Joint NCC & I1S Bull., Comp. Science, 7 (1997), 35-55
© 1997 NCC Publisher

Formal semantics and verification
of distributed systems presented
by Basic-REAL specifications*

V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

The specification language Basic-REAL consists of executional and logical spec-
ification sublanguages. The first one is based on SDL and differs from it by multiple
clock concept, time intervals associated with actions, non-determinism, and rich col-
lection of channel structures. The second one is based on temporal and dynamic
logics extended by time intervals. The language includes fairness conditions. The
structural operational semantics of Basic-REAL is given by means of transition
systems. Throughout the paper an example “Passenger and Slot—Machine” is con-
sidered. Our approach to verification of Basic-REAL specifications is based on
inductive proof principles supported by model-checking and exploits refinement,
fairness conditions, and time constraints.

Introduction

The role of formal description techniques in development of distributed sys-
tems increases since such systems become more complex and require more
efforts for their documentation, testing and verification. In this connection
it is sufficient to refer to the development of the well-known specification
language SDL. But despite a number of merits making SDL popular, this
language has some shortcomings. Firstly, SDL has no means for describ-
ing properties — either basic ones, like deadlock, starvation, etc., or more
complex ones. Secondly, development of formal semantics lags behind the
language development; still there is no universally recognized, mathemati-
cally strict description for semantics of the latest versions of SDL.

To overcome the first shortcoming, some authors ([4, 10, 11)) use external
formalisms for describing properties. To overcome the second one, a number
of authors ([3, 7, 11, 14]) extract some fragment of SDL syntