Bull. Nov. Comp. Center, Comp. Science, 1(1993)
(© 1993 NCC Publisher

High level language STAR for associative
parallel processors and its application to
relational algebra

A.Sh. Nepomniaschaya

This paper describes implementation algorithms of relational algebra operations in asso-
ciative parallel processors like Staran using the language STAR. For these operations we
construct procedures which form a hierarchy.

1. I_ntroduction

Fine-grain SIMD-architectures with bit-serial (vertical) processing and sim-
plest processor elements (PEs) have been the subject of the intensive re-
search in the recent years. Such machines allow to receive super perfor-
mance due to simultaneous run of a large number of PEs [16]. We can
cite Staran, Aspro, Lucas, MPP, DAP and CM which belong to the fine-
- grain SIMD-architecture. Most high level languages for such machines are
- directed towards a specific machine and take into account its architecture.
The following high level languages were proposed: the language ASP for
machines Staran, CM and ‘Aspro [15), Parallel Pascal for MPP [17], DAP
Fortran for DAP [8], Pascal/L for Lucas [4], *Lisp an extention of Common
Lisp for CM [7].

In this paper we will consider associative parallel processors (APPs) like
Staran (1] which can access data by contents and perform search operations
in parallel. For such processors the assembly Iangu_age Apple was proposed
in [10]. To write different algorithms oriented to the mentioned processors,
the language APL and some special meta-languages were considered in -
[3.6,11,14]. ' -

Recently some specialized parallel processors have been developed to
accelerate the realization of certain non-numeric procedures including rela-
tional algebra operations [5,12,14]. Therefore it would be useful to have a
high level language allowing to model the run of such processors, to define.
their acceleration and write down algorithms for associative architectures.

24 A.Sh.Nepomniaschaya

" To this end high level language STAR was proposed in [13]. This language
allows to model the complete process of associative processing. That is why
it may be used both for the run simulation of new associative architectures
and for the writing of algorithms oriented to APPs like Staran.

The main target of this paper is to write down the internal algorithms
for relational algebra operations and to define their complexity using the -
language STAR. Relational algebra operations were selected due to the fol-
lowing reasons: (1) the hardware of APP is well suited for such operations
[2,4]); (2) some algorithms of this paper can be used to compare them with
similar algorithms written for specialized processors.

Note that representation of relational algebra operations on Lucas was
considered in [4]. These operations have been implemented by micropro-
grams. Using the language STAR we can write down the corresponding
algorithms for such microprograms in an evident form and investigate them.

2. Model of the associative parallel machine

We consider the associative machine Staran as the base architecture. To
describe our model we will use an abstract STAR-machine of SIMD-type
with vertical data processing. It consists of the following components:

(1) a sequential common control unit (CU) where the programs and
scalar constants are stored; '

(2) k associative processors (k < 32), each consisting from m single-digit
processor elemets (m = 256);

(3) k matrix memory modules where the i-th module is connected with
the i-th processor (1 < i < k).

Each memory module consists of r blocks (r < 16) and each block
consists of m words by m bits. In any block the rows are numbered from
top to bottom and the columns from left to right. A row (word) or a
column (slice) may be accessed equally easy. The data are viewed as a
twordimentional array written in binary code. Each array element occupies
an individual row and all elements have the same length. The data array is
divided into parts each of m rows. They are loaded into the module blocks
so that each part is stored in a block and different parts are stored in
different modules. In the CU a rendition table should be located allowing
to associate with each array identifier the number of columns and parts in
the partitioning. '

Each associative processor can be represented as h vertical registers each
of m bits. The bit columns of the data array are stored in the registers
which perform the necessary Boolean operations, record search results and

Language STAR and its application to relational algebra 25

ensure the word selection capability. The STAR-machine processor has a
sufficient number of vertical registers (h 2 3) to store intermediate results
of data processing without using the module memory.

In this paper we consider the STAR-machine with one associative pro-
cessor (k = 1). In this case all parts of the data array are loaded into
module. The CU decodes program instructions and causes the processor
to execute them. The processor performs vertical data processing for each
block in turn. '

3. Review of the language STAR

We will consider only those STAR constructions [13] which are necessary for
the description of relational algebra operations. To simulate data process-
ing in a module block the following data types are used: integer, boolean,
word, slice, table and array. Data type will be introduced as in Pascal.
Constants for the types slice and word are represented as an ordered se-
quence of symbols ’zero’ and ’one’ enclosed within single quotation marks
(apostrophes). Note that the types slice and word are introduced for bit
column access and bit row access respectively. '

Let M be a variable of the type array. Then M is a structure of a fixed
number of components, which-all are of the same type integer. Let T be
a variable of the type table. Then T is associated with the matrix T of k
columns where k < 256. '

By analogy with [4] for each matrix T there is a unique bit-slice (called
workfield) TWF indicating by ‘1’ those rows which belong to T.

3.1. Operations, predicates and functions for slices

Any variable of the type slice consists of 256 components which belong to
{0,1}.

Let Y be a variable of the type slice, i be a variable of the type inte-
ger. Consider that ONE-component and ZERO-component of Y denote a
component of ¥ with the value ‘1’ and ‘0, respectively. ’

Define the following operations:

CLR(Y) sets all components of Y to ZERO;

SET(Y) sets all components of Y to ONE;

Y (i) selects the #-th component of Y;

NUMB(Y) yields the number i of all ONE-components of Y,i>0;

FND(Y) yields the ordinal.number i of the first ONE-component of
Y,i> 0

26 A.Sh.Nepomniaschaya

STEP(Y) yields the same result as the operation FND(Y) and then
resets the first ONE-component of Y. If the slice Y has no ONE-components
it does not change.

‘Let X and Y be variables of the type slice. The following logical
operations are executed simultaneously by all corresponding components
of X and Y and are introduced in the obvious way:

X AY is conjuction, X VY is disjunction, =X is negation. Other logical
operations are constructed from these ones by means of superposition.

Let us agree that X ® Y denotes exclusive "OR’.

There are the following three predicates for slices:

ONE(Y) yields true if and only if the slice Y consists completely of
ONE-components;

ZERO(Y) yields true if and only if the slice Y consists completely of
ZERO-components;

SOME(Y) yields true if and only if the slice Y has at least one compo-
nent with value ‘1’ ,

We will use the following function Shift(Y,k) in which k is a variable
of the type integer. This function moves the contents of Y placing the
component from position N to position N + k(N > 1) and setting ZERO-
components from the first through the k-th positions, inclusive. k = 0
then the contents of Y does not change. '

3.2. Operations and standard functions for words and ma-
trices

Let w be a variable of the type word, i be a variable of the type integer.
We will use the following two operations:

#w yields the length of w (#w < 256); :

w(¢) yields the i-th component of w.

Let T be a variable of the type table, and i, j, k be variables of the type
integer. We will use the following matrix operations :

T(3) yields the ith row in the matrix T;

Col(4,T) yields the j-th column in the matrix T;

T(k] yields the k-th part of the matrix T(1 < k < 16). This operation
is used in the case when the matrix T has more than 256 rows.

The function Size(T) yields the number of columns in T.

The function Row(T) yields the cardinality (number of rows) of T.

Remark. It should be noted tha.t sta.tements of STAR resemble those
of Pascal [9)].

Language STAR and its application to relational algebra 27

4. Algorithms for relational algebra operations

A relational database is defined as in [18]. Let D; be a domain, i =
1,2,...,k. The relation R is considered as a subset of the Cartesian product
Dy x Dy x...x Di. An element of R is called tuple and has the form
v = (v1,vs,...,v;), where v; € D;. Let A; be a name of the domain D;
which is called the attribute. Let R(A;, Ay, ..., At) denote a scheme of the
relation R. - _

Any relation is represented as a matrix (table) in the memory module
and each its tuple is allocated to one memory word. Therefore the values of
attributes occupy the vertical fields in the matrix. Note that any relation
consists of different tuples. If the relation R consists of several parts, then
each part of R has its own workfield bit-slice RWF in the module.

Relational algebra operations can be divided into two groups:

(1) operations for which the result relation is a subset of one of the
argument relations;

(2) operations which assemble a new relation which should ‘be located
in' a new area of the memory module.

