Joint NCC & IIS Bull., Comp. Science, 11 (1999), 45-58
© 1999 NCC Publisher

An associative algorithm for finding a
maximum-weight cycle in directed
graphs

A.S. Nepomniaschaya

In this paper we propose a novel associative parallel algorithm for selecting a
directed cycle of the maximal weight on an abstract model of the SIMD type with
vertical data processing (the STAR-machine). This algorithm is represented as the
corresponding STAR procedure whose correctness is verified and time complexity
is evaluated.

1. Introduction

The problem of selecting a cycle of the maximal weight in a directed graph
arises when performing Edmonds’ algorithm for finding optimum branch-
ings [2]. This algorithm has important applications to graph theory and
combinatorial optimization. In particular, it is used for finding a minimal
spanning tree in a directed graph. Edmonds’ algorithm takes polynomial
time on conventional sequential computers. Therefore in (1, 4, 5, 16] differ-
ent algorithms are devised for improving the time bound. Among them, on
the one hand, is a very complicated algorithm [4]. On the other hand, there
is an algorithm [5] which uses a special data structure, the Fibonacci heap.
To obtain a natural and relatively simple implementation of Edmonds’
algorithm one can utilize associative parallel processors which are mainly
oriented to solving non—numerical problems. This class of parallel computers
includes the well-known systems STARAN, DAP, MPP, and CM-2. Such an
architecture provides a massively parallel search by contents and processing
of unordered data represented in the form of two-dimensional tables [15].
Let us enumerate graph problems being represented on associative paral-
lel processors. In [7, 8, 12, 14, 15], the problem of finding a minimal spanning
tree is studied for different graph representation forms using different algo-
rithms and different formal models. In [9], the associative version of Gabow’s
algorithm for finding the smallest spanning trees with a degree constraint
is represented on the STAR-machine which is a model of associative paral-
lel processors with vertical data processing. Problems of finding connected
components and the transitive closure of a graph, verifying an articulation
point and verifying a bridge are considered for undirected unweighted graphs

46 A. §. Nepomniaschaya

represented as an adjacency matrix both on the orthogonal machine [14] and
the STAR-machine (10]. Algorithms for solving two shortest path problems
are examined both on the associative array processor LUCAS [3] and on the
STAR-machine [10,12].

In this paper, we propose a novel associative parallel algorithm for select-
ing a cycle of the maximal weight in a directed weighted graph represented
on the STAR-machine as a list of triples (edge vertices and the weight).
For this purpose a special construction with a trap is used to save positions
of those arcs which cannot be included in a directed cycle. The algorithm
is represented as the corresponding STAR procedure whose correctness is
proved. We have obtained that this procedure takes O(nlogn) time, where
n is the number of graph vertices.

2. Model of Associative Parallel Machine

The model is defined as an abstract STAR-machine of the SIMD type with
bit-serial (or vertical) processing. It consists of the following components:

- a sequential control unit where programs and scalar constants are
stored; o

— an associative processing unit consisting of p single-bit processing ele-
ments (PEs);

— a matrix memory for the associative processing unit.

The binary data are loaded in the matrix memory in the form of two-
dimensional tables in which each datum occupies an individual row and
it has a dedicated processing element. The rows are numbered from top to
bottom and the columns from left to right. A row (word) or a column (slice)
may be accessed with equal ease. Some tables may be loaded in the matrix
memory.

The associative processing unit is represented as h vertical registers each
consisting of p bits (h > 4). A vertical register can be regarded as a one-
column array. The bit columns of the tabular data are stored in the registers
which perform the necessary Boolean operations and record the search re-
sults.

The STAR~-machine run is described by means of the language STAR [13]
which is an extension of Pascal. Consider briefly the STAR constructions
needed for the paper. To simulate data processing in the matrix memory, we
use three new data types word, slice, and table. Constants for the types
slice and word are represented as a sequence of symbols of {0,1} enclosed
within single apostrophes. We use the types slice and word for bit column
access and bit row access, respectively, and the type table for a definition
of the tabular data. We assume that any variable of the type slice consists
of p components belonging to {0,1}.

An associative algorithm for finding e cycle in directed graphs 47

Recall some operations and predicates for slices.

Let X, Y be variables of the type slice and ¢ be a variable of the type
integer. We define the following operations: SET(Y) sets all the compo-
nents of Y to '1’; CLR(Y") sets all the components of Y to '0’; Y (i) selects
the i-th component of Y; FND(Y') returns the ordinal number i of the first
(or the uppermost) component ‘1’ of Y, i > 0; STEP(Y') returns the same
result as FND(Y') and then resets the first component ‘1’.

We utilize the bitwise Boolean operations X and Y, XorY, notY,
X zorY and predicates ZERO(Y') and SOME(Y') which are introduced in
the obvious way.

For a variable T of the type table we use the following two operations:
ROW(Z,T) returns the i-th row of the matrix T; COL(3, T') returns its i-th
column.

3. Preliminaries

At first, let us recall some notions being used in the paper.

Let G = (V,E,w) be a directed weighted graph with the set of vertices
V = {1,2,...,n}, the set of directed edges (arcs) E C V x V, and the
function w that assigns a weight to every edge. We will denote |V| by n and
|E| by m. An arc e = (u,v) directed from u to v has head v and tail u. We
will also use the notations h{e) = v and t(e) = u.

In the STAR-machine matrix memory, a directed weighted graph is rep-
resented as association of the matrices left, right and weight where each arc
(u,v) € E is matched with the triple < u,v,w(u,v) >. Recall that vertices
and weights are written in binary code.

The following notions are borrowed from [6].

A set C C F is called a cycle if C = {ey,e3,...,€r}, where t(e;) =
h(ei+1), 2 =1,2,...,k — 1 and t(ex) = h(e1). An arc e is called critical if
no arc with the same head has a greater positive weight than e. A critical
cycle is a cycle with all the arcs being critical.

A set B C F is called a branching if B does not contain a cycle and every
pair of distinct arcs in B has different heads. In other words, no two arcs of
B are directed to the same vertex. A branching of maximal weight is called
optimum. ,

Let C be a critical cycle in G. Following [5], the notation G/C will be
used when the cycle C is contracted in G.

The reduced graph for a critical cycle C is the graph G/C with the weight
function of G modified as follows. Let e be an arc of G with t(e) ¢ C and
h(e) € C, and let € be an arc of C with h(e’') = h(e). Let " be an arc of C
having the minimal weight. Then in the reduced graph the new weight of

48 A. S. Nepomniaschaya

e is defined as w(e) + w(e") — w(e'). All other arcs of G/C do not change
their weights.

Now, let us recall three basic procedures [11,12] which use the given
global slice X to indicate by 1’ the row positions being used in the corre-
sponding procedure.

The procedure MATCH(T, X, v, Z) defines the row positions in the given
matrix T' coinciding with the given v. Its result is the slice Z in which
Z(3) =' 1! if ROW(3,T) = v and X (i) =' I'. The procedure MAX(T, X, Z)
defines the row positions in the given matrix 7" where the maximal element
is located. It returns the slice Z in which Z(i) =" 1’ if ROW(3,T) is the
maximal matrix element and X(i) =' 1'. The procedure HIT(T, F, X, Z)
defines positions of the corresponding identical rows in the given matrices
T and F using the global slice X. It returns the slice Z in which Z(i) =' 1/
if ROW (4, T) = ROW(3, F) and X (i) =' 1'.

In [11,12], we have shown that any basic procedure takes O(k) time,
where k is the number of bit columns of the corresponding matrix.

4. Finding a Critical Cycle in a Graph

In this section we present an associative algorithm for selecting a critical
cycle. It will be used to perform the first phase of Edmonds’ algorithm for
finding optimum branchings.

The first phase of Edmonds’ algorithm selects critical arcs. It begins with
an empty set of arcs. For every vertex v being a head of an arc, a critical
arc (u,v) is selected and added to this set. If (u,v) forms a critical cycle
C together with other selected arcs, this cycle is contracted to form a new
vertex v* and the reduced graph G/C for C is obtained. In this graph every
arc with the endpoint in C' has the endpoint replaced with v*. Moreover, the
weights of all the arcs entering the cycle C are redefined as described above.
The process of selecting and reducing critical cycles is being continued until
all the vertices of the graph are contracted into a single vertex or none of
new critical cycles can be extracted.

The second phase of Edmonds’ algorithm discards some redundant crit-
ical arcs. It consists of expanding the nested cycles in the reverse order
of their contraction and deleting one arc from each cycle with the use of a
special rule.

The associative algorithm for selecting a critical cycle will be given as
a procedure CYCLE written in the language STAR. It uses the following
Anput parameters:

~ a graph represented as association of the matrices left, right and weight;

— a list of the graph vertices given as a matrix node in whose i-th row
there is a binary code of the vertex 7, 1 <1 < n.

An associative algorithm for finding a cycle in directed graphs 49

The procedure returns two slices X and W. The slice X is used to
indicate by ‘1’ the positions of arcs belonging to the critical cycle, while W
is used for indicating the positions of all the critical arcs selected during the
procedure run.

Let us briefly explain the meaning of the main variables being used.

The procedure uses a global slice D for the matrices left, right, and
weight; a global slice Y for the matrix node; an integer t for saving the
time when any critical arc is selected; two arrays A and tag for defining a
one-to—one correspondence between the position of any critical arc and the
time of its selection; a slice trap for indicating positions of those critical arcs
which cannot be included into the critical cycle.

Initially the time ¢ is equal to zero, each of the slices X and W consists
of zeros while each of the slices D, Y, and trap consists of ones.

The associative algorithm for selecting a critical cycle consists of two
phases. Informally it runs as follows.

The first phase includes the following three steps.

At the first step, by means of STEP(Y), we select the vertex (say, v) in
the matrix node which corresponds to the position of the first component
1" in the slice Y and for which there exists an incoming arc in G. This step
yields a slice (Z) where the positions of all arcs with the head v are indicated
by '1’. Then we go to the second step.

At the second step we select a position 7 of a critical arc (say, e) with
the head v. This position is indicated by ‘1’ in the slice W. After recording
the current time ¢, we set a one-to-one correspondence of the form i + ¢
between the position of the critical arc e and the time of its selection as
follows. In the {-th component of the array A we write the integer 4, while
in the i-th component of the array tag we write the integer ¢. After deleting
the position 7 from the global slice D we go to the third step.

At the third step we select the tail u of the critical arc e from the i-th
position. The following two cases are possible.

Case 1. The vertex u has not been processed yet. Then, after defining
its position k in the matrix node, we perform the statement Y (k) :=' 0'. If u
has an incoming edge, we go to the second step to select the next critical arc.
 Otherwise, we write /0’ in the i-th component of the slice trap to-indicate
the position of the critical arc e. Such an arc cannot be included in the
critical cycle because its tail has no incoming edge.

Case 2. The vertex u has already been processed. Then, by means of
the matrix rtght and the slice W, we define the position j of the critical arc
(say, €') which enters the vertex u. If u has no incoming edge, the position
of e is saved in the slice trap by analogy with Case 1, and we go to the first
step. Otherwise, by means of the statement s := tag[j], we define the time
s of including the position of ¢’ to W. By means of the array A in the slice
X we indicate by ‘1’ the positions of all the critical arcs which have been

50 A. S. Nepomniaschaya

included in W beginning with the time s until the current time ¢. Then we
go to the second phase.

In the second phase we check whether there is a critical arc whose
position is indicated by ‘1’ in the slice X and by '0' in the slice trap. If
there is such an arc, we set zeros in the slice X and jump to the first step.
Otherwise, we verify whether the head of the arc selected at the time ¢ has an
outgoing edge whose position is indicated by ‘1’ in X and the tail of the arc
selected at the time s has an incoming edge whose position is also indicated
by '1’ in X. If these conditions are true, the algorithm terminates and the
arcs whose positions are indicated by '1’ in the slice X form a critical cycle.

Obviously every vertex included in a directed cycle has both an incoming
and outgoing edge. Two last conditions of the second phase allow one to
eliminate the cases when a sequence of arcs do not form a directed critical
cycle, however, their positions are indicated by ‘1’ in the slice trap. Such
cases are examined in the proof of Theorem 2.

Remark 1. Before performing the first phase, the positions of arcs
forming a loop are defined as the positions of the corresponding coinciding
rows of the matrices left and right with the use of the basic procedure HIT.
These positions will not be further considered.

