Joint NCC & 1IS Bull., Comp. Science, 4 (1996), 55-66
© 1996 NCC Publisher

Associative version of the Gabow
algorithm for finding smallest spanning
trees with a degree constraint*

A.S. Nepomniaschaya

In this paper by means of an abstract model (the STAR-machine) we describe
an associative version of the Gabow algorithm for the degree-restricted problem.
We have obtained that on an associative parallel processor this algorithm takes
the same time as a minimal spanning tree algorithm. In Appendix the associative
algorithm is represented as a procedure written in the language STAR.

1. Introduction

The revived interest in associative (content-addressable) architectures is
caused by remarkable advances in the VLS] technology [1]. We analyze algo-
rithms for associative parallel processors (APPs) belonging to fine-grained
SIMD-systems with bit-serial (vertical) processing and simple single-bit pro-
cessing elements [2]. These systems can Process rows and columns organized
as a matrix of storage elements. Therefore such an architecture is well-suited
for solving problems employing tabular data. Qur prime interest is in asso-
ciative system application for solving graph theoretical problems.
For graphs represented as a distance matrix the Prim—Dijkstra algorithm
is implemented both on the associative array processor Lucas [3] and on a
group of computers, including the Staran, Aspro, Wavetracer and CM-2,
where the language ASC has been installed [4]. In [5], for graphs represented
as a list of triples (edge vertices and the weight) the Kruskal algorithm is used
on the orthogonal machine. In [6], for the same graph representation the
effective program MST is based on the Baase algorithm. In [7], we compare
the implementations of the Baase algorithm and an associative version of
‘the Prim-Dijkstra algorithm on the STAR-machine. In [3, 5] some other
graph problems are considered on the associative array processor LUCAS
and on the orthogonal machine.
~ In this paper, we study a problem of finding a smallest spanning tree with
a degree constraint. Such an important problem arises in computer networks
and communication networks. - On conventional sequential computers the

*Supported in part by the Russian Foundation for Basic Research under Grant
96-01-01704. '

56 A.S. Nepomniaschaya

Gabow algorithm [8] allows an effective solution which takes O(mlog log n +
nlogn) time, where m is the number of graph edges and » is the number
of vertices. In [8], Gabow posts a question whether there is an algorithm
for finding the smallest spanning tree with a degree constraint as fast as a
minimal spanning tree algorithm.

In [9], it has been shown that on sequential computers the degree-re-
stricted problem is time-equivalent to the MST-problem. In [10], the best
sequential algorithm for the MST-problem runs in time O(mlog 3(m, n)),
where G(m,n) = min{i | log®) n < m/n}, log) 2 is defined by log® 2 = ¢,
logt! z = log log*=1) 2. To this end a special data structure F-heap is used.

Here, we study the above-mentioned problem using the STAR-machine.
Its run is described by means of the language STAR [11] being an extension
of Pascal by adding new data types for simulating the parallel associative
processing at micro-level. For representing the Gabow algorithm on the
STAR-machine we suggest new techniques. We have obtained that the as-
sociative version of the Gabow algorithm for the degree-restricted problem
takes the same time O(nlogn) as the minimal spanning tree algorithm on
the STAR-machine. Note that the STAR-machine can employ only simple
tabular data structures.

In Appendix the associative algorithm is represented as a STAR proce-
dure SSTEQ.

2. Model of associative parallel machine

We define our model as an abstract STAR-machine of the SIMD-type with
vertical data processing. It consists of the following components:

® a sequential common control unit (CU) where programs and scalar
constants are stored;

® an associative processing unit consisting of m single-bit processing
elements (PEs);

® a matrix memory for the associative processing unit.

Data are loaded in the matrix memory in the form of two-dimensional
arrays written in binary code. Each array element occupies an individual
row and all elements have the same length (coinciding with the length of
the maximal element). The rows are numbered from top to bottom and
the columns from left to right. A row (word) or a column (slice) may be
accessed equally easy. Some arrays may be loaded in the matrix memory.

The associative processing unit is represented as h vertical registers each
consisting of m bits. The bit columns of the data array are stored in the
registers which perform the necessary Boolean operations and record the

Associative version of the degree-restricted problem 57

search results. We assume that the associative processing unit has a suffi-
cient number of vertical registers to store intermediate results of data pro-
cessing without using the matrix memory.

Let us briefly consider the STAR constructions from [11] needed for the
paper. To simulate data processing in the matrix memory we introduce three
new data types word, slice and table in the same manner as in Pascal.
Constants for the types slice and word are r:presented as a sequence of
symbols from {0, 1} enclosed within single apostrophes. We use the types
slice and word for bit column access and bit row access, respectively, and
the type table for defining tabular data. Assume that any variable of the
type slice consists of m components which belong to {0,1}.

Consider operations and predicates for slices.

Let X, Y be variables of the type slice and ¢ be a variable of the type
integer. We define the following operations:

SET(Y') sets all components of ¥ to ‘17

CLR(Y) sets all components of ¥ to ‘07;

Y (i) selects the i-th component of Y:

FND(Y') returns the ordinal number i of the first component ‘1’ of ¥, i > 0;

STEP(Y) returns the same result as FND(Y') and then resets the first com-
ponent ‘1°,

The following bitwise Boolean operations are introduced in the usual
way: X and Y is conjunction, X or Y is disjunction, not X is negation and
X zor Y is exclusive ‘or’.

For slices there are two predicates ZERO(Y') and SOME(Y’) which are in-
troduced in the obvious way.

Let T be a variable of the type table. We use the following operations:

T(i) returns the i-th row in the matrix T (1<i<m);
col(?, T) returns the i-th column in the matrix T,
with(Y,T) attaches to the matrix T left the contents of the slice V.
We employ the function size(T') which returns the number of columns

in the matrix 7. Notice that after performing the operation with(Y,T) the
value of size(7) is incremented to one.

Remark 1. Note that the STAR statenments resemble those of Pascal.

Remark 2. When we define a variable of the type slice we put in brackets
the name of the matrix which uses it. Therefore if the matrix consists of n
rows, where n < m, then only the first n components of the corresponding
slice (column) will be used in the vertical processing.

58) A.S. Nepomniaschaya

3. The Gabow algorithm

At first let us recall some notions needed for the paper.
Let G=(V,E,w) be an undirected weighted graph with the vertex set
= {1,2,. ,n}, the edge set £ C V x V and the weight function w
correlatmg ea.ch edge e = (p,q) € E with an-integer w(p,q). A minimal
spanning tree Ts of G is defined as a connected graph without loops
containing all vertices from V' where the sum of weights of the corresponding
edges is minimal. A degree of a graph vertex is the number of edges
incident toit. A connected component of a graph is a maximal connected
subgraph.

Let t be a degree constramt for the vertex r in G and deg(r) = k. The
Gabow algorithm [8] constructs the smallest spanning tree of G containing
only t edges incident to r. Denote by R a set of edges incident to r. The
basic idea of the algorithm is to find a smallest spanning tree containing R.
Then we execute elementary-exchanges until the degree of r decreases to t.
For speeding up the computation at first we construct. a minimal spanning
forest U of the graph G — r. Then only edges from RUU will be used. The-
elementary exchanges satisfy the following property.

‘Let T be a smallest spanning tree having k edges incident to r. If there
are such edges e € TN R and f ¢ TUR that T — e + f is a spanning tree
and w(f) — w(e) is the smallest among all such pairs, then T — & + f is the
smallest spanning tree having k — 1 edges incident to r.

For finding exchanges a system of priority queues is employed. Consider
an edge e € T N.R.- An exchange that removes e from T adds an edge f

which joins two connected components of T—e. A priority queue F(e) stores

all such edges f. The priority of f is its weight w(f). Thus the smallest -

edge f is easily found. Another priority queue X stores the exchanges (e, f),

where for any edge e € TNR, fis the smallest edge that can replace e. The

priority of (e f) is w(f) — w(e). Therefore the smallest exchange is easily
found. .

Finally, let there exist two edges e and e’ from R which can be replaced
with the same edge f and let (e, f) be the current exchange. Then it is
necessary to remove the edge f from F(e) and from F(e’) and to remove the
exchange (€', f’) containing €’ from X. Thereafter we need to merge F(e)
and F(e’) into a new priority queue F(e’) and choose a new smallest edge

f' in it. Moreover, we need to add the new exchange (¢, f') to the queue
X.

4. Basic procedures

For performing the Gabow a.lgorlthm on conventional sequential computers
the Cheriton-Tarjan algorithm is used both for finding a minimal spanmng

Associative version of the degree-restricted problem 59

forest and for finding a smallest spanning tree which includes all edges inci-
dent to r. However, on associative parallel processors for the same goals we
utilize the Prim-Dijkstra algorithm.