We introduce the following two notations being used for algorithm anal-
ysis. Let A be an algorithm applied to the matrix 7. Denote by N(A) the-
access number to the parallel memory during the execution of A and by
k the row length of matrix T Following [9], we assume that definition of
existence of responder in the parallel memory needs no additional time.

We define two auxiliary functions to be used later. Let drow(T) be a
function which counts the number of different rows in 7. For a variable
X of the type slice let pos(X) be a function which yields an array (vector)
consisting of position numbers of ONE-components of X.

4.1. Relational algebra operations having bit-slice as a result

In this section we will consider the following relational algebra operations
belonging to the first group: Intersection, Difference, Selection, Semi-join,
Projection and Division. The resulting relation of any operation from this
group is a subset of one of its argument relations. Therefore we will use a
bit-slice to indicate the resulting relation tuples. 7
Notice that the basic function used by implementing the procedures of
this group is search. That is why, we consider first of all the procedure
MATCH which tests a word v for the membership in the relation D.

proc MATCH(D:table; DWF: slice; v: word; var M: slice);
label 1; var i,k: integer; X: slice;
begin k:= size(D); M:=DWTF;

28 A.Sh.Nepomniaschaya

for i:=1 to k do
begin X:= col(i, D); if v(:) =' 1’ then M := M A X
else M := M A-X; if ZERO(M) then goto 1
end;
l:iend

A detailed explanation may be appropriate here. Note that the relation
D and its bit-slice DWF are loaded in parallel memory. Since the vertical
processing is executed in the associative processor it is necessary to have
at least two variables of the type slice. The variable X is used to store
the current column of D which is operated on and the variible‘ M is used
as the resulting bit-slice. At the start M has the same contents as DWF
since the seach will be executed among those rows of D which correspond
to the positions with ‘1’ in the slice DWF. Let us call such rows of D
selected rows. At any j-th step of the algorithm (1 < j < #v) the positions
of those selected rows (tuples) of D will be marked by ‘1’ in the slice M
which have the first j symbols of v as their initial part. This algorithm
terminates earlier if there exists such a step A < k in which the slice M
has only ZERO-components. _

Thus the procedure MATCH yields the slice M in which M(i) =' I
if and only if D(¢)=v. For this procedure we obtain 3 < N(MATCH) <
2k + 1, where the lower bound is reached when the relation D has no tuples
(rows) beginning with the symbol v(1).

The operation Intersection has two argumeunt relations. The resulting
relation consists of those tuples which belong to both argument relations.
Consider this operation.

proc INTERS (T, R:table; TWF ,RWF:slice; var Z: sl:ce),
var i:integer; wiword; X,Y: slice;
begin CLR(Z); X:=TWF;
while SOME(X) do
begin i:=STEP(X); w := T(¢); MATCH (R, RWF w,Y);
if SOME(Y) then Z(a) =1

end;

end

Let us explain the procedure INTERS. At the start the resulting slice
Z consists of ZERO-components and the slice X has the same contents as
TWF. For each i € pos(X) we mark the tuple position T'(i) belonging to
R by means of ONE-component in the slice Z.

For this procedure we have N(INTERS) < 2+2-(k+2)-row(T), where
size(T)=size(R)=Fk. The upper bound will be smaller if row(T)<row(R).

Languaje STAR and its application to relational algebra 29

Consider the operation Difference of relations T and R. The resulting
relation consists of those tuples of T which do not belong to R.

The procedure header has the following form:

proc DIFFER (T, R:table; TWF,RWF:slice; var Z:slice);

Its body is obtained from the INTERS body by means of replacing the
predicate SOME(Y) by ZERO(Y).

Let T' be a relation having two attributes T1,T2 and R be a relation
having one attribute. Let 72 and R be drawn from the same domain.

Consider the operation Semi-join of relations T(T1,T2) and R. Its
resulting relation consists of those tuples T'(i) for which there exists such
J that T2(i) = R(j). In the slice Z we mark positions of the result tuples.

The procedure header has the following form:

proc SJOIN(T(T1,T2), R:table; TWF ,RWF:slice; var Z:slice);

Its body is obtained from the INTERS body by means of replacing the
statement w:= T'(i) by w:=T2(i).