Now, consider the procedure CYCLE.

proc CYCLE(left,right, weight,node: table; var X,W: slice(left));
/* We will use the global variable m of the type integer. */
label 1,2, 3;
var i,k,l,r, s,t: integer;
Q,Y: slice(node); u,v: word;
F,D,P, Z,trap: slice(left);
tag, A: array [1: m] of integer;
/* The first phase. */
1. Begin t:= 0; CLR(W); CLR(X); SET(D);
2. SET(trap); SET(Y);
3. HIT(left,right,D, P); D := D and(not P);
/* Positions of arcs forming a loop are indicated by '1’
in P. */
4. while SOME(Y) do
5. begin k :=STEP(Y); v :=ROW(k, node);
6. MATCH(right, D, v, Z); |
/* In the slice Z we indicate by ‘1’ positions of all
the unexamined arcs e with the head v. */
7. while SOME(Z) do
8. begin MAX(weight, Z, F);
9. i :=FND(F); W(i) :='1';
/* In the slice W we indicate by ‘1’ the position 4

10.
11.
12.
13.

An associative algorithm for finding a cycle in directed graphs

of the critical arc (e) with the head v. */
t:=t+1; Aft] := 1; tagli] := t;
u :=ROW(i,left); D(i) :=' 0';
MATCH(node,Y,u, @);
if SOME(Q) then

/* The case when u has not been processed yet. */

14
156
16
17

. begin k :=FND(Q); Y (k) :=' 0';

) MATCH(right, D, u, Z);

. if SOME(Z) then goto 3
. else

/* There is no incoming arc for u. */

18
19
20
21

22
23
24
25

26
27
28

29
30

3L
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

. begin trap(i) :=' 0'; goto 2

. end;

. end
. else
/* The case when u has already been processed. */
. begin MATCH(right, W, u, F);
. if ZERO(F') then
. begin trap(i) :=' 0'; goto 2
. end;
/* The second phase. */
. k :=FND(F); s := tag|k);
. forl:=stotdo
. begin r := A[l]; X(r) :="1'
/* In the slice X we indicate by ‘1’ the positions of the arcs
which are candidates for being included in a critical circuit. */
. end; :
. P:=trap; P:= Pand X; P := Pzor X
/* We verify whether there is an arc whose position corresponds
to 'l in the slice X and to ‘0’ in the slice trap. */
if SOME(P) then
begin CLR(X); goto 2
end;
v :=ROW(r, right);
MATCH(left, X, v, F);
if ZERO(F) then
begin CLR(X); goto 2
end;
r:= A[s]; u :=ROW(r,left);
MATCH(right, X, u, F);
if ZERO(F') then
begin CLR(X); goto 2
end

52 A. S. Nepomniaschaya

44. else goto 1;
45. end;

46. 3: end;

47. 2: end;

48. 1: End;

Remark 2. It is obvious that the initialization of variables is performed
in lines 1-2 of the procedure CYCLE. In line 3, positions of the arcs forming
a loop are indicated by ‘1’ in the slice P. By means of the statement D :=
D and (not P), they are deleted from the global slice D.

Now, evaluate the time complexity of the procedure CYCLE. Assume
that any elementary operation of the STAR-machine takes one unit of time.
Therefore we will measure the time complezity of any algorithm by counting
all the elementary operations performed in the worst case.

At first, let us observe that any of the procedures MATCH and HIT
takes O(logn) time, where n is the number of graph vertices. It is obvious
that the procedure MAX requires O(1) time, since the arc weights do not
depend on n. Therefore, the first stage requires O(nlogn + logn) time
and the second phase requires O(log n) time. Hence, the procedure CYCLE
takes O(nlogn) time.

5. Correctness

To verify correctness of the procedure CYCLE, we will prove the following
two theorems.
Theorem 1. Let G=(V,E,w) be a directed weighted graph represented as
assoctation of matrices left, right, and weight and let node be a matriz in
whose j-th row there i3 a binary code of the vertez j, 1 < j < n. Then in
the first phase, when processing any vertex k, which is a head of an arc,
we select a position 1 of the critical arc which enters k. In addition, the
variables D,Y,W, A, tag, and trap are changed as follows:

(1) Y(k) :="0'; D(5) :=" 0

(2) W(HE) :='1; ¢t :=t+1; Alt] :=1; tagli] := ¢;

(3) trap(i) :=' 0" if there is no arc which enters the tail of the arc from
the i-th position.

