Bull. Nov. Comp. Center, Comp. Science, 3 (1995), 77-88
@© 1995 NCC Publisher

Effective representation of algorithm
for finding a minimal spanning tree
of a graph in associative parallel
processor

A.Sh. Nepomniaschaya

In this paper we analyze two procedures for finding a minimal spanning tree
of a graph for an abstract associative STAR-machine with bit-serial processing.
These procedures are based on the Prim-Dijkstra algorithm and use different graph
representations. We prove their correctness, evaluate their complexity and compare
them. In addition, we compare two procedures for the same graph representation.

Key words: Associative pa.fallel processor, bit-serial processing, parallel
algorithm, complexity of algorithms, undirected weighted graph, minimal
spanning tree of a graph. B

1. Introduction

The revived interest in associative (content-addressable) architectures is
caused by declining hardware prices due to modern technology achievements
[1]. We will analyze algorithms for STARAN-like associative parallel proces-
sors (APPs) belonging to fine-grain SIMD-systems with bit-serial (vertical)
processing and simple single-bit processor elements. For such computers al-
gorithms are represented by means of languages ASC [2], Apple [3] or some
special tools (for example, [4-5]). To simulate the complete parallel asso-
ciative processing in micro-level, carry out massive associative searching of
tabular data written in binary code and research new vertical processing
algorithms a high-level language STAR was proposed in [6).

In this paper an approach for analyzing algorithms of associative pro-
cessing is considered. Its novelty lies in the fact that for a group of parallel
architectures a formal semantic model (the STAR-machine) is defined which
is used both for programmed modeling and for theoretical analysis of algo-
rithms. Here we use our approach for comparing some versions of realizing
the Prim-Dijkstra algorithm [7, 8] for finding a minimal spanning tree of a
graph. For deciding this problem on sequential computers there are differ-
ent well-known algorithms, however for APPs the Prim-Dijkstra algorithm
is best suited [2, 9]. Algorithm versions are written as STAR procedures.

78 A.Sh. Nepomniaschaya

We prove their correctness and evaluate their complexity in terms of access
number to the matrix memory [4] of the model employed.

For a graph representation as a set of triples (edge nodes and their
weight) we compare the procedure M ST1 using the Prim-Dijkstra algorithm
with the procedure M. ST P using its modification (the Baase algorithm) [10].
The improved estimate for the procedure MST1 has been obtained due to
account of special features of associative parallel processors with vertical
processing. The STAR-procedure MSTP . is based on the program MST
‘written in the language ASC [2].

- For improving the procedure M ST1 estimate we consider the procedure
MST?2 which uses a special representation of graph edges as vertical pairs.

In parallel with proving the correctness of considered procedures we have
verified them using our STAR-convertor on IBM PC.

This research may be useful for designing both a knowledge base for
vertical processing system and specialized associative processors for finding
minimal spanning trees of graphs. '

2. Model of associative parallel machine

We define our model as an abstract STAR-machine of the SIMD-type with
vertical data processing. It consists of the following components:

e a sequential common control unit (CU) where the programs and scalar
constants are stored;

e associative processor consisting of m single-digit processor elements
(PEs);

e matrix memory for the associative processor.

Data are loaded in the matrix memory in the form of two-dimensional
array written in binary code. Each array element occupies an individual
row and all elements have the same length (coinciding with the length of
the maximal element). The rows are numbered from top to bottom and
the columns from left to right. A row (word) or a column (slice) may be
accessed equally easy. Some arrays may be loaded in the matrix memory.
In the CU a rendition table should be located allowing one to associate with
each array identifier its number of columns.

The associative processor is represented as h vertical registers each of m
bits. The bit columns of the data array are stored in the registers which
perform the necessary Boolean operations, record the search results and
ensure the word selection capability. We assume that the STAR-machine
processor has a sufficient number of vertical registers to store intermediate
results of data processing without using the matrix memory.

. Representation of the MST algorithm in associative processors 79

3. Review of the language STAR

In this section we briefly consider STAR constructions from [6] needed for
the paper. To simulate data processing in the matrix memory the following
data types are used: integer, boolean, word, slice, table and array.
Data types are introduced in the same manner as in Pascal. Constants for
the types slice and word are represented as a sequence of symbols from
{0,1} enclosed within single apostrophes. We use the types slice and word
for bit column access and bit row access, respectively and the type table
for defining the tabular data. Assume that any variable of the type slice
consists of m components which belong to {0,1}.

