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Finite element trace theorems

S.V. Nepomnyaschikh

The theorems on traces of functions from the Sobolev spaces play an important
role in studying boundary value problems of mathematical physics. These theorems
are commonly used for a priori estimates of the stability with respect to boundary
conditions. The trace theorems play also very important role to construct and to
investigate effective domain decomposition methods. The main focus of this talk
is to study the case when norms of functions given in some domain dependent on
parameters. Corresponding Sobolev spaces with the parameter dependent norms
are generated, for instance, by elliptic problems with disproportional anisotropic
coefficients. The main goal is to introduce the parameter dependent norms of
traces of functions on the boundary such that the corresponding constants in the
trace theorems are independent of the parameters. In the finite element case (finite
element functions in the domain and finite element traces on the boundary), the
corresponding constants should be independent of the mesh step too.

1. The finite element trace theorem
for the Sobolev spaces H;’q

In this section, we design equivalent norms in the trace space of finite element
functions for solving by the domain decomposition methods [2-11, 13, 14]
the system of grid equations approximating the following boundary value
problem:

- i 2 --(m)?y—+a ()u=f(z), z€0
ig=1 0z gy T T ’

u(z) =0, zel.
We assume that € is a bounded, polygonal region and I is its boundary. Let

Q" be a regular triangulation of Q which is characterized by a parameter h.
Let us introduce the Sobolev spaces H} (Q2) with the norms

(1)

||"||§f;'q(n) = P|ﬂ!§rl(n) + quuﬂiz(n);
Il @) = | v()d, @

i@ = [ (Vu(e))? de.

Here
p =const > 0, q = const > 0, p+q>0
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Introduce the bilinear form
a(u,v) / 22: a; (:c) Ou Bv + ag(z)uv | dz
= _ 0 .
’ \;5=1 Y Oz O
We assume that the coefficients of problem (1) are such that a(u,v) is a
symmetric, coercive and continuous form in Hj ,(Q), i.e.,
a(u,v) = a(v,u), Yu,v € H;,q(ﬂ),
2
pollu]ﬁ{’},q(ﬂ) < a(u:u) < f"l”u”H;'q(ﬂ}’ Vu € H;,q(n):
Here pug, p1 are positive constants independent of p and g.
The main goal of this section is the study of a space of the traces of the
finite element functions on the boundaries of 2 which is generated by the

norm HJ (Q).
Let p > 0, ¢ > 0. Introduce the following norm in the Sobolev space

2
Hp/ (T):

Mmm=f¢ma,

2 _ (p(z) — o(¥)®
|(P|HI/2(I‘) - f f |27 _ y!2 dz dy1 (3)
I “ P|99|H1/2(p) + (PQ)UZH‘P"%,{I‘) f0<p/g<1,
‘P / = ] I
o (T) pletd + dlell, if p/g > 1.

The following theorem is valid.

Theorem 1. There exist positive constants c1, c2, independent of p, q, such
that

el a2 gy < eallullay ga)

for any function u € Hy ,(Q), where ¢ € H;,/qz(I‘) is the trace of u on the

boundary I'. Conversely, for any function ¢ € H;l,,/qz(f') there exists u €
Hj (Q) such that

u(z) =¢(z), ze€T, ||“||H;_q(n) < Cz|i<P||H;'/q2(r)o
Proof. In fact, the case 0 < p/q < 1 was considered in [1]. Using the trace

theorem for the seminorm (see, for instance, [9]), the case 1 < p/q can be
easily proved. 0
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Denote by W a subspace of real-valued continuous functions linear on
triangles and V the space of traces of functions from W at I.

Unfortunately, the norm (3) does not work for the finite element case
(with the constant cp, independent of k). Indeed, let £ be a unit square
with the uniform grid. Let

p/q < B Mz)=1, zel.
Then for any u*(z) € W, such that
u'(z) = ¢"(z), z€T,

we have

1
Iy o) 2 gahs 1" l3pasn gy = 4alp/)*.

Let now p > 0, ¢ > 0, and p + ¢ > 0. Define the following norm in the
finite element space V:

halle™ (12, if p/q < R,
I s oy = Pl dunry + 0) e G,y i B2 <p/g<1,
P,
Pl‘f’hﬁpn(r) + ql!sohlli,(r) if p/g > 1.

The following theorem is valid.

Theorem 2. There ezist positive constants cy, cz, independent of p, q, h,
such that

h h
ll¥ ”H;,’:,;.(I‘) < ellwtllmg (a)

for any function u" € W, where " € V is the trace of u® on the boundary
I'. Conversely, for any function " € V there exists uP € W, such that

Wz)=¢'=) €T, wlay,@ <l o
Iy

Proof. For the case h? < p/q the proof is based on the technique from 7,
9, 11]. For the case p/q < h? we use the trivial extension of ©" by zero onto
inside nodes. O

2. Analysis of Poincare—Steklov operators
for anisotropic elliptic problems

In this section, we consider a model anisotropic problem which generates
the bilinear form a(u,v)
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alu v)—/ ( %B_U_l_ %QE) dz

where
p1 = const > 0, p2 = const > 0.

Assume that p; < p;. Let @ be the unit square. The analysis of the
Poincare-Steklov operators which corresponds to the bilinear form a(u,v)
is equivalent to the analysis of traces of functions on the boundary I'" of the
domain £ with respect to the norm

lull* = a(u, ).

Using evident scaling of variables, we can reduce the analysis of traces
with respect to the anisotropic norm {ju|| to the analysis with respect to the
isotropic norm but in the anisotropic domain £}

lull = (p1/p2)*?llull 5

Here B
Q={(z,y)|0<z<1, 0<y< H}

where H = (p;/p2)'/?. Denote by k an integer part of 1/H and set H; = 1/k,
S ={(,0)| i - H, <z < (i + 1)H},
(e H) | (i-)H <e<(G+1)H}, i=1...k-1,
L={(0,y)|0<y<H},
R={(Ly) |0<y<H},
Sy =LUSy, S§=LuUSt, S;=RUS;, Sf=RUS/,.

Define

||‘P||fq1/2(r) = H”‘»"“%HI‘) + |‘P|§{1/3(r):
lplZam = [ ¢*(z) d,

|‘P|Hl/z(r) = Zf f *@-——)d:cdy-!—

|z — y|?
S S"
((z) — o(y))? (¢(z) — o(y))?
S[ﬁ S dmdy+ff Iw—yP dz dy.

The following lemma holds [10]:
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Lemma 1. There ezists a positive constant ¢, independent of H, such that

lell gy < ellullgygy,
el g2y < alulmyg)

for any function u € H'(Q), where ¢ € HY?*(T) is the trace of u at the
boundary I'. Conversely, there exists a positive constant cp, independent of
H, such that for any function p € H/ 4(T") there ezistsu € H YQ) such that

u(z) = p(z), zel,
llllzry) < c2||9"”H1/2(p)
lula) < elel gy

Unfortunately, in the case of finite element spaces the above norm works
only for isotropic grids in 2. To consider anisotropic grids, we need to define
the grid dependent norms. Assume that there is a rectangular grid in Q with
the grid steps hy (in z direction) and h; (in y direction). Denote by Hj(Q)
the piecewise linear finite element space for this grid. The sides of Q2 denote
by

L ={(z,0)|0<z<1}, L={(=z1)]|0<z<1},

I3={(0v'y)|0<y<1}1 I4={(1,y)|0<y<1}.

For any finite element function ¢* € Hjy(T') we put in correspondence the
vector ¢ in the standard way.
The following lemmas hold.

Lemma 2. Let ©* € Hy(T"), such that
M) =0, ze€hLULUI,

Define the matriz S
(S, ) = inf [uh |31 g

for any ut € Hy(Q), such that ub(z) = p*(z), z € T.
Then there exist constants cy, ¢, independent of hy and hy, such that

c1(5¢,90) < 19" 3y + halelin ) < 2(Se, 0).
Lemma 3. Let " € Hy(I}). Define the matriz S
(S, ) = inf ||u*||31

for any uP € Hu(Q), such that uh(z) = h(z), z € T.
Then there ezist constants c;, cz, independent of hy and hg, such that

e1(S0,9) < 16" 2pa/2 s,y + halipln gy < ca( S, ).
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Finally, we have the following theorem.

Theorem 3. Let ¢" € Hy(T'). Define the matriz S
(S, ) = inf |[u"|| 51

for any uP € Hu(Q), such that uh(z) = p*(z), z € T.
Then there exist constants ¢y, ¢z, independent of hy and hy, such that

e1(Se, ) < ™Iyt he (el )+ i‘PEirl(.rz)) + ha (|<P|§rl(13)+ |‘P|fql{f4))
< ca( Sy, ) '
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