In the STAR-machine matrix memory we represent a graph G in the
form of association of the matrices left, right and weight in which each edge
e = (p,q) corresponds to the triple (p, ¢, w(p, q)), where p € left, g € right,
w(p, q) € weight. :

Remark 3. Without loss of generality we assume that in the matrix mem-
ory any edge incident to r has the form: (r, s, w(r, s)). Moreover, we assume
that all the edges incident to r occupy the first k rows in the graph repre-
sentation.

At first, let us enumerate a group of procedures which will be used for
finding a smallest spanning tree including all edges incident to r. These
procedures employ the given global slice X for indicating by ‘1’ the row
positions being used in the corresponding procedure.

We employ the procedure MERGE(T, X, F) for writing into the resulting
matrix F those rows of the given matrix T which correspond to positions
‘1’ in the slice X.

We apply the procedures MATCH, MIN and MAX from [12]. The procedure
MATCH(T, X, w, Z) defines the row positions in the given matrix T coinciding
with the given w. Its result is the slice Z in which Z(3) = ‘1’if T(¢)=w. The
procedure MIN(T, X, Z) defines the row positions in the given matrix T where
the minimal element is located. It returns the slice Z in which Z(:) = ‘17 if
T(i) is the minimal matrix element. The procedure MAX(T, X, Z) is defined
by analogy with MIN.

For performing the arithmetic operations we utilize the procedures
ADDC and SUBTV. The procedure ADDC(T, X, w, F) adds the binary word w to
the rows of the matrix T and writes the result into the matrix F. The pro-
cedure SUBTV(T, @, X, F) writes into the matrix F the result of subtraction
of the matrix @ from the matrix T.

For finding a minimal spanning tree of a connected component we employ
the procedure MSTC(left, right, weight, S1, S, R) from [13]. It uses the slice
S1 for indicating the positions of the graph edges among which a connected
component is constructed. The procedure returns the resulting slices S and
R. In the slice R we store positions of the edges belonging to the minimal
spanning tree of the connected component. In the slice S we save positions
of those edges from S1 which are not incident to the vertices included into
the minimal spanning tree.

We construct a minimal spanning forest of G — r by means of the pro-
cedure FOREST(left, right, weight, Z,U) from [13]. It uses the slice Z for in-
dicating positions of the edges among which the connected components are

60 A.S. Nepomniaschaya

looked for. The procedure returns the resulting slice U in which positions
of edges belonging to the minimal spanning forest are indicated by ‘1°.

‘Remark 4. Correctness of the procedure MSTC is established by induction
on the number of edges included in the minimal spanning tree. Correctness
of the other procedures is verified by induction either on the number of
connected components (for the procedure FDREST) or on the number of bit
columns in the matnx T. '

The procedure EXCHANGE(left, right, j, Z, R, U) returns the slice U in
which positions of all. the replacing edges for an edge e = (r;s) from the
j-th position are indicated by ‘1’. It uses the slice Z for indicating positions
of edges deleted from the minimal spanning forest of G — r and the slice R
for indicating positions of edges which belong to the smallest spannmg tree
containing all the edges incident to r.

Remark 5. Let us briefly explain a construction realized in the procedure
EXCHANGE. For any edge e = (r,s) belonging to the j-th position we con-
struct a path from its right vertex (s) to a terminal vertex by means of the
procedure MATCH. Knowing the slice R, for every new vertex w added to this
path we verify whether there are such edges, incident to w, whose positions

are indicated by "1' in the slice Z. Positions of such edges are accumulated
in U.

5. Associative algdrithm

At first, consider the main .constructions. :

The first construction allows one by means of the Prim- Dl_]kstra algo-
rithm to obtaln the smallest spa,nmng tree mcludmg all the edges incident
to r. : :

Construction 1. At first; we define the maximal weight (w1) of the edges
incident to r. Then we construct a new matrix cost from the matrix weight
as follows. Weights of the edges, not incident to r, areincreased by the value
of wl. Now, we perform the procedure MSTC using the matrix cost instead -
of the matrix weight.

_ For performmg the first construction we utlllze the STAR procedures
MAX, ADDC, MERGE and MSTC. .
In the second construction for any edge e belongmg to the j-th position
in the graph representation we define the position of its replacing edge f.

