Bull. Nov. Comp. Center, Comp. Science, 10 (1999), 57-72
© 1999 NCC Publisher

Finding single-source shortest paths
using associative parallel processors*

A.S. Nepomniaschaya and M.A. Dvoskina

In this paper, we employ Dijkstra’s algorithm for finding single-source shortest
paths in directed graphs. We propose an efficient implementation of this algo-
rithm on a model of associative paralle] processors of the SIMD type with bit-serial
(or vertical) processing (the STAR-machine). Moreover, we show how to extend
this implementation for restoring the shortest path from the source vertex to a given
vertex. These algorithms are represented as the corresponding STAR procedures
whose correctness is verified and time complexity is evaluated. We also provide an
experiment of finding the shortest path between two given vertices in a directed
graph.

1. Introduction

Problems of finding the shortest paths are among fundamental tasks of com-
binatorial optimization because a lot of them can be reduced to finding the
shortest path in a network. A number of algorithms are known for a variety
of shortest path problems both for directed and undirected graphs. Some
of these algorithms are for finding the single source shortest paths (SSSP)
and others for the all-pairs shortest paths. The most familiar algorithm for
the SSSP problem is Dijkstra’s algorithm [1] which sorts the vertices accord-
ing to their distances from the source vertex. On sequential computers it
runs in O(m 4 nlogn) time if the priority queue is realized with the use of
Fibonacci heap [4], where n is the number of graph vertices and m is the
number of its edges. In [12], the undirected version of the SSSP problem is
solved in O(m+n) time. This algorithm is based on a hierarchical bucketing
structure allowing one to avoid the sorting on sequential computers.

We will utilize associative parallel processors for representing Dijkstra’s
algorithm because such an architecture is primarily oriented to solving non-
numerical problems.

Associative (or content addressable) parallel processors belong to fine-
grained SIMD systems with bit-serial (or vertical) data processing and sim-
ple single-bit processing elements (PEs). This class of supercomputers in-
cludes the well-known systems Staran, DAP, MPP and Connection Machine

*Partially supported by the Russian Foundation for Basic Research under Grant
99-01-00548.

58 A.S. Nepomniaschaya and M.A. Dvoskina

[3, 10]. In such systems input data are physically loaded in a matrix memory
such that each data item occupies an individual row and is processed with
its own processing element [11].

Let us enumerate the problems of finding the shortest paths being repre-
sented on associative parallel processors. In [2], Floyd’s shortest path algo-
rithm has been represented on the associative array processor LUCAS. In [8],
Warshall’s transitive closure algorithm, Floyd’s shortest path algorithm and
Maggs-Plotkin’s minimal spanning tree algorithm have been represented on
the STAR-machine [5] being an abstract model of associative parallel pro-
cessors with vertica' data processing. We have showa that every of these
algorithms takes O(n?) time assuming that every elementary operation of
the STAR-machine (its microstep) takes one unit of time. A special case
of Dijkstra’s algorithm for finding the shortest path between two vertices in
unweighted undirected graphs has been represented both on the associative
array processor LUCAS and on the STAR-machine. In [7], we have shown
that on the STAR-machine with n PEs it takes O(n) time, while on the
associative array processor LUCAS it requires O(In) time [2], where [is the
shortest path length. In [2], there is a specification of Dijkstra’s algorithm
for finding single source shortest paths on the orthogonal machine.

Here, for directed weighted graphs we propose a natural straight-forward
implementation of Dijkstra’s algorithm on the STAR-machine. We also
show how to extend this implementation in a natural and robust way for
restoring the shortest path from the source vertex to any given vertex. These
algorithms are represented as the corresponding STAR procedures whose
correctness is proved. We have shown that on the STAR-machine with n
PEs every of these procedures takes O(rn) time, where r is the number of
bits for coding maximum of the shortest distances from the source vertex.

2. Model of associative parallel machine

The raodel is defined as an abstract STAR-machine of the SIMD type with
vertical data processing. It consists of the following components:

e a sequential control unit where programs and scalar constants are
stored;
e an associative processing unit consisting of p single-bit PEs;
e a matrix memory for the associative processing unit.
The binary data are loaded in the matrix memory in the form of two-
dimensional tables in which each datum occupies an individual row and it

has a dedicated processing element. The rows are numbered from top to
bottom and the columns from left to right. A row (word) or a column

Finding shortest paths using associative parallel processors 59

(slice) may be accessed equally easy. Some tables may be loaded in the
matrix memory.