Consider the operation Selection which tests a word w for the occurrence
in the matrix T as its Tow substring.

proc SELECT(T table; TWF: shce, j: mteger w:word; var Z: slzce),
label 1; var i,k, m, n:integer; X :slice;
begin k := #w; n:=k+j—1; m:= 0; Z;:=TWF;
fori:=jtondo
begin m :=m 4+ 1; X: -col(z T); if w(m) ='
then Z :=ZANX else Z:=ZA-X;
if ZERO(Z) then goto 1 - o :

end; ‘

l:end

Note that this procedure generalizes the procedure MATCH which is
obtained when j = 1 and' #w=size(T).

Consider the operation Projection2 of the relation T havmg two at-
tributes Tl a.nd T2. Note that i in general case T'1 or T2 is not a relation.

proc PROJECT2(T(T1,T2): table; TWEF: slice; var Z: slice);
var i:integer; X,Y: slice; w: word; ‘
begin X:=TWF; CLR(Z);
while SOME(X) do
begin i:=FND(X); w :=T2(i); Z(z) =’ 1’
MATCH(T2,TWF,w,Y); X :=X @Y

* Delete the tuples T'(4) mcludmg the occurrence of w+

end,
end

30 A.Sh.Nepomniaschaya

The procedure PROJECT?2 selects the occurrence of the component
T2(s) in the current tuple T'(¢) of the relation T'. In the slice Z we mark
the position of this tuple. From the further consideration we except all
tuples of T, which include the occurrence of the component 7°2().

For this procedure we have

N(PROJECT?2) < 2+ (5 + 2siz¢(T2)) - drow(T2).

Before we consider the Division operation recall its definition. Let T
be a dividend having two attributes T1,72 and R be a divisor. Assume
that values of T2 and R are drawn from the same domain. Then

T+R={ueTl/Nlve RuveT}.

Note that the implementation of the Division operation is complicated
enough [18]. However for the considered model we can write the following
clear algorithm. '

proc DIV(T(T'1,T2), R: table; TWF RWF: slice; var B: slice);
var X,Y,Q,M: slice; k: integer; w: word;
begin X:=RWF,; Y:=TWF;
while SOME(X) do (_ _
begin k:=STEP(X); w := R(k); MATCH(T2,Y,w,Q);
INTERS(T1,T1,Q,Y,M); Y := M
end;
- B:=M
end

To explain the procedure DIV, assume that R = {v;,vs,...,v}. This
procedure constructs the following sequence of embedded sets.

E, = {Cl €T1l/av, € T}
E;={B € E1/fv € T}

Ey={6 € Ex—1/bvr € T}

It can be easily seen that Ex = T + R by construction.

Language STAR and its application to relational algebra 31

4.2. Relational algebra operations having a relation as the
result

In this section, we consider the operations Union, Product and Join from
the second group. The resulting relation of any operation from this group is
assembled from the argument relations. We will assume that the resulting
relation has no more than 256 rows. _

Firstly we consider a group of auxiliary procedures which will be used
later. Some procedures will be considered in detail, but the other ones
only informally explained. Note that we borrow some auxiliary procedure
names from [12]. : .

Consider the procedure PUSH which shifts the contents of the matrix
D on r positions down.

proc PUSH(D:table; r:integer; var: H:table);
var i, k:integer; X,Y :slice;
begin k:=size(D); for i:= 1 to k do
begin X :=col(i, H); Y :=col(i, D); Y:=shift(Y,r);
col(i, H):== X VY
end;
end

Let us explain the procedure PUSH. It performs disjunction between
the i-t_h‘cdlumn of H and the i-th column of D after its shift on r positions.
The resulting matrix H is obtained by means of a cycle on the variable 1.

Consider the procedure TCOPY which constructs k copies of the matrix
D.

proc TCOPY (D:table; DWF:slice; k:integer; var H :table);
var h, i, j,r,pinteger; B, X,Y :slice;
begin p:=size(D); r:=row(D);
for j:=1topdo
begin CLR(B); X:=col(j, D); B:= BV X;
for i:=1 to k-1 do
begin h:=r- i;Y:=shift(X,h); B:= BVY

end; . ‘
«k copies of the j-th column of D are created in the slice Dx
col(j,H):=B
end,
end

Let us explain this procedure. It constructs k copies for each j-th
column of D. The resulting matrix H is obtained with the help of the
external cycle on j. :

32 A.Sh.Nepomniaschaya

Now we consider the following simple procedures:

proc CLEAR (var D: table);

proc COMPACT (D: table; Y: slice: var H: table);

proc WCOPY (w: word; k, j: integer; var D: table);

The procedure CLEAR sets ZERO-components in each column of D.