Consider operations, predicates and some functions for slices.

Let X, Y be variables of the type slice and i, k be variables of the type
integer. Consider that ONE-component and ZERO-component of a slice
denotes its component with the value ‘1’ and '0’, respectively. Define the
following operations:

SET(Y') sets all components of Y to 'l’;
CLR(Y) sets all components of Y to '0/;
Y (3) selects the i-th component of Y;;

FND(Y) yields the ordinal number i of the first ONE-component of Y,
12> 0;

MASK1(Y ,k) sets the alternation in Y consisting of k zeros and k ones,
where k = 2°, i > 0. (For example, MASK1(Y,1) denotes the alterna-
tion of the form 01).

The following logical operations are executed snmulta.neousiy by all cor-
responding components of X and Y. We introduce them in the usual way:
X AY is conjunction, X VY is disjunction, ~X is negation. Other logical
operations are constructed from these operations by means of superposntxon
The following two predicates will be utilized:

ZERO(Y) yields true if and only if the slice Y consists of ZERO-com-
ponents; '

SOME(Y) yields true if and only if the slice Y has at least one component
with value 1.

We will use the following two standard functions:

Shift(Y,down,k) moves the contents of Y on k positions down, placing
each component from the position N to the position N +k (N > 1) and set-
ting ZERO-components from the first through the k-th positions, inclusive;

Shift(Y,up,k) moves the contents of Y on k positions up, placing each
component from the position N (N > k + 1) to the position N — k and
setting ZERO-components to the last k components of Y.

80 _ A.Sh. Neﬁomniaschaya

Let T be a variable of the type table. We will use the following operation:
T'(3) yields the i-th row in the matrix T (1 < i < m).

Remark 1. Note that STAR statements resemble those of Pascal.

Remark 2. When we define a variable of the type slice we put in brackets
the name of the matrix which uses it. Therefore, if the matrix consists of n
rows, where n < m, then only first n components of the corresponding slice
(column) will be used in the vertical processing.

4. Problem of finding a minimal spanning tree of
a graph

In many applications a problem of finding a minimal spanning tree for undi-
rected weighted graphs often appears. For solving it on sequential computers
algorithms of Prim-Dijkstra, Kruskal, Tarjan-Cheriton and others are used.
Following (2, 9], for APPs we use the Prim-Dijkstra algorithm. To consider
it some notions are necessary.

Let G=(V, E,w) represent an undirected weighted graph with the node
(vertex) set V = {1,2,...,n}, the edge set E C V x V and the weight
function w correlating each edge (i, j) € E with an integer w(3, 5).

A minimal spanning tree Ts of the graph G = (V, E, w) is defined as a
connected graph without loops containing all nodes from V where the sum
of weights of the corresponding edges is minimal.

In this paper we examine only undirected weighted graphs having the
node set V = {1,2,...,n}. Therefore, let us agree to omit these notions
later on.

The Prim-Dijkstra algorithm constructs a minimal spanning tree of a
graph by means of extension of a subtree of Ts. As initial edge of Ts an
arbitrary edge of the graph with minimal weight is selected. Let there be
k edges in Ts, where k > 1. Then the (k + 1)-th edge is selected in the
following way. It is necessary to define all edges having only one node which
belongs to Ts and among them to select an edge with the minimal weight.
The extension process of Ts is finished as soon as the number of edges is
equal ton — 1.

To analyze different variants of representing the Prim-Dijkstra algorithm
in associative parallel processors we use the procedures MATCH and MIN
from [11]. The procedure MATCH(T, X, w, Z) defines the row positions in
T coinciding with the given w. Its result is the slice Z in which Z(i) =' 1, if
T'(i)=w. The procedure MIN(T, X, Z) defines the row positions in T', where
the minimal element is located. It yields the slice Z in which Z(i) =’ 1’ if
T (i) is the minimal matrix element. Recall that these procedures realize the

Representation of the MST algorithm in associative processors 81

search only among the matrix rows which correspond to positions ‘1’ in the
slice X.

For algorithm analysis we will use the fol[owmg notation. For a given
algorithm P denote by N (P) the access number to the STAR-machine matrix
memory during its execution. Following [4], we assume that definition of the
response existence among PEs does not use additional time.

