg(head(F))) = set(head(f1))

⋃
set(f2).

Two cases are possible.

1. last(head(F)) = last(F). Then repg(F) = repg(head(F)). It remains to
notice that, by Claim 2.3, last(repg(F)) = last(f1) ∈ set(repg(head(F)))
and set(f1) = set(head(f1))

⋃
{last(f1)}.

2. last(head(F)) 6= last(F). Then repg(F) = con(repg(head(F)), last(F)).

It remains to apply Claims 2.3 and 3.

Example 2. Intersection of ordered files.

To specify an intersection program, we use the notation from example 1.
We consider the following program which forms the intersection of ordered
files f1 and f2 as a strictly ordered file g:

{P} g := ∅; y1 := ω; y2 := ω; for x1 in f1, x2 in f2 do (17)

if y1 6= xt then begin y1 := xt; y2 := t end else

if y2 6= t then begin g := con(g, y1); y2 := t end;

if x1 = ω ∨ x2 = ω then EXIT end {Q},

where t = sel(x1, x2) = if x1 ≤ x2 then 1 else 2 for x1 6= ω and x2 6= ω,
P = ord(f1) ∧ ord(f2), Q = (sord(g) ∧ set(g) = set(f1)

⋂
set(f2)).

By Corollary 1, program (17) is equivalent to the following program

{P} g := ∅; y1 := ω; y2 := ω; for (x, τ) in R do (18)

(g, y1, y2) := body(g, y1, y2, x, τ) end,

where

bodyg(g, y1, y2, x, τ) = con(g, e(y1, y2, x, τ)),
e(y1, y2, x, τ) = if y1 6= x ∨ y2 = τ then ∅ else x,
bodyv(y1, y2, x, τ) = if y1 6= x then (x, τ) else

if y2 6= τ then (x, τ) else (y1, y2) = (x, τ),

and the hierarchical structure R = STR(f1, f2) is defined as

(choo(R), rest(R)) = if EMPTY then (ω, ω) else ((choo (ft1), t1),
if b1 then ω else REST).

By the proof rule rl1, one verification condition

Symbolic verification method for definite iterations 121

V C : P → Q(g ← repg((∅, ω, ω), R, body))

is generated from program (18).
We will use h(R) to denote the file repg((∅, choo(ft1), t1), rest(R), body)

in the case of ¬empty(R). The following claim follows from Theorem 6.2.
Claim 4. If ¬empty(R), then

repg((∅, y1, y2), R, body) = if y1 6= choo(ft1) ∨ y2 = t1 then h(R)
else con(choo(ft1), h(R)),

where R = STR(f1, f2) and t1 = sel(choo(f1), choo(f2)).

The verification condition V C is proved by the case analysis. If empty(R),
then empty(fi)(i = 1, 2) and V C holds. Let us suppose ¬empty(R) and
t1 = 1. By Claim 4, repg((∅, ω, ω), R, body) = h(R). We will use induction on
| memb(R) |= k. If k = 1, then empty(rest(R)), empty(h(R)), empty(f2),
and, therefore, V C holds. We suppose k > 1 and V C holds for the struc-
ture rest(R). Then ¬empty(fi)(i = 1, 2), ¬empty(rest(R)) and rest(R) =
STR(rest(f1), f2). Two cases are possible.

1. choo(rest(R)) = (choo(rest(f1)), 1). Then

choo(f1) ≤ choo(rest(f1)) ≤ choo(f2).

From Claim 4 it follows that h(R) = h(rest(R)). By the induction hypothe-
sis, sord(h(R)) and set(h(R)) = set(rest(f1))

⋂
set(f2) = set(f1)

⋂
set(f2),

since choo(f1) /∈ set(f2) in the case of choo(f1) < choo(rest(f1)).

2. choo(rest(R)) = (choo(f2), 2). Then choo(f1) ≤ choo(f2). From Claim 4
it follows that

h(R) = if choo(f1) 6= choo(f2) then h(rest(R))
else con(choo(f2), h(rest(R)))

because y1 = choo(f1), y2 = 1, t1 = sel(rest(f1), f2) and R is changed by
rest(R). By the induction hypothesis, sord(h(rest(R))) and

set(h(rest(R))) = set(rest(f1))
⋂

set(f2).

In the case of choo(f1) < choo(f2), V C holds since h(R) = h(rest(R)) and
choo(f1) /∈ set(f2). When choo(f1) = choo(f2),

set(h(R)) = {choo(f2)}
⋃
(set(rest(f1))

⋂
set(f2))

= ({choo(f1)}
⋃
set(rest(f1)))

⋂
set(f2)

= set(f1)
⋂
set(f2).