The procedure COMPACT constructs the matrix H consisting of those
rows D(i) of D, for which the i-th component of the slice ¥ is '1’, i.e.,
Y()="1.

The procedure WCOPY writes k copies of the word w beginning with
the j-th through the (5 4+ k — 1)-th rows of the matrix D.

. Consider the operation Union. Note that its argument relations have

the equal number of attributes.

proc UNION (T, R:table; TWF ,RWF :slice; var P:table; Z:slice);
var X,Y: slice; i,j: integer; w: word;
begin Z:=TWF; X:=RWF; CLEAR(P); PUSH(T, 0, P);
* Relation T is copied into the matrix Px
while SOME(X) do
begin i:=STEP(X); w := R(i); MATCH(T,TWF,w,Y);
* The occurrence of R(#) in T is marked in the slice Y*
if ZERO(Y) then
* The case when R(7) does not enter the relation T'
begin Y := -Z; j:=FND(Y); P(j) := R(3); Z(j) :=' 1’
end;
end,
end

Let us explain the procedure UNION. The resulting relation P is as-
sembled from the first relation T and those tuples of the second relation R
which do not exist in the first one. :

The operation PRODUCT has two argument relations. Its result rela-
tion is obtained as the concatenation of all combinations of its argument
relations. Consider this aperation.

proc PRODUCT (T, R:table; TWF ,RWF :slice; var P(P1, P2):table);
var i,p, T, s:integer; X,Y :slice; G:table;
begin X:=TWF; Y:=RWF; p := 0;:=NUMB(X); s:=NUMB(Y);
while SOME(X) do _ _
begin i==STEP(X);p := p+ 1; WCOPY(T(i),s,1+ (p—1)- s, P1)
end;
*s copies of any tuple of T are created in Plx
COMPACT(R,Y,G); TCOPY(G,r;P2);

Language STAR and its application to relational algebra 33

*r copies 'of the matrix G are created in P2+
end

Explain the procedure PRODUCT. Let r be a cardinality of T, s be a
cardinality of R and G be a matrix obtained by compaction of R. The
procedure PRODUCT constructs s copies of any tuple of T in P1 and r
copies of the matrix G in P2. Note that the resulting relation P consists
of r - s tuples. , :

Let us recall the definition of the operation Join. Assume that the first
argument relation A has the attributes A1, A2 and the second one B has
the attributes B1,B2. Let A2 and B2 be drawn from the same domain.
The operation Join concatenates those tuples from its argument relations
for which the corresponding values of A2 and B2 are equal. Now consider
the operation Join.

proc JOIN (A(Al, A2), B(B1, B2):table; AWF,BWF:slice :
var C(C1,C2):table);
var p, m,n,t:integer; w:word; M, N, Q:slice; E1, E2:table;
begin M:=AWF; t := 0; CLEAR(C1); CLEAR(C?2);
while SOME(M) do |
‘begin p:=FND(M); w := A2(p); MATCH(A2,AWF,w,N); M := M @ N;
* All occurrences of w are deleted from Mx
MATCH(B2,BWF,w,Q); if SOME(Q) then
begin PRODUCT(A1, B1, N,Q, E1, E2); PUSH(EL, t, C1);
PUSH(E2,t,C2); m:=NUMB(N); :
n:=NUMB(Q)it:=t+m-n
end;
end;
end

Let w be a tuple value belonging both to the domain of A2 and to
the domain of B2. The occurrence positions of w are stored both in the
slice N for the attribute A2 and in the slice Q for the attribute B2. Then
the selected tuples from the relations A and B are concatenated by the
Product operation. The obtained matrices E1 and E2 are stored into the
result matrix (relation) C' using the auxiliary procedure PUSH.