The associative processing unit is represented as h vertical registers
(h > 4) each consisting of p bits. A vertical register can be regarded as
a one-column array. The bit columns of the tabular data are stored in the
registers which perform the necessary Boolean operations and record the
search results.

The STAR-machine run is described by means of the language STAR [5]
being an extension of Pascal. Recall briefly the STAR constructions needed
for the paper. To simulate data processing in the matrix memory, we use
three new data tvpes word, slice and table. Constants for the types slice
and word are represented as a sequence of symbols from {0,1} enclosed
within single apostrophes. We use the types slice and word for bit column
access and bit row access, respectively, and the type table for defining the
tabular data. We assume that any variable of the type slice consists of p
components which belong to {0,1}.*

Recall some operations and predicates for slices.

Let X, Y be variables of the type slice and i be a variable of the type
integer. We define the following operations:

SET(Y) sets all the components of Y to '1’;
CLR(Y) sets all the components of ¥ to '0/;
Y (2) selects the i-th component of Y;

FND(Y) returns the ordina! number i of the first (or the uppermost) com-
ponent ‘1’ of Y, i > 0;

STEP(Y) returns the same result as FND(Y') and then resets the first com-
ponent '1’.

We utilize the bitwise Boolean operations X and Y, XorY,notV, XzorY
and predicates ZERO(Y') and SOME(Y') which are introduced in the obvious

way.
For a variable T of the type table we use the following two operations:
ROW(i,T) returns the i-th row of the matrix 7;

COL(i,T) returns the i-th column.
3. Preliminaries
At first, let us recall some notions being used in the paper.

Let G = (V, E, w) be a directed weighted graph in which V = {1,2,...,n}
is a finite set of vertices, E C V x V is a finite set of directed edges (arcs)

*For simplicity let us call slice any variable of the type slice.

60 A.S. Nepomniaschaya and M.A. Dvoskina

and w is a function that assigns a weight to every edge. We assume that
|[V| =n and |E| = m.

A weight matriz of the graph G is an n X n matrix which contains
as elements the arc weights. It is assumed that if e = (u,v) ¢ E then
w(u, v) = oo.

In the STAR-machine matrix memory, a directed weighted graph will
be represented as a weight matrix. Recall that the weights are integers
represented as binary strings.

Let vy, vq,...,v, be a sequence of vertices in G. A path from v; to v,
is such a sequence of arcs ey, €e3,...,€,-1 that forevery 1 = 1,2,...,n -1
e; = (v;,viy1). The shortest path between two vertices in a weighted graph
is the path with the minimal sum of weights of its arcs.

A tree is a connected acyclic graph. A tree covers the graph if its arcs
include all the graph vertices. We will deal with rooted trees. A tree of the
shortest paths in the graph G is a tree with the root vertex s which covers
G where for every vertex v there is a unique path from s to v and it is the
shortest path between them.

For every vertex v not included into the tree of the shortest paths we
define a conditional shortest path from the root s as the shortest path be-
tween these vertices which goes only through the vertices from the tree of
the shortest paths.

Now, we recall a group of basic procedures [6, 8] written in the lan-
guage STAR which will be used later on. These procedures use the given
global slice X for indicating with ‘1’ the row positions being used in the
corresponding procedure.

The procedure MATCH(T', X, v, Z) defines positions of those rows of the
given matrix T which coincide with the given binary word v. It returns the
slice Z in which Z (i) =' 1’ if ROW (¢, T) = v and X (i) =" 1".

The procedure MIN(T', X, Z) defines the positions of those rows of the
given matrix T where the minimal element is located. It returns the slice
Z in which Z(i) =' 1’ if ROW(i,T) is the minimal matrix element and
X(@i)='1.

The procedure ADDC(T, X, v, F) adds the binary word v to those rows of
the matrix 7" which correspond to the positions /1’ in the slice X and writes
the result into the corresponding rows of the matrix F. The rows of F,
which correspond to positions ‘0’ in the slice X, will consist of components
0.

The procedure TMERGE(T, X, F) writes into the matrix F' those rows
of the given matrix 7" which correspond to positions ‘1’ in the slice X. The
rows of the matrix F, which correspond to positions ‘0’ in the slice X, are
not changed.

The procedure SETMIN(T, F, X,Y) defines positions of the matrix T
rows being less than the corresponding rows of the matrix F. It returns the

Finding shortest paths using associative parallel processors 61

slice Y in which Y (i) =" 1" if ROW(¢,T) < ROW(i, F) and X (i) =' 1",

The procedure WCOPY (v, X, F) writes the binary word v into those
rows of the matrix F* which correspond to the positions /1’ in the slice X.
The rows of the matrix F', which correspond to the positions ‘0’ in the slice
X, will consist of components ().

The procedure TCOPY1(T, j, h, F) writes h columns from the given ma-
trix T, beginning with its (14 (j — 1)h)-th column, into the result matrix
F, where j > 1. '

The procedure CLEAR(j, F) sets components ‘0’ in j columns of the
matrix F.

In [6, 8], we have shown that each of these procedures takes O(k) time,
where k is the number of bit columns in the corresponding matrix.

4. Implementation of Dijkstra’s algorithm
on the STAR-machine

In this section, we propose an efficient implementation on the STAR-machine
of Dijkstra’s algorithm for finding the single source shortest paths in directed
graphs. Recall the main idea of this algorithm.

For every vertex v € V we have a super distance D[v] > dist(s, v), where
dist(s, v) is the shortest distance from the source vertex s to the vertex v.
Besides, we have a set of vertices S C V belonging to the tree of the shortest
paths, that is, Vu € S D[u] = dist(s,u). Initially, S = {s}, D[s] = 0 and
Yv ¢ S D[v] = co. Let S consist of k vertices (1 < k < n) and u be the
last vertex added to the set S. Then the (k + 1)-th vertex for the set S is
defined in the following way.

At first, for every vertex v ¢ S we define the length of the conditional
shortest path from the source vertex s which consists of the shortest path
from s to u and the arc (u,v). After that, we select such a vertex v whose
conditional shortest path has the minimal length. Then, as proved by Di-
jkstra, D[v] = dist(s,v). Therefore, we can append the vertex v to S.
Dijkstra’s algorithm finishes when § = V.

For performing these steps we minimize D[v] as follows. For all arcs
(u,v) € E, if D[u] 4+ w(u,v) < D[v] then D[v] := D[u] + w(u,v). We will
assume that z 4+ 0o = oo and min(z, oo) = z for all z.

We choose infinity as 37", w;, where w; is the maximal weight of arcs
incident to vertex . Let r be the number of bits necessary for coding infinity.
Then the weight matrix W consists of rn bit columns and every i-th vertex
of the graph G is associated with the i-th field having r bit columns.

Remark 1. In view of vertical data processing we assume that every graph
will be represented in the STAR-machine memory as a transpose weight

62 : A.S. Nepomniaschaya and M.A. Dvoskina

matrix T. Note that some real associative parallel processors allow one
easily transpose every matrix.

Before implementing Dijkstra’s algorithm on the STAR-machine let us
informally explain the meaning of the main variables U, Z of the type slice
and the variable R1 of the type table. We use the variable U as a global
slice in which positions of vertices belonging to the tree of the shortest paths
S are indicated with ‘0’. The variable Z is used as a result slice for the basic
procedure SETMIN. We utilize the variable R1 for selecting the i-th field in
the matrix 7.

proc DIJKSTRA(T: table; s,r: integer; inf: word;
var D: table);

/* Here T is the transpose weight matrix, s is the source vertex,
7 1s the number of bits required for representing infinity,
inf is the binary representation of infinity. */

var R1,R2: table; U,X,Z: slice; v: word; k: integer;

/* The first stage. */

1. Begin
2. SET(U); U(s):=’0’;
3 k:=s;

10.
11.
12.