It remains to prove sord(h(R)) in the case of choo(f1) = choo(f2).
If empty(rest(f1)), then empty(h(rest(R))), h(R) = file(choo(f2)) and,
therefore, sord(h(R)). Otherwise, choo(f2) < choo(rest(f1)) and choo(f2) /∈
set(h(rest(R))). From this and sord(h(rest(R))), sord(h(R)) follows.

122 V.A.Nepomniaschy

8. Conclusion

A symbolic method for verification of definite iterations over tuples of data
structures is described in this paper. The new kind of definite iterations
allows loops with several input data structures to be represented compactly
and naturally, and to be used as flat loops [1]. Moreover, exit from iteration
body under a condition is accepted that allows the use of an important kind
of while-loops.

The application of the symbolic verification method to definite itera-
tions over tuples of data structures consists of 3 stages. In the first stage
of verification, these iterations are transformed to standard definite itera-
tions over hierarchical data structures. Such transformations are justified by
Theorems 1, 1′, 4, 4′. Useful properties of the transformations are presented
by Theorems 2, 2′, 3, 3′. In the second stage, verification conditions con-
taining the replacement operation are generated with the help of the rule
rl1. In the third stage, the verification conditions are proved with the help
of both a universal technique based on induction principles 1 and 2, and a
problem-oriented technique presented by Theorem 6 for iterations over files.

Instead of loop invariants, the symbolic method uses properties of both
hierarchical structures and the replacement operation. These properties, as
a rule, are simpler than loop invariants, and new notions are not necessary
for representation of the properties. Induction principles 1 and 2 are rather
flexible and allow us to use, for proving the properties, different induction
strategies including forward and backward strategies based on Corollary 3.
The use of properties of hierarchical data structures simplifies presentation
of properties of the replacement operation, and, hence, proving them.

Examples 1 and 2 illustrate advantages of the symbolic verification me-
thod. The use of the exit statement in Example 2 allows us to present an
optimal version of a suitable program. It is suggested to apply the symbolic
method to verification of definite iterations over tuples of linear lists.

References

[1] Abd-El-Hafiz S.K., Basili V. R. A knowledge-based approach to the analysis
of loops // IEEE Trans. Software Engineering. — 1996. — Vol. 22, � 5. —
P. 339–360.

[2] Basu S.K., Misra J. Some classes of naturally provable programs // Proc. 2nd
Intern. Conf. on Software Engineering. — IEEE Press, 1976. — P. 400–406.

[3] Gries D., Gehani N. Some ideas on data types in high-level languages // Com-
muns. ACM. — 1977. — Vol. 20, � 6. — P. 414–420.

Symbolic verification method for definite iterations 123

[4] Hehner E.C.R., Gravell A.M. Refinement semantics and loop rules // Lect.
Notes Comput. Sci. — 1999. — Vol. 1709. — P. 1497–1510.

[5] Hoare C.A.R. An axiomatic basis of computer programming // Communs.
ACM. — 1969. — Vol. 12, � 10. — P. 576–580.

[6] Hoare C.A.R. A note on the for statement // BIT. — Vol. 12,� 3. — P. 334–
341.

[7] Linger R.C., Mills H.D., Witt B. I. Structured Programming: Theory and
Practice. — Addison-Wesley, Reading, MA, 1979.

[8] Mills H.D. Structured programming: retrospect and prospect // IEEE Soft-
ware. — 1986. — Vol. 3, � 6. — P. 58–67.

[9] Nepomniashy V.A. Loop invariant elimination in program verification // Pro-
gramming and Computer Software. — 1985. — � 3. — P. 129–137.

[10] Nepomniaschy V.A. On problem-oriented program verification // Program-
ming and Computer Software. — 1986. — � 1. — P. 1–9.

[11] Nepomniaschy V.A. Symbolic verification method for definite iteration over
data structures // Information Processing Letters. — 1999. — Vol. 69. —
P. 207–213.

[12] Nepomniaschy V. A. Verification of definite iteration over hierarchical data
structures // Lect. Notes Comput. Sci. — 1999. — Vol. 1577. — P. 176–187.

[13] Stark J., Ireland A. Invariant discovery via failed proof attempts // Lect. Notes
Comput. Sci. — 1999. — Vol. 1559. — P. 271–288.

[14] Stavely A.M. Verifying definite iteration over data structures // IEEE Trans.
Software Engineering. — 1995. — Vol. 21, � 6. — P. 506–514.

124