5. Conclusion

We have considered the abstract associative STAR-machine with one paral-
lel memory module. Its run is described by means of the high level language
STAR having statements which are resembling to the Pascal ones. However,

34 A Sh Nepomniaschaya

the STAR statements are applied to data structures oriented to descrip-
tion of the associative parallel machine with vertical procéssing. Therefore
STAR allows to model the run of such architecture, to write down the
algorithms which it executes, and to simulate the run of new associative
architectures. :

The main target of the paper is to write down in an evident form the in-
ternal algorithms of the relational algebra operations. For some operations
we estimate the complexity of corresponding algorithms. These estimates
can be used in the further research to define the acceleration of specialized
processors which intended for execution of the same relational operations.

The constructed procedures form a hierarchy. To consider it we will
use the following well-known definition.

Let P be a procedure. We say that P belongs to the O-th level of the
hierarchy if it does not use other procedures. The procedure P belongs to
the ¢-th level (i > 1) if all procedures used by P have a level which does not
exceed i-1 and there exists at least one procedure belonging to the (i-1)-th
level.

According to this definition we obtain the followmg classification of '
procedures.

The O-th level consists of all auxiliary procedures and the procedure
for the Selection operation.

The first level consists of the procedures for the following operations:
Intersection, Difference, Semi-join, Product, Projection and Union.

The second level consists of the procedures for the operations Division
and Join.

So, the simplest relational algebra operation is Selection and the most
complicated operations are Division and Join,

Acknowledgements. I would like to thank professor Ya.l. Fet for discussion
the paper and editorial help. '

References

[1] K.E. Batcher, STARAN parallel processor system hardware, Proc. of AFIPS Conf.,
Vol.43, 1974.

[2] B.P. Berra, E. Oliver, The role of associative array processors in data base machine
architecture, IEEE Computer, Vol.12, No.3, 1979.

[3] A.D. Falkoff, Algorithms for parallel-search memories, J. of the ACM Vol.9, No.10,
1962.

[4] C. Fernstrom, J. Kruzela, B. Svensson, LUCAS associative a.rray processor. Design,
programming and application studies, Lect.ure Notes in Computer Science, Springer-
Verlag, Berlin, Vol.216, 1986.

(5]
(€]

(7]
(8]

(9]
[10]

[11]

(12]

13]

f14]
[15]
[16]
[17)

(18]

‘Language STAR and its application to relational algebra 35

Ya.l. Fet, Parallel Processors in Control Systems, Energoizdat, Moscow, 1981 (in
Russian). :

C.C. Foster, Content Addressable Parallel Processors, Van Nostr#nd Reinhold Com-
pany, New York, 1976.
W.D. Hillis, The Connection Machine, MIT Press, Cambridge, Mass., 1985.

R.W. Ho&lmey, C.R. Jesshope, Parallel Computers: Architecture, Programm'mﬁ and
Algorithms. Adam Hilger Ltd, Bristol, 1981.

K. Jensen, N. Wirth, PASCAL User Manual and Report, Springer-Verlag, Berlin,
1978. ’

R.G. Lange, High level language for associative and parallel computation with
Staran, Proc. of Intl. Conf. on Parallel Processing, 1976. :

J. Miklosko, R. Klette, M. Vajtersic, J. Vrto, Fast algorithms and their implemen-
tation on specialized parallel computers, Special Topics in Supercomputing, North-
Holand, Vol.5, 1989.

M.R. Muraszkiewicz, Cellular array architecture for relational database implemen-
tation, Future Generations Computer Systems, Vol.4, No.1, 1988.

A.Sh. Nepomniaschaya, Language STAR for associative and parallel computation
with vertical data processing, Proc. of the Intern, Conf. "Parallel Computing Tech-
nologies”, Novosibirsk, 1991 (in Russian).

E. Ozkarahan, Database Machines and Database Management, Prentice- Hall, Inc.
1986. ’

J.L. Potter, An associative model of computation, 2 — nd Int. Conf. Super-
Computing, San Francisco, CA, May, 4-7, 1987.

J.L. Potter, W.C. Meilander, Array processor supercomputers, Proceedings of the
IEEE, Vol.77, No.12, 1989,

A.P. Reeves, Parallel Pascal and massively parallel processor, The Massively Parallel
Processor, J.L.Potter, Ed. Cambridge, M A: MIT Press, 1985.

J.D. Ullman, Principles of Database Systems, Computer Science Press, 1980.