5. Representation of the Prim-Dijkstra
algorithm

In this Section we investigate two versions of the Prim-Dijkstra algorithm
depending on graph representation forms. We construct the corresponding
procedures and evaluate their complexity.

5.1. The use of representing edges as horizontal pairs

Here we represent a graph G=(V, E,w) in the form of association of the
matrices left, right and weight in which each edge (i, j) € E is matched with
the triple < i, j, w(i,j) >, where i € left, j € right, w(i, j) € weight.

Before considering the procedure MST1 let us informally explain the
meaning of its variables: nodel and node2 of the type word and S,N1
and N2 of the type slice. The variables nodel and node2 are used for
storing the left and the right nodes of the current edge which is added to
the fragment of T's. The variable S points by ‘1’ the triple positions where
the search is realized by means of the procedure MATCH. The variables N1
and N2 are used for accumulation of triple positions which are potential
candidates for adding to the fragment of Ts. Other variables are used for
storing intermediate results.

Now consider the procedure MST1.

proc MSTl(le ft,right, weight: table; n: integer; var R: slice(le ft)),

label 1; var i,r: integer; nodel, node2: word;

S, N1, N2 X,Y, Z: slice(left);

begin CLR(R); CLR(NI); CLR(N2); SET(Z); SET(S); r:=0;

while r <n-1do
begin MIN(weight,Z,X); i:=FND(X);
R(i):="1"; r:=r 4+ 1; if r = n — 1 then goto 1;
_ nodel:=left(i); node2:=right(i); S(i) :='0';

/* The i-th edge position is deleted from S */
MATCH(left, S, nodel, Z); N1:= N1V Z;
MATCH(left, S, node2, Z); N1:= N1V Z;
MATCH(right, S, nodel, Z); N2:= N2V Z;
MATCH(right, S, node2, Z); N2:= N2V Z;

82 A.Sh. Nepomniasc_:haya

/* Positions of potential candidates are accumulated in N1 and N2 * /
Y := N1AN2; if SOME(Y) then S := SA-Y;
/* We delete from S positions of edges which do not
belong to Ts but both their nodes are in Ts */
Z:=N1VN2,Z:=ZAS
end; :
1: end

To prove the correctness of this procedure we will utilize the following
Lemma which is verified by contradiction.

Lemma 1. Let a graph G be represented as a matriz Mg being an asso-
ciation of matrices left, right and weight. Let by means of the procedure
MST1(left, right, weight, n, R) a minimal spanning tree be constructed
where q is the last added node. Let a graph G' be obtained from the graph G
by deleting the node q together with all edges incident to it and respectively
Mg be obtained from Mg by deleting all triples containing q. Then MST1
constructs for Mg and Mg ‘minimal spanning trees having the same first
n — 2 edges. '

Theorem 1. Let a graph G be represented as an association of matrices
left, right and weight. Then the procedure MST1(left, right, weight, n,
R) constructs a minimal spanning tree whose edges are indicated by positions
of '1" in the slice R.

Proof. We will prove the theorem by induction on the number of edges in
the minimal spanning tree T of the graph G.

Basis is directly checked.

Step of induction. Assume the claim is true for graphs having no more
than k nodes (k < n—1). We prove it for graphs with k+1 nodes. In view of
inductive assumption by Lemma 1 the procedure MST1(le ft, right, weight,
k +1, R) selects positions of the first k — 1 edges of Mg which belong to 7.
Since r = k — 1 then the statement if r = k then goto 1 is not realized.
For finding the k-th edge for T's we carry out the following three steps:

(1) define positions of new edges (candidates) which appear after adding
the (k — 1)-th edge to Tk;
(2) define positions of edges which should be deleted from further analysis;
(3) choose the k-th edge for T%.
At the first step, after executing the statement 1:=FND(X), we define
the row position in which the (k — 1)-th edge for Ts is located. To store

its nodes we carry out the statements nodel:=le ft(i) and node2:=right(3)
and after using the statement S(¢) :=’ 0 we delete the (k- 1)-th edge from