/* Here k saves the last vertex included in the set S. */
WCOPY(inf,U,D);

/* The second stage. */
while SOME(U) do
begin
TCOPY1(T,k,r,R1);

/* The k-th field of the matrix T is stored in the matrix R1. */

MATCH(R1,U,inf,X);
X:=X xor U;

/* In the slice X we indicate with ‘1’ positions of those vertices
which do not belong to S, but they are incident to the
k-th vertex. */

if SOME(X) then
begin
v:=ROW(k,D); ADDC(R1,X,v,R2);
/* In every i-th row of R2, corresponding to X (i) =1, there is

the result of adding the super distance D[k] and the weight
of the arc directed from & to i. */

13.
14.

. /* In every i-th row of the matrix D, corresponding to Z (@ ="1
15.

16.
17.

18.
19,

Finding shortest paths using associative parallel processors 63

SETMIN(R2,D,X,Z);
TMERGE(R2, Z, D)

b

we decrease the super distance D[i] to D[k] + w(k,q). */

end;
MIN(D,U,X); k:=FND(X);
Ulk):=0"

/* A.new vertex is included in S. */

end;
End.

Correctness of this procedure is established by means of the following
theorem. '

Theorem 1. Let a directed weighted graph G be given as the transpose
weight matriz T. Let s be the source vertez, every arc weight use r bits
and let inf be the binary representation of infinity. Then the procedure
DIJKSTRA(T, s, r,inf, D) returns the distance matriz D in whose every
i-th row there is the shortest distance from s to i and it takes O(rn) time
on the STAR-machine with n PEs,

Proof. At first, by induction on the number of vertices j included in the
tree of the shortest paths S, we prove that the procedure DIJKSTRA returns
the matrix D.

Basis is verified for j = 1. It is obvious that after performing the
first stage the tree of the shortest paths S consists of the single vertex s
whose position is indicated with ‘0’ in the global slice U. The variable k
saves s being the last vertex included in S. Finally, after executing the
basic procedure WCOPY (inf, U, D) the s-th row of the distance matrix D
consists of components ‘0, that is, the shortest distance from s to s is equal
to zero, while in every other row of D there is the binary representation of
the infinity. It means that at this step these shortest distances are unknown.

Step of induction. Assume the theorem is true for 1 < j <1< n - 1.
We will prove it for j = { + 1. By inductive assumption after including I
vertices in S their positions are indicated with ‘0’ in the slice U, the variable
k saves the last vertex being appended to S and the shortest distance from
s to every ¢-th vertex from S is written in the i-th row of the matrix D.
Since ! # n, we have U # ©.* Therefore we fulfil the second stage of our
procedure.

Here, at first, by means of the slice X we will determine positions of those
vertices v’ (v € S) which are incident to the vertex being included in $ at the

*The notation U # © means that there is at least one component ‘1’ in the slice U.

64 A.S. Nepomniaschaya and M.A. Dvoskina

I-th iteration. To this end after performing line 7 the field of the matrix T,
which corresponds to the k-th (or the last) vertex appended to S, is stored in
the matrix R1. After executing the basic procedure MATCH(R1, U, inf, X)
(line 8) for every 1 < i < n we have X (i) = '1’ if and only if U(:) = 1’.
Therefore, as a result of performing line 9 we indicate with ‘1’ in the slice
X positions of the vertices which do not belong to S, but they are incident
to the vertex being included in S at the I-th iteration. There are two cases.

Case 1: X # O. Then, for every vertex v’ (v' ¢ S) whose position
is indicated with /1’ in the slice X we define in parallel the length of the
conditional shortest path from s to v' and after that we minimize D[v'].
To this purpose as a result of performing line 12 in every i-th row of R2,
which corresponds to tlie position ‘1’ in the slice X, there is the result of
adding the shortest distance from s to the last vertex included in S, that
is, D[k], and the weight of the arc directed from this vertex to the vertex
t. Now, by means of the basic procedure SETMIN(R2, D, X, Z) (line 13)
in the slice Z we indicate with ‘1’ positions of those vertices whose super
distances have been decreased due to appending the last vertex to .S, that is,
Z(i) ="1"if D[k] + w(k,?) < D[z]. Then, by means of the basic procedure
TMERGE(R2, Z, D) in every i-th row of the matrix D, corresponding to
the position ‘1’ in the slice Z, we decrease the super distance D[] to D[k] +
w(k,).