Proof. We will prove this by induction on the number of vertices n.

Basis is verified for n = 2. There are two cases depending on whether
there exists an incoming arc for one vertex or for two vertices.

(a) Let only one vertex have an incoming edge. There are two subcases.

(al) Only vertex 1 has an incoming edge. Then, on performing line 5
and the procedure MATCH(right, D,v, Z) from line 6, we obtain Y (1) =' 0/,

An associative algorithm for finding a cycle in directed graphs b3

v =1and Z # ©.} Therefore, from the procedure MAX(weight, Z, F)
and the statement i :=FND(F) (lines 8-9), we find the position ¢ of a
critical arc (say <) which enters the vertex v = 1. Then for { = 1 we
carry out the statements W (i) :=' 1/, t := t + 1, At] := 4, and tag[i] := ¢
(lines 9-10). On executing the statement u :=ROW(3i,left) (line 11), we
obtain u = 2 since u # v in view of Remark 1. By means of the statement
D(i) :=' 0/ (line 11), the position of v is deleted from D. Since u = 2 and
Y (2) =' 1, the procedure MATCH(node, Y, u,Q) (line 12) returns Q # ©.
Therefore, we perform the statements k :=FND(Q) and Y (k) :=' 0' (line
14) and obtain Y = ©. In view of our assumption, for ¥ = 2 the procedure
MATCH(right, D,u, Z) (line 15) returns Z = ©. Hence, we carry out the
statement trap(t) :=' ' (line 18). Since ¥ = ©, we jump ‘o the end of the
procedure CYCLE.

(a2) Only vertex 2 has an incoming edge. Then one can easily verify
that on performing lines 5-6, we obtain Y(1) =' 0/, v = 1 and Z = ©.
Since Y (2) #' ¢, we fulfil line 5 again and obtain ¥ = ©. In view of
our assumption for v = 2, the procedure MATCH(right, D,v, Z) returns
Z # ©. Therefore we carry out line 8. Further reasoning differs from (al)
in line 12. Here for u = 1 the procedure MATCH(node, Y, u, Q) returns
@ = ©. Therefore we carry out the procedure MATCH(right, W, u, F') (line
22) which returns F = ©. Hence, we perform the statement trap(:) :=' 0’
from line 24 and jump to the end of the procedure CYCLE. So, the assertion
is true when only one vertex has an incoming edge.

(b) Both vertices have incoming edges. Initially we reason by anal-
ogy with (al). Difference arises in line 15, when fulfilling the procedure
MATCH(right, D, u, Z). Here, for u = 2 it returns Z # ©. Therefore, after
performing line 16 we carry out line 8. Now, we reason by analogy with
(a2). However, there arises the following distinction. Here, for u = 1 the
procedure MATCH(right, W, u, F') (line 22) returns F # @, since vertex 1 is
the left vertex of the critical arc selected when ¢t = 2. Moreover, the position
of the critical arc which enters vertex 1 was selected when ¢t = 1 and it was
indicated by ‘1’ in W. Therefore we jump to the second phase. Hence, for
any of two vertices the corresponding critical arc is defined and the variables
DY, W, A, tag, and trap satisfy (1)—(3).

Step of induction. Let Theorem 1 be true for graphs with no more than
n vertices. We will prove it for the graphs with n 4 1 vertices. Let vy be the
(n 4 1)-th vertex which has an incoming edge. By induction hypothesis the
assertion is true for those vertices from the matrix node which are processed
before vg. Therefore it is sufficient to analyze only the case when the second
phase is fulfilled after reading the vertex vg. There are two cases.

Case 1. The vertex vy is processed starting from line 5. Since vy # 1,

!The notation Z # © denotes that there is at least one component ‘1’ in the slice Z.

b4 A. S. Nepomniaschaya

this is possible when the statement while SOME(Y) do is performed after
the statements from line 18 or line 24. By analogy with the basis, on fulfilling
lines 1-11 the position ¢ of a critical arc (say o) entering the vertex vy is
defined and the variables D,Y, W, A, and tag satisfy (1)—(2). It remains to
check that trap satisfies (3).