Associative version of the degree-restricted problem 61

Construction 2. For any edge e=(r,s) from the j-th position by means
of the procedure EXCHANGE(left, right, j, Z, R,U) we define in the slice U
positions of all the edges' which can replace it. If there are such positions,
among them using the procedure MIN we define the position 7 of the replacing
edge f having the minimal weight. The position j of the edge e is saved in
the slice W -and the posmon ¢ of its replacing edge f is stored in the j-th
component, of the array A. At last, we carry out the statement cost(g)
cost(1).

For performing this construction we apply the procedures' MATCH and
MIN.. : : ,
~ The third construction is employed for selecting the current exchange.

Construction 3. After performing the procedure SUBTV(cost, weight, W,
costl) in the matrix costl we obtain the augments of the rows corresponding
to positions ‘1’ in the slice W. For defining the current exchange position we
carry out the procedure MIN(costl, W, X) and the statement m := FND(X).
Thus, the pair (m,A[m]) is the current exchange. For finding the replacing
edge position we fulfil the statement ¢ := A[m]. Now, we perform the
exchange as follows. We delete edge position m both*from the slice W
(using the statement W(m) := ‘0’) and from the resulting slice R (by means
of the statement R(m) := ‘0’). Then we add the edge position ¢ to the slice
_ R (with the use of the statement R(i) :=‘1"). :

In the fourth construction we define whether there are two edges incident
to r having the same replacing edge. :

Constructlon 4. Assume that we have performed the current exchange
(m, i) by means of Construction 3. Knowmg the position m of the deleted
edge e we define the column number p in the matrix change where positions
of its replacing edges are stored. We delete the i-th position from the p-th
column. Now, if there exists another edge incident to r with the same
replacing edge, then in the i-th row of the matrix change a bit ‘1’ must be
necessary. Knowing the i-th row by means of the operation STEP we define
the column number (say) in the matrix change whose i-th bit is ‘1’ and
replace this bit with ‘0’. Finally, we perform the disjunction between the
p-th column and the I-th column and we write the result into the I-th column
of the matrix change. This is equivalent to removing the occurrence of the
edge f from F(€') in the Gabow algorithm.

The associative algorithm consists of the following three stages.

At the first stage, using the procedure FOREST. we construct a minimal
spanning forest of G' — ». Using Construction 1 we obtain the matrix cost.
Now, knowing positions of edges incident to r and positions of edges included

62 A.S. Nepomniaschaya

in the minimal spanning forest by means of the procedure MSTC we construct
the smallest spanning tree T' containing all edges incident to r. Finally,
positions of edges from the minimal spanning forest not belonging to T" are
stored into a slice Z.

At the second stage, using Construction 2, we get the slice W and the
array A forming the list of pairs (7, A[j]). Moreover, for any deleted edge
from the j-th position in the current p-th column of the matrix change we
save positions of its replacing edges. Finally, by means of the statements
B[j] := p and C[p] := j we determine a one-to-one correspondence between
J and p. Note that the matrix change will be used at the next stage.

At the third stage, using Construction 3, we carry out the current
exchange (m,). If the added edge from the i-th position is a replacing
edge for another edge €’ incident to r, then by means of Construction 4
we update the [-th column of the matrix change, where positions of new
replacing edges for ¢’ will be written. Now, knowing the I-th column with
the use of the procedure MIN we define the position (say ¢) of a new replacing
edge for e’ having the minimal weight. For defining the position in the
graph representation, where the edge ¢’ is located, we perform the statement
h := C[l]. Finally, we fulfil the statement cost(h) := cost(q).

Note that this stage is repeated until deg(r) > ¢.

In Appendix we describe the representation of the Gabow algorithm on
the STAR-machine using the procedure SSTEQ. Its correctness is established
by means of the following theorem.

Theorem. Let a graph G be represented by the association of the matrices
left, right and wéight. For a given vertez r let node be its binary code,
k be its degree and t be a constraint degree. Then, using the procedure
SSTEQ(left. right, weight, node, k, t, R) we construct a minimal spanning tree
Ts, whose edge positions are indicated by ‘1’ in the slice R and Ts satisfies
the degree constraint.

For proving the theorem we employ a group of the following claims.

Claim 1. At the first stage after performing the procedure MSTC(left,
right, cost, X, U, R) a minimal spanning tree T having k edges incident to r
is constructed, and the edge positions included in T are indicated by ‘1’ in
the resulting slice R.

In view of Construction 1 and Remark 4 it is necessary to prove that the
minimal spanning tree T includes k edges incident to r. This is checked by
induction on the number of edges incident to r.

Remark 6. Owing to Remark 3 after performing the first stage for any j,
1 <5 <k, we get cost(j) = weight(j).