Finally, we define the position of the current vertex being apperded to
S at the (I + 1)-th iteration and indicate it with ‘0’ in the global slice U.
With this aim in view we perform the basic procedure MIN(D, U, X) and the
statement k := FND(X) (line 16). As a result the variable k will save the
currert vertex whose super distance has the minimal weight in the matrix
D at the (I 4 1)-th iteration. Then, by means of the stateraent U(k) = '0/
this vertex is appended to the tree of the shortest paths S..

Case 2: X = O. Since the k-th vertex appended to S has no vertices
incident to it, after line 9 we will perform lines 16-17 as shown above.

Now, let us evaluate time complexity of the procedure DIJKSTRA.
Clearly, the cycle from line 5 is performed n — 1 times. Since every ba-
sic procedure takes O(r) time, we obtain that the procedure DIJKSTRA
takes O(rn) time. a

5. Finding the shortest path between
two vertices

In this section we will show how to extend the implementation of Dijkstra’s
algorithm for restoring the shortest path from the source vertex s to every
vertex of G. To this end we will construct both the distance matrix D and
a special matrix) of the following form. In its every i-th column we will

1.
2.

a

©® N e o

10.
11.
12.
13.

14.
15.
16.
17.

18.

Finding shortest paths using associative parallel processors 65

indicate with ‘1’ both the position of the vertex which is appended to the
tree of the shortest paths S in the i-th iteration and positions of those its
descendants whose conditional shortest paths are decreased in this iteration.
Then, by means of the matrix Q we will restore the shortest path from the
source vertex s to a given vertex of G.

Before presenting the corresponding procedure RECOV let us agree to
comment only the statements being used for constructing the matrix Q and
some statements for finding the shortest path.

Consider the following proced-re.

proc RECOV(T: table; s,f,n,r: integer; inf: word;
var RES: table);

/* Here T is the transpose weight matrix, s is the source vertex,
[is the final vertex, n is the number of graph vertices,
» is the number of bits required for representing infinity,
inf is the binary representation of infinity. */
var D,Q,R1,R2: table; U,X,Z: slice; v: word; k,1: integer;

/* The first stage. */

Begin
1:=0; SET(U); U(s):='0’;
k:=s;
WCOPY (inf,U,D):

/* The second stage. */

while SOME(U) do
begin
TCOPY1(T,k,r,R1);
MATCH(R1,U,inf,X);
X:=X xor U;
if SOME(X) then
begin
v:=ROW(k,D); ADDC(RI,X,V,RZ);
SETMIN(R2,D,X,2);

/* In the slice Z we indicate with ’1’ positions of those vertices
whose super distances are decreased at the current iteration. */
TMERGE(R2,Z,D)
end;

if ZERO(X) then CLR(Z);
Z(k):=17;

/* The position of the k-th vertex is indicated with ‘1’ in the slice Z. */
1:=1+1; COL(1,Q):=Z;

19.
20.
21.
22.

23.
24,

25.

26.
27.
28.
29.
30.
31.
32.

33.

34.
35.
36.
37.

66 A.S. Nepomniaschaya and M.A. Dvoskina

/* We obtain the current column for the result matrix Q. * /
MIN(D,U,X); k:=FND(X);

U(k):=0°
end;
COL(n,Q) :=X;

/* In the slice X we indicate with ‘1’ the position of the vertex
appended to S at the n-th iteration. */

/* The third stage. */

CLEAR(n,RES);
SET(U);

/* In the slice U we indicate with ‘1’ positions of vertices
included in the tree of the shortest paths. */

k:=f;

/* Here k is the current vertex belonging to the shortest path. */

for 1:=n downto 1 do
begin
X:=COL(1,Q);
if X(k)="1’ then
begin
X:=X and U;
COL(k,RES):=X;

/* The slice X is written in the k-th column of the matrix RES. */
k:=FND(X)

/* The new value is defined for the variable k. */

end;
U:=U and (not X)
end;
End.

Correctness of this procedure is established by means of the following
theorem.