Representation of the MST algorithm in associative processors 83

the further analysis. After executing the procedure MATCH(left, S, nodej,
Z) row positions of the matrix left coinciding with the nodej for j = 1,2
are stored in the slice Z. We add these positions to the slice N1 by the
statement N1 := N1VZ. Similarly by means of the statement N2 := N2v Z
we add row positions of the matrix right coinciding with nodel and node2.
- At the second step by analogy with [2] using the statement Y := N1 A
N2 we define edge positions whose both nodes belong to Ts, but they are
not in Ts. For eliminating loops such edges should be deleted from the
further analysis by using the statement if SOME(Y) then S := S A -Y.
Then by means of the statement Z := N1V N2 we determine the set of
. potential candidates. We can prove that for defining the proper candidates
it is necessary to delete from Z the positions of edges included in Y and
the row position where the (k — 1)-th edge is located. Therefore we carry
out the statement Z := Z A S and then jump to the end of the iteration
statement while r < k — 1 do.
At the third step after executing the procedure MIN(weight, Z X)
we select the candidates with the minimal weight among candidates whose
positions are marked by ‘1’ in the slice Z. By the statement i:=FND(X) we
define the position of the next (that is, k-th) edge and add it to T's using the
statement R(i) :=' 1. After executing statements r := r + 1 and if r=k
then goto 1 we Jump to the procedure exit. (m]

The following theorem can be immediately proved.

Theorem 2. Each statement in the procedure MST1(left, right, weight,
n, R) is. essentzal

For evaluatmg the complexity of the procedure MST1 at first we esti-
mate the complexity of procedures MATCH and MIN. Let m be a maximal
number in the matrix weight. In view of [11] we obtain N(MATCH) <
1+ 2log;n and N(MIN) < 1+ 3log, m, where n is the number of graph
nodes. Therefore,

N(MST1) < 8+ 3log, m + (18 + 3log; m + 8log, n) (n — 2).

5.2. The use of representing edges as vertical pairs

Here we define a graph G in the form of matrix M*, where each edge (i, j) is
represented by means of two rows: the node i and weight w(t, j) are written
in the row with an odd number and the node j is written directly under
the node i in the row with an even number. Assume that i,j € vertez,
w(i,j) € weight. Note that the matrix vertez represents alternation of
rows belonging to matrices left and right when the graph is given as an
association of triples.

84 A.Sh. Nepomniaschaya

Remark 3. In [2], Potter suggests a method for recording input data di-
rectly into the matrix memory of APP. Since the matrix vertez consists
of repeating nodes from the matrices le ft and right, then it can be more
effectively constructed than each of the matrices left and right separately.

Consider the procedure MST2 which uses the representation of a graph
in the form of the matrix M*. Let us agree that for each edge (p, ¢) included
in Ts its position in M* is defined by the row where the node p and the
weight w(p, ¢) are located.

proc MST2(vertez, weight: table; n: integer; var R: slice(vertez));

label 1; var i, r: integer; nodel, node2: word;

A,B,S,N1,N2,X,Y,Z,Z1, Z2: slice(vertez);

begin CLR(R); CLR(N1); CLR(N2); SET(S);

MASK1(B, 1); A:=shift(B,up,1); Z := A; r:=0;

/* We use the slice B for masking rows with even numbers and
slices A and Z for masking rows with odd numbers */
whiler <n -1 do
begin MIN(weight,Z, X); ©:=FND(X);

R(i):="lU;r:=r+1;ifr=n—1 then goto 1;
nodel:=vertez(i); node2:=vertez (i + 1); S(2) :=' 0
S(E+1):='0; MATCH(vertez,S,nodel,2); Z1 := Z A A;
N1:=N1V Z1;Z2:= ZAB; N2 := N2v Z2;

/* Positions of odd (respectively even) rows coinciding
with nodel are added to slice N1 (respectively N2) */

MATCH(vertem,S,node2,Z); Z1:=ZAA;N1:=N1v Z1;
Z2:=ZAB; N2:= N2V Z2;
/* Positions of odd (respectively even) rows coinciding
with node2 are added to slice N1 (respectively N2) */
N2:=shift(N2,up,1); Y := N1A N2; if SOME(Y) then
begin S := S A -Y; Y:=shift(Y ,down,1); § := SA Y
/* We exclude from the slice § edge positions which do not
belong to Ts but both their nodes are in T */
end;
Z:=N1VN2,Z:=ZAS
end; o
1: end

To prove the correctness of the procedure MST2 we use Lemma 2 which
is cited by analogy with Lemma 1. ' :

Theorem 3. Let a graph G be represented as an association of the matrices
vertez and weight. Then the procedure MS T2(vertex, weight, n, R) con-
structs a minimal spanning tree whose edges are indicated by positions of ’'1’

in the slice R.