Associative version of the degree-restricted problem 63

Claim 2. At the second stage, the current edge from the J-th position of
the slice Y is indicated by ‘1" in the slice W if there is at least one replacing
edge for it. The position of the replacing edge having the minimal weight is
stored in the j-th component of the array A, .

Claim 3. At the third stage the execution of each current exchange
decreases the number of edges incident to r included in the minimal Spanning
tree, :

Claim 4. At the third stage by means of the loop if SOME(v) then the
case when two edges incident to r have a common replacing edge is realized.

Now, let us evaluate the time of executing the procedure SSTEQ. Following
[5], assume that any elementary operation of the STAR-machine needs one
unit of time. Therefore we measure time complezity of an algorithm by
counting all elementary operations performed in the worst case,

_ In view of [7] and Remark 4, the procedure SSTEQ takes O(nlogn) time
since its first stage takes O(nlogn) time, the second stage requires O({n —
deg(r)) logn) time and the third stage takes O(deg(r) — ¢) time.

6. Con_clusions

In this paper, by means of the STAR-machine we have presented the associa-
tive algorithm for finding the smallest spanning tree with a degree constraint
which is based on the Gabow algorithm. To this end we have suggested new
techniques. In Appendix the algorithm is represented as the STAR pro-
cedure SSTEQ whose correctness is verified by means of Theorem. We have
obtained that the associative algorithm for finding the smallest spanning tree
- with a degree constraint takes the same time as the minimal spanning tree
algorithm which is proportional to 7 log n of the STAR-machine elementary
operations.

References

(1] K.E. Grosspietsch, Associative Processors and Memories: A Survey, IEEE,
Micro, June, 1992, 12-19.

[2] Y.L Fet, Vertical Processing Systems: A Survey, IEEE, Micro, February, 1995,
65-75.

[3] C. Fernstrom, J. Kruzela, B. Svensson, LUCAS Associative Array Processor.
Design, Programming and Application Studies, Lecture Notes in Computer
Science, 216, Berlin, Springer—VerIag, 1986.

[4] J. Potter, J. Baker, A. Bansal, S. Scott, C. Leangsuksun, C. Asthagiri, ASC -
An Associative Computing Paradigm, IEEE Computer: Special Issye on As-
soclative Processing, 11, 1994, 19-25.

64

[5]

18]

(7

A.S. Népomniaschdya .o

"B. Otrubova, O. Sykora, Orthogonal Computer andf its Application to Some
Graph Problems, Parcella’86, Berlin, Academie Verlag, 1986, 259-266.

J.L. Potter, Assoc'ia.tive Computing: A Pibgra:ﬁﬁaing Paradigm for Massively
Parallel Computers, Kent State University, Plenum Press, New York and Lon-
don, 1992. . I o

AS. Neponiniaschg.ya, Compari;on of two MST Algorithms for Associativ.e
Parallel Processors, Proc. of the 3-d Intern. Conf. “Parallel Computing Tech-

* nologies”, PaCT-95, (St. Petersburg, Russia), Lecture Notes in Computer

W
(9

[10]
(11]

1]

Science, 964, 1995, 85-93. . _)
H. Gabow, ‘A-Good Algorithmi for ‘Smallest Spanning Trees with a Degree
‘Constraint, Networks, 8, No. 3, 1978, 201-208. o :

-H.N. Gabow, R.E. Tarjan, Efficient Algoritbmé for a Family of Matroid Inter-
section Problems, J. Algorithms; 5, 1984, 80-131. : .

H.N. Gabow; Z. Galil, T. Spencer, R.E: Tarjan, Efficient Algorithms for Find-
ing-Minimum Spanning Trees in Undir_e(:téd and Directed Graphs, Combina-

torica, 6, No. 2, 1986, 109-122.

. A.S. Nepomniaschaya, L&hg:ué.ge STAR for Associative and Parallel Computa-
 tion with Vertical Data Processing, Proc. of the Intern. Conf. “Parallel Com-

puting Technologies”, Novosibirsk, USSR, 1991, 258-265.

AS. Neﬁbmﬁiaschayé, ‘fnﬁes_tigatioﬁ (__Ji"_Associative Search Algorithms iIn"Ver-
. tical Processing Systems, Proc. of the Intern. Conf. “Parallel Computing Tech-
nologies”, Obninsk, Russia, 1993, 631-641.