Theorem 2. Let G be a directed weighted graph with the source vertez s,
the final vertex f and |V| = n. Let T be its transpose weight matriz in
which every arc weight uses r bits and let inf be the binary representation
of infinity. Then the procedure RECOV(T, s, f,n,r, inf, RES) takes O(rn)
time on the STAR-machine with n PEs. It returns the n x n Boolean matriz
RES in which every arc (i,) belonging to the shortest path from the vertex

Finding shortest paths using associative parallel processors 67

s to the vertex f is indicated with position '1’ at the intersection of the i-th
row and the j-th column.

At first, we prove that the procedure RECOV returns the matrix RES.
To this end we will employ the following two propositions.

Proposition 1. Let all assumptions of Theorem 2 be true. Then after
performing lines 1-22 we obtain the matriz Q, in whose every j-th column
we indicate with '1' the position of the vertex appended to S in the j-th
iteration and positions of its descendants, whose conditional shortest paths
are decreased at this iteration.

The proposition is proved by analogy with Theorem 1.

Remark 2. From constructing the matrix @ we conclude that in the first
column of @ there are bits ‘1’ in the s-th position and in the positions of all
descendants of the vertex s.

Proposition 2. Let all assumptions of Theorem 2 be true. Then after
performing lines 23-87 we obtain the n x n Boolean matriz RES in which
every arc (i, j) belonging to the shortest path from the vertex s to the vertezx
[is indicated with position'1’ at the intersection of the i-th row and the j-th
column.

Proof. We prove by induction on the number of arcs t included in the
shortest path from s to f.

Basis is verified for t = 1. In view of Proposition 1 before performing
the third stage the procedure RECOV constructs the matrix Q. It is obvious
that after fulfilling lines 23-25 every column of the matrix RES consists of
components ‘0’, the slice U consists of components 1’ and the variable k
saves the vertex f. Then,.as a result of performing line 26 we select the
current [-th column of @ using the statement X := COL(Z,Q) (line 28).
After that in line 29 we verify whether the J-th bit of X is equal to '1’.
There are two cases.

Case 1: X(f) =" 0. Then, after performing line 35 positions of the
vertices indicated with /1’ in the slice X are set to /0’ in the slice U, because
these vertices are appended to the tree of the shortest paths S after the
vertex f.

Case 2: X (f) ='1". Then, in the slice X after performing the statement
X 1= X and U there is the unique bit ’1’. Really, if { = n, then in the slice
X there is the unique bit 1’ due to lines 22 and 24. Otherwise, in view of
Case 1 positions of vertices which are incident to f will be indicated with
'0" in the slice U. Now, as a result of fulfilling line 32 in the f-th column of
the matrix RES we set the bit ‘1’ in its f-th position. After that by means

68 A.S. Nepomniaschaya and M.A. Dvoskina

of the statement k := FND(X) we define the new value for the variable k.
It is obvious that £ = f again. Notice that after performing line 35 we have
U(f)="0.

Now, by analogy with Case 1 while in the [-th current column (! # 1) of
the matrix @ X (f) =" 0’ positions of the vertices appended to S before the
vertex f are set to '0’ in the slice U. Since the shortest path consists of the
single arc (s, f) in view of Remark 2 in the first column of Q there is the
bit ‘1’ both in its s-th position and in the f-th position. Therefore, in the
slice X after performing the statement X := X and U (line 31) there is the
unique bit ‘1’ located in the s-th position, because positions of the vertices
incident to the vertex s are indicated with 0’ in the slice UU. Hence, after
fulfilling line 32 in the f-th column of the matrix RES there is the unique
bit '1’ located in its s-th position.

Step of induction. Assume the proposition is true for t < g < n. We
will prove it for t = g+1. Let (s, s1) be the first arc belonging to the shortest
path v from s to f. Then, we represent v as ¥ = vz, where v; = (s, s1)
and +, is the shortest path from s; to f. By inductive assumption, every
arc (i,j), belonging to the shortest path 42, is indicated with position 1’
at the intersection of the i-th row and the j-th column of the matrix RE'S.
After defining the position of the first arc belonging to 72 one can easily
check that the variable k saves s;. As a result of performing line 35 we have
U(sy) =" 0". In view of Case 1 it is sufficient to consider the occasion when
X = COL(1,Q). Because of Remark 2 X(s;) =1’ and we will perform line
31. Since positions of the vertices incident to s are indicated with ‘0’ in the
slice U after fulfilling the statement X := X and U (line 31) there is the
unique bit ‘1’ in the s-th position of the slice X. As a result of performing
line 32 in the s;-th column of the matrix RES the bit /1’ is set in the s-th
position. Hence, positions of arcs belonging to the shortest path v are given
by means of the matrix RES.