Really, on performing the statement u :=ROW(i,left) (line 11) the con-
tents of u is the left vertex (say v') of the arc o. By means of the procedure
MATCH(node, Y, u, Q) (line 12) we verify whether v' has already been pro-
cessed or not. There are two subcases.

(a) v’ has not been processed yet. Then on performing line 14 and the
procedure MATCH(right, D,u,Z) (line 15), we verify whether v' has an
incoming edge. It is easy to check that the statement trap(i) :=' 0' from
line 18 is performed only in the case when v’ has no incoming edge. It takes
place when the procedure MATCH from line 15 returns Z = ©.

(b) v' has already been processed. Again, it is easy to verify that the
statement trap(i) :=' 0’ (line 24) is performed only in the case when v' has
no incoming edge indicated by ‘1’ in the slice W. It takes place when the
procedure MATCH(right, W, u, F) (line 22) returns F = ©. Hence, in both
subcases the slice trap satisfies (3).

Case 2. The vertex vy is the left one of the critical arc from the i-th
position. It means that on performing the statement u :=ROW(i,left) (line
11) vy is the contents of u. Since vg has not been processed yet and it has
an incoming edge, the procedure MATCH(right, D,u, Z) (line 15) returns
Z # ©. Therefore vy will be analyzed beginning from line 8 as shown above.

This completes the proof. m]

Let us agree that an arc whose position is indicated by '1’ in the result
slice X of the procedure CYCLE is called a resulting arc.

Remark 3. To verify correctness of the procedure CYCLE, it is suffi-
cient to prove that the resulting arcs make up a directed circuit, since in the
first phase every time we select the position of the arc of the maximal weight.

Theorem 2. Let G=(V,E,w) be a directed weighted graph represented as
assoctation of the matrices left, right, and weight and let node be a mairic
in whose j-th row there is a binary code of the verter j, 1 < j < n. Then
on performing the procedure CYCLE(left,right,weight, W,X) the positions of
arcs forming a directed critical cycle are indicated by ’1’ in the slice X,
whereas the positions of all the critical arcs selected during the procedure
run are indicated by ’1’ in the slice W.

Sketch of the proof. We will prove it by contradiction. Let the proce-
dure CYCLE return a non-empty slice X (that is, X # ©) and the resulting
arcs do not form a directed circuit. Three cases are possible.

An associative algorithm for finding a cycle in directed graphs b5

Case 1. There exist at least two resulting arcs y; and <2 such that
t(v1) = t{y2), but A(y1) # h(y2). However, such a case is impossible, since
any vertex of the matrix node is processed only once.

Case 2. There exist at least two resulting arcs v; and v, such that
h(11) = h{72), but t(y1) # t(v2). Such a case is also impossible, since the
selection of any critical arc is performed either for the left vertex of the
current selected critical arc which has not been processed yet and has an
incoming edge, or for the vertex in the matrix node which corresponds to
the position of the first component ‘1’ in Y.

Case 3. There is a sequence of the resulting arcs y1,%s,...,7 (k < n)
satisfying the following properties: for all 4,5, 1 <i<k-1,1<j<n
we have #(y;) = h(vit1); h(m) # t(7;); Hm) # h(v;). Without loss of
generality it is sufficient to analyze only the case when a sole arc is missed
from the directed circuit. We have the following subcases.

(3.1) The position of every arc -y; has been selected at the time i. Without
loss of generality we can assume that +; enters the vertex i. Let v¢ = (1,%)
be absent in the cycle. Hence, we have k -+ k—1— ... -2 — 1. As shown
in Theorem 1, the positions of -; have been indicated by 'l’ in the slice
W. It is easy to verify that as soon as Y = ©, we jump to the end of the
procedure CYCLE. Since the second phase is not performed, the contents
of X do not change. Hence, we obtain X = ©. This is a contradiction.

(3.2) The position of every arc v; has been selected at the time i. Let «;
enter the vertex i. However, let us assume that the arc v,y = (k,k —1) is
absent in the cycle. Therefore, we have k—1 — ... -2 —+1— k. Insucha
case in view of Theorem 1 the positions of arcs v1,73,...,7:—2 are indicated
by ‘1’ in W. Moreover, the position of y;_» is indicated by '0’ in the slice
trap, since no arc enters the vertex k — 1. On selecting the position of v, =
(1, k), we obtain that its tail has been already processed in the matrix node.
Therefore, one can easily verify that the procedure MATCH(right, W, u, F')
(line 22) returns F # O for v = 1. Thus, on performing lines 27-29 of the
second phase, the positions of the arcs 1,72,...,7x—2, 7% will be indicated
by ‘1’ in X. Clearly, among them there is the position of 4;_, indicated by
‘0’ in the slice trap. Hence, after performing the statement CLR(X) from
line 32, we obtain X = ©. This is, again, a contradiction.

(3.3) Without loss of generality one can assume that the arcs ; form the
following sequence: k — ... =+ 5 — 4 — 1 —» 2 — 3, that is, the arc (3,k)
is absent in the cycle. By analogy with the previous subcase, on selecting
the positions of arcs kK = ... 44 -+ 1 — 2 we obtain X = ©. One can
verify that the arc v, = (1, 2) is selected after the arc (k,k—1). It is obvious
that v; = (2,3) is selected immediately after v,. Since the left vertex of +;
has already been processed, the procedure MATCH(right, W, u, F) (line 22)
returns F' # © for u = 2, Clearly, the positions of v, and «; correspond to
1’ in the slice trap. Thus, on performing the statements from lines 27-29,

56 A. S. Nepomniaschaya

we obtain X # ©. Therefore, from line 30, we obtain P = ©. Then, the
statement v := ROW(r, right) (line 34) will be performed immediately after
line 30. It is not difficult to verify that r denotes the position of ; and
v saves its tail, that is, vertex 3. Therefore, by means of the procedure
MATCH(left, X,v, F) (line 35) we check whether vertex 3 has an outgoing
edge whose position has been indicated by ‘1’ in X. Since only positions of
the arcs v, and ; are indicated by ‘1’ in X, we obtain F = ©. Thus, on
performing lines 36-38, we have X = ©. This is, again, a contradiction.
(3.4) Now, it is sufficient to assume that the arcs y; form the following
sequence: k > k—1 —...26—>1—2—>55—4— 3, that is, the arc (3, k)
is absent in the cycle. By analogy with the previous subcase, on selecting
the positions of arcs k > k—1 — ... - 6 - 1 — 2 we obtain X = 0.
As a result of performing goto 2 we will update vertex 3 in the matrix
node. One can verify that the arc (1,2) is selected immediately after the
arc (k,k — 1). After selecting the arcs (4,3), (5,4) and (2,5), we obtain that
the tail of the arc (2,5) has already been processed. Therefore as a result of
performing the procedure MATCH(right, W, u, F) (line 22) we have F # ©
for u = 2. On fulfilling the statements from lines 26-33, the positions of
arcs (1,2), (4,3), (5,4) and (2,5) are indicated by ‘1’ in X. Moreover, the
positions of these arcs are indicated by ‘1’ in the slice trap. Therefore we
carry out the statements from lines 34-38. One can easily check that the
arc (1,2) has been selected at the time s. Since there is no incoming edge
for vertex 1 among these arcs, on performing lines 39-43 we obtain X = ©.
It is a contradiction. This completes the proof. O

6. Conclusion

In this paper we have proposed a novel associative parallel algorithm for find-
ing a critical cycle in a directed weighted graph represented on the STAR-
machine as a list of triples. It consists of two phases. In the first phase, in a
special order, we update those vertices which have an incoming edge. Along
with selecting every critical arc position in the slice W using two arrays
A and tag, we establish a one-to—one correspondence between the critical
arc position and the time of its selection. Moreover, the position of every
processed critical arc whose tail has no incoming edge is saved in the slice
trap. As soon as we update a critical arc whose left vertex has already been
processed, we define the time s of selecting the arc which enters it. Then,
using the array A and the slice W, we easily define positions of the critical
arcs selected from the time s until the current time ¢. In the second phase,
from the candidates, we easily select those arcs which form a critical cycle.
To do this, we use the slice trap and verify whether the head of the arc
selected at the time ¢ has an outgoing edge and the tail of the arc selected

An associative algorithm for finding a cycle in directed graphs 57

at the time s has an incoming edge.