[13]-A.S. Nepdmnia.échayé., An Asociative Version of the Prim—Dijkstra"A.Igorith‘m

and its Application to Some Graph Problems, Andrei Ershov Second Intern.
Memorial Conf. “Perspectives of System Informatics”, Novosibirsk;, Academ-

‘ gorodok, Russia, June 25-28, 1996, 87-92.

‘Ap'p'endix

proc 'SSTEQ(-left, right, weight: table; k,‘t: integer; node: word;

/*

_ var R: slice(left)); - - :
The variable node stores the binary- code of the given vertex (r),
k is its-degree and ¢ is the degree constraint. */

var X,Y, Z,U,W: slice(left); g, h,i,5,1,m,p: integer;

" nodel,v,wl: word; A, B,C: array [1: k] of integer;
cost, costl, change: table; '

" begin _ : _ _
/* The first stage. */ C

CLR(W); SET(X); p := 0; MATCH(left, X, node, Y);

Associative version of the degree-restricted problem 65

/* In the slice Y we indicate by ‘1’ positions of edges incident to r. */
X := notY; FOREST(left, right, weight, X, U);
/* In the slice U we flag by ‘1’ positions of edges included in the
minimal spanning forest of G — r. */
MAX(weight,Y, Z); j := FND(Z); wl := weight(7);
/* The maximal weight of edges incident to r is stored in wl. */
ADDC(weight, U, w1, cost);
/* For any i-th edge included in the minimal spanning: forest we have
cost(i) = weight (i) + wl. */
if size(cost) > size(weight) then with(W, weight);
/* We attach the slice W left of the matrix weight if necessary. */
MERGE(weight, Y, cost);

/* In the rows of the matrix cost which correspond to positions
of edges incident to r we write the corresponding rows from
the matrix weight. */ '

X :=Y or U; MSTC(left, right, cost, X, U, R);

/* We have constructed the smallest spanning tree whose edge positions
are indicated by ‘1’ in R using the set of edges incident to r and the
set of edges included in the minimal spanning forest of G — r. * /

Z = X and (not R); '

/* In the slice Z we indicate by ‘1’ positions of those edges from the

minimal spanning forest which do not belong to R. */

/* The second stage. As a result of the first stage we use the matrix
cost and the slices R,Y and Z. */
while SOME(Y) do
begin j := STEP(Y); EXCHANGE(left, right, j, Z, R, U);

/* In the slice U we indicate by ‘1’ positions of the replacing edges
for the edge € = (r, s) from the j-th position. */

if SOME(U) then
begin W(j) := ‘1’; MIN(cost, U, X);
i := STEP(X); A[j] := i; cost(j) := cost(i);

/* Position j of the current edge (r, s) is indicated by 'l’ in the slice W
if there are replacing edges for it. Then in the J-th component of
the array A we store the position of the replacing edge having
the minimal weight. */

p:=p+1; B(j] := p; Clp] := j; col(p, change) := U;

/* In the p-th column of the matrix change we indicate by ‘1’ positions
of all replacing edges for the current edge (r,s). */

end;
end;

66 A.S. Nepomniaschaya

/* The third stage. As a result of the second stage we utilize the slice
W, the arrays A, B,C' and the matrices change and cost. */
for j:=k -1 downto t do
begin SUBTV(cost, weight, W, cost1);
/* In any matrix costl row corresponding to the position ‘1’ in W
there is an augment. */
MIN(costl, W, X); m; -_FND(X)
/* We have located the position m of the current exchange. */
W(m) :=0"; i := A[m]; R(?) :=‘1’; R(m) :='0";
/* The edge (say €) from the m-th position is replaced with the edge
(say f) from the i-th position. */
p:= B[m];
/* We have defined the number of the matrix change column p in which
there are pesitions of all the replacing edges for the edge e. */
Y:=col(p, change): Y (i) := ‘0’; col(p, change) := Y,
/* From the p-th column of the matrix change we delete the occurrence
of the edge f. */
v := change(t); if SOME(v) then
begin
/* It is a case when another edge incident to r has the replacing
edge f. */ - -
[:= STEP(v): h := C[l]; X := col(l, change); X := X or Y
col(l, change) := X;
/* We merge the p-th and the [-th columns of the matrix change. */
MIN(cost, X, Z); g := FND(Z); A[h] := g;
/* For the edge from the position h we have deﬁned the position ¢ of
its new replacing edge. */
cost(h) := cost(g)
end;
CLR(Y'); col(p, change) :== Y
/* We set all the components of the p-th column to ‘0. */
end:
end