Now, we evaluate time complexity of the procedure RECOV. Obviously,

it takes O(rn) time since the first two stages take O(rn) time and the third
stage requires O(n) time. a

6. Experiments

In this section, we provide an example to illustrate the implementation of the
procedure RECOV for restoring the shortest paths from the source vertex
s in the directed weighted graph G. To this end we use our system which
simulates the statements of the language STAR by means of Pascal.

The original graph is given in Figure 1. We will execute the procedure
RECOV fors=1, f =7, inf = 11001 and r = 5.

Finding shortest paths using associative parallel processors 69

Figure 1. The first iteration Figure 2. The shortest path
froms=1to f=T7

We give values of the following parameters:

e T is a transpose weight matrix;

e U is a slice in which positions of vertices belonging to the tree of the
shortest paths indicated with '0/;

e D is a distance matrix;

e 7 is aslice in which we indicate with ‘1’ positions of the vertices, whose
super distances have been decreased in this iteration.

The matrix T consists of ten fields each having five bits:

1 2 3 4 5 6 7 8 9 10

00000 11001 11001 11001 11001 11001 11001 11001 11001 11001
11001 00000 11001 11001 11001 11001 11001 11001 00011 11001
11001 11001 00000 00010 11001 11001 11001 11001 11001 11001
11001 00101 11001 00000 00010 11001 11001 11001 11001 11001
00100 11001 11001 11001 0000C 11001 11001 00001 11001 11001
11001 11001 11001 11001 11001 00000 11001 11001 11001 00001
11001 11001 00010 11001 11001 11001 00000 00010 11001 11001
11001 11001 11001 00011 11001 00010 11001 00000 11001 11001
00011 11001-00001 11001 11001 11001 11001 11001 00000 11001
00101 11001 11001 00011 11001 11001 11001 11001 11001 00000

O 0O ~1 T U RN

—
o

After performing the nineth iteration of the second phase we obtain the
matrix . Note that the vertices are added to the tree of the shortest paths
in the following order: 9, 5, 10, 2, 4, 6, 3, 8, 7. The shortest path from the
source vertex 1 to the final vertex 7 is obtained after performing the tenth
iteration of the third stage. This path is given in Figure 2.

70

A.S. Nepomniaschaya and M.A. Dvoskina

Slice 1 Slice Slice
= 7 able D - Z Table D o Z Table D
0 1 00000 0 0 00000 0 0 00000
1 0 11001 1 1 00110 1 0 00110
1 0 11001 1 0 11001 1 0 11001
1 0 11001 1 0 11001 1 1 00110
1 1 00100 1 0 00100 0 1 00100
1 0 11001 1 0 11001 1 0 11001
1 0 11001 1 0 11001 1 0 11001
1 0 11001 1 0 11001 1 0 11001
1 1 00011 0 1 00011 0 0 00011
1. 1 00101 1 0 00101 1 0 00101
N=14 N=5 N=6
Slice Slice Slice .
Table D Table D Table D
U z - U z v | z
0 0 00000 0 0 00000 0 0’ 00000
1 0 0n110 0 1 00110 0 0 00110
1 0 11001 1 0 11001 1 1 11001
1 0 00110 1 0 00110 0 1 00110
0 0 00100 0 0 00100 0 0 00100
1 1 00110 1 0 00110 1 0 00110
1 0 11001 1 0 11001 1 0 11001
1 0 11001 1 0 11001 1 1 11001
0 0 00011 0 0 00011 0 0 00011
0 1 00101 0 0 00101 0 0 00101
N=7T N=8 N=9
Slice Slice Slice
Table D Table D Table D
U Z U zZ U Z
0. 0 00000 0 0 00000 0 0 00000
0 0 00110 0 0 00110 0 0 00110
1 0 01000, 0 1 01000 0 0 01000
0 0 00110 0 0 00110 0 0 00110
0 0 00100 0 0 00100 0 0 00100
0 1 00110 0 0 00110 0 0 00110
1 0 11001 1 1 01010 1 0 01010
1 1 01000 1 0 01900 0 1 01000
0 0 00011 0 0 00011 0 0 00011
0 0 00101 0 0 00101 0 0 00101