Representation of the MST algorithm in associative processors 85

Proof. This theorem is proved by analogy with Theorem 1. Consider main
differences in the proof. '

By means of the first four statements the initial values are set into slices
R, N1, N2 and S. Then in view of the graph representation after executing
statements MASK1(B,1), A:=shift(B,up,1) and Z := A we set the mask
for separating rows with even (respectively odd) numbers in the slice B
(respectively in slices A and Z). This value of Z is used in the procedure
MIN (weight, Z, X) for defining the position of the first edge for Ts.

Step of induction. In view of inductive assumption by Lemma 2 the
procedure MST2(vertez, weight, k+1, R) selects positions of the first k—1
edges of M* which belong to Ts.

_ After executing the procedure MATCH(vertez, S, nodel, Z) in the slice
Z we define row positions of the matrix vertez coinciding with nodel. Posi-
tions of the left nodes of edges coinciding with nodel are located in the rows
having odd numbers. We select them by the statement Z1 := Z A A and
add to the slice N1 using the statement N1 := N1V Z1. Positions of the
right nodes of edges coinciding with nodel are located in the rows having
even numbers. We extract them by the statement Z2 := Z A B and then
add to the slice N2 by the statement N2 := N2V Z2. Similar reasoning is
used for node2. Hence, we separate positions of rows coinciding with nodel
and node2 into positions with odd numbers (slice N1) and positions with
even numbers (slice N2).

Other distinctions are caused by excluding some edges from the further
analysis. Consider some of them.

For each edge the position of its right node is shifted on one bit down with
respect to the left node position. Therefore, before defining edge positions
excluded from the further analysis it is necessary to execute the statement
N2:=shift(N2, up,1). For eliminating the candidate positions belonging to
the slice Y we carry out the statements S := S A=Y, Y:=shift(Y, down, 1)
and S:=S5A-Y.

Finally, it is not difficult to verify that positions of potential candidates
are defined by means of the statement Z := N1V N2 after shifting the
contents of N2. o

Evaluate the complexity of the procedure MST2.
N(MST2) < 10 + 3log, m + (24 + 3logy m + 4log; n)(n — 2).

For n > 4 we obtain that N(MST1) — N(MST2) < 4log, n(n — 2).

Note that each graph edge is processed by its own processor element in
the STAR-machine. Hence, the procedure MST?2 is used if the number of
its edges is less or equal to half of the processor element number.

86 . A.Sh. Ne;mmm'aschaya

6. Representation of the Baase élgorithm

In [2] an effective program MST for finding the mlmmal spanning tree of a
graph has been written by using the associative computing language ASC.
This program is based on the Baase algorithm- and utilizes the same graph
representation as the procedure MST1.- For comparing MST1 and the pro- -
gram MST we have written the STAR procedure MSTP for the Potter MST
program and then compare the corresponding STAR procedures.

At first we briefly consider the Baase algorithm being a modification of
the Prim-Dijkstra one. It separates all graph edges into four states. Edges
belong to state 1 (respectively state 4) if they are included in (respectively
excluded from) the fragment of the minimal spanning tree. State 3 consists
“of edges which have not been considered yet. State 2 contains edges which'
connect a node in state 1 with a node in state 3. The algorithm iteration

" includes the location of the minimal weight edge in state 2, setting it to

state 1 and changing the edge states which take part in this selectlon The-
process is iterated while there are edges having state 2.

Note that the STAR procedure MSTP utilizes all variable names from
‘the Potter MST program and for the similar purposes. Other variables a.re'
used for intermediate results.

Consider the procedure MSTP.

proc MSTP(nodel, noder, weight: table; var statel: slice(nodel));
var graph, reachl, reachr, state2, state3, stated,

- X, Y, Z: slice(nodel); nodel, node2: word; i: integer;

- begin CLR(reachl); CLR(rea.chr); CLR(statel); CLR(state2);
CLR(state4) SET (graph); MIN(weight, graph, X);
::=FND(X); state2(i):="1’; state3:= —state2;
while SOME(state2) do -~
begin MIN(weight, state2, X); i:=FND(X);

statel(i):="1"; state2(i):="0"; nodel:=nodel(i);
node2:=noder(1); graph:=state2Vstate3;
MATCH(nodel, graph, nodel, Z); reachl:=reachlvZ;
MATCH(nodel, graph, node2, Z); reachl:=reachlv Z;
MATCH(noder, graph, nodel, Z); reachr:=reachrvZ;
MATCH(noder, graph, node2, Z); reachr:=reachrv Z;
X:=reachlAreachr; graph:=graphAX;
if SOME(graph) then
begin state2:=state2A-.X; state3: -state3/\-X
stated:=statedVX
end;
Y:=reachlvreachr; Y := Y Astate3;
if SOME(Y) then
begin state2:=state2VY; state3:=state3A-Y

Representation of the MST algorithm in associative processors 87

end;
end;
end

It is not difficult to veljify that .
N(MSTP) < 10 + 3log, m + (24 + 3log; m + 8log; n)(n — 1).

Therefore; we obtain that N(MST1) < N(MSTP). .-

The improvement. was cbtained due:to taking into -account the special
features of associative parallel processors with bit-setial processing. Really,
for representing a-graph as a set of triples on the STAR-machine at each.
iteration it is sufficient to store the following two sets (instead of four sets
in the Baase algorithm for sequential machines): ' '

(1) positions of édge$ which have been included i the minimal spanning
tree fragment; - - : '

(2) positions of edges ‘which are the real candidates for ihclﬁding in the
fragment. =

7. Conclﬂsi_dn

In this paper we have consideted two variants for representing the Prim-
Dijkstra algorithm in"the STAR-machine. We have written the correspond-
ing procedures, proved their correctness and evaluated their complexity.

Representation- of a-graph in the form of triples is a natural and simple
one and the corresponding procedure (MST1) utilizes the minimal number
of statements (Theorem 2). However, for representing the graph edges in
the form of vertical pairs we have improved the procedure estimation (for
MST?2). Moreover, we have obtained that for n > 4 N(MST1) - N(MST?) <
4logyn(n-2). -

For representing a graph in the form of triples there is an effective pro-
gram MST which uses the Baase algorithm and is written by means of the
language ASC. For comparing the procedure MST1 and the program MST
we have written the STAR procedure MSTP which uses all variable names
from the Potter MST program and for the same purposes. For these proce-
dures we have obtained that N(MST1) < N(MSTP). -

References

[1] K.E. Grosspietsch, Associative processors and memories In: IEEE, Micro,
June, 1992.

88 ' A.S‘h. Népbmﬂiaséhé_yd.

[2] J L Potter, Associative Computmg A Programmmg Parad;gm for Massively
Parallel Computers, Kent, State Umverslty, Plenum Press, New York and Lon-
" “dom; 1992. T

) [3] R.G. Lange, High Ievel Ianguage for assocxat;ve and paraHeI computat;on with
Staran In: Proc. of Int] Conf on Pa.ra,llel Processmg, 1976.

: .' 4] C.C. Foster, Content Addressab]e ParaHeI Processors Van Nostrand Reinhold
Company, New York 1976 - :

[5] J. Miklosko, R: Klette, M Va_;tersm J Vrt,o Fa.st AJgonthms and their Im—
piementatlon on. Specmhzed Parallel’ Compnters Specml TOplCS in Supercom— .
- puting, Vol. 5, North-Hola.nd 1989 - .

[] ‘A.Sh: Nepommaschaya., Language STAR for- associative and paraﬂel campu-
_tation with vertical data processing, Proc. of the Intern. Conf. “Parallel Com—
puting Technologles” Novos1blrsk USSR 1991 S

‘ [7] ‘R.C. Prim, Shortest connection networks a.nd some generahzatmns, Bell Sys—
~ tem Tech. J., Vol 36 1957 '

. [8] E W. Dl_]kstra, A noteon two probiems in connectton with graphs, Numensche
" 'Math;, Vol. 1, 1959 S

[9] C. Femstrom R Kruzela, B. Svensson LUCAS associative: array processor
Design, programming and apphcatjou stud;es Lecture Notes in Computer Sc1- B
- ence, Vol. 216, Berlin:. Sprmger-Verlag, 1986 -

[10] S Baase, Computer Algonthms Introductlon to Deslgn a.nd Analysm,
Addlson-Wesley, Reading, MA, 1978.

(11] A. Sh. Nepommaschaya Invest:gatlon of associative search algonthms in verti-
" cal processing systems, Proc. of the Intern. Conf. “Parallel Computing Tech—_
nologles Obnirisk, Russia, 1993. - :