This algorithm has been represented as the corresponding STAR proce-
dure CYCLE whose correctness has been proved. We have obtained that
it takes O(nlogn) time. In particular, this procedure will be used to rep-
resent the associative version of Edmonds’ algorithm for finding optimum
branchings on the STAR-machine.

References

1]

(2l

3]

[4]

(5]

[6]

[7

[8]

(10]

R. M. Camerini, L. Fratta, F. Maffioli, A Note on Finding Optimum Branch-
ings, Networks, No. 9, 1979, 309-312.

J.Edmonds, Optimum Branchings, J. Res. Nat. Bur. Standards, 71B, 1967,
233-240.

C. Fernstrom, J. Kruzela, B. Svensson, LUCAS Associative Array Processor.
Design, Programming and Application Studies, Lecture Notes in Computer
Science, 216, 1986.

H.N. Gabow, Z.Galil, T.Spencer, Efficient Implementation of Graph Algo-
rithms Using Contraction, Proc. 25-th Annual IEEE Symp. on Found. of
Comp. Sci., 1984, 347-357.

H.N.Gabow, Z. Galil, T. Spencer, R.E. Tarjan, Efficient Algorithms for Find-
ing Minimum Spanning Trees in Undirected and Directed Graphs, Combina-
torica, 6, No. 2, 1986, 109-122.

R. M. Karp, A Simple Derivation of Edmonds’ Algorithm for Optimum Branch-
ings, Networks, No. 1, 1972, 265-272.

A. S. Nepomniaschaya, Comparison of two MST Algorithms for Associative
Parallel Processors, Proc. of the 3-d Intern. Conf. ”Parallel Computing Tech-
nologies”, Lecture Notes in Computer Science, 964, 1995, 85-93.

A.S.Nepomniaschaya, Representations of the Prim-Dijkstra Algorithm on
Associative Parallel Processors, Proc. of VII Intern. Workshop on Parallel
Processing by Cellular Automata and Arrays. Parcella’96, Academie Verlag,
Berlin, 1996, 184-194.

A.S.Nepomniaschaya, Representation of the Gabow Algorithm for Finding
Smallest Spanning Trees with a Degree Constraint on Associative Parallel Pro-
cessors, Proc. of the Second Intern. Euro-Par Conf, Lecture Notes in Computer
Science, 1123, 1996, 813-817.

A.S.Nepomniaschaya, O.V.Taborskaya, Effective Representation of Some
Graph Problems on Associative Parallel Processors, Proceedings of the Twelfth
International Symposium on Computer and Information Sciences, Bogazici
University Printhouse, ISCIS XII, October 27-29, 1997, Antalya, Turkey, 430~
437.

58 A. S. Nepomniaschaya

[11] A.S.Nepomniaschaya, An Associative Version of the Prim-Dijkstra Algorithm
and its Application to Some Graph Problems, Proc. of the Andrei Ershov
Second Intern. Memorial Conf. ”Perspectives of System Informatics”, Lecture
Notes in Computer Science, 1181, 1996, 203-213.

[12] A.S.Nepomniaschaya, Solution of Path Problems Using Associative Paral-
lel Processors, Proceedings of the International Conference on Parallel and
Distributed Systems, IEEE Computer Society Press, ICPADS’97, December
10-13, (1997), Korea, Seoul, 610-617.

[13]) A.S.Nepomniaschaya, Language STAR for Associative and Parallel Computa-
tion with Vertical Data Processing, Proc. of the Intern. Conf. “Parallel Com-
puting Technologies”, World Scientific, Singapure, 1991, 258—-265.

[14] B. Otrubova, O. Sykora, Orthogonal Computer and its Application to Some
Graph Problems, Parcella’86, Berlin, Academie Verlag, 1986, 259-266.

(15] J. L. Potter, Associative Computing: A Programming Paradigm for Massively
Parallel Computers, Kent State University, Plenum Press, New York and Lon-
don, 1992.

[16] R.E.Tarjan, Finding Optimum Branchings, Networks, No. 7, 1977, 25-35.