Finding shortest paths using associative parallel processors 71

7. Conclusions

In this paper, we have shown how to perform Dijkstra’s sequential algorithm
on associative parallel processors with vertical data processing. Such an
architecture allows one to perform all the steps of Dijkstra’s algorithm in
parallel and to avoid the sorting of weights by fulfilling the corresponding
search. We have also shown how to extend this implementation for defining
the shortest path from the source vertex to every given vertex of G. To
this end along with constructing the distance matrix we obtain a special
matrix (protocol) to save in any iteration both the position of the vertex
appended to the tree of the shortest paths and positions of its descendants
whose conditional shortest paths are decreased. Then, using this protocol we
restore the shortest path beginning with its last column. We have obtained
that on the STAR-machine having no less than n processing elements each
of the procedures DIJKSTRA and RECOV takes O(rn) time. In this paper
we use a graph representation as a weight matrix because it is best suited for
implementing Dijkstra’s algorithm on associative parallel processors. Really,
if a graph is given as a list of triples (arc vertices and the weight), then we
have to use both an additional list of graph vertices and an array for saving
the numbers of those vertices which are incident to the vertex added to the
tree of the shortest paths in every current iteration.

References

(1] Dijkstra E.-W. A note on two problems in connection with graphs // Nu-
merische Mathematik. - 1959. - Ne 1. - P. 269-271.

[2] Fernstrom C., Kruzela J., Svensson B. LUCAS Associative Array Processor.
Design, Programming and Application Studies. — Berlin: Springer—Verlag,
1986. — (Lect. Notes Comput. Sci.; Vol. 216).

[3] Fet Y.I. Vertical processing systems: a survey // IEEE Micro. - 1995 (Febru-
ary). - P. 65-75.

[4] Fredman M.L., Tarjan R.E. Fibonacci heaps and their uses in improved net-
work optimization algorithms // J. ACM. - 1987. - Vol. 34, No 3. - P. 596-615.

[6] Nepomniaschaya A.S. Language STAR for associative and parallel compu-
tation with vertical data processing // Proc. of the Intern. Conf. “Parallel
Computing Technologies”. — Singapure: World Scientific, 1991. — P. 258-265.

[6] Nepomniaschaya A.S. An associative version of the Prim-Dijkstra algorithm
and its application to some graph problems // Andrei Ershov Second Intern.
Memorial Conf. “Perspectives of System Informatics”. — Berlin: Springer—
Verlag, 1996. — P. 203-213. - (Lect. Notes Comput. Sci.; Vol. 1181).

72 A.S. Nepomniaschaya and M.A. Dvoskina

[7] Nepomniaschaya A.S., Taborskaya O.V. Effective representation of some graph
problems on associative parallel processors // Proc. of the XII-th Int. Symp.
on Comput. and Inform. Sci. (ISCIS XII). - Antalya: Bogazici University
Printhouse, 1997. — P. 430-437.

[8] Nepomniaschaya A.S. Solution of path problems using associative parallel
processors // Proc. of the Int. Conf. on Parallel and Distributed Systems
(ICPADS’97). - Seoul: IEEE Computer Society Press, 1997. — P. 610-617.

[9] Otrubova B., Sykora O. Orthogonal computer and its application to some
graph problems // Parcella’86. — Berlin: Academie Verlag, 1986. — P. 259-266.

(10] Potter J.L. Associative Computing: A Programming Paradigm for Massively
Parallel Computers. - N.Y., London: Kent State Univ., Plenum Press, 1992.

[11] ASC - An associative computing paradigm / J. Potter, J. Baker, A. Bansal,
C. Asthagiri, S. Scott, C. Leangsuksun // Computer: Special Issue on Asso-
ciative Processing. — 1994. - Vol. 27, No 11. - P. 19-24.

[12] Thorup M. Undirected single source shortest paths in linear time // Proc.
of 38-th IEEE Symp. on Foundations of Comput. Sci. (FOCS’97). — 1997. -
P. 12-21.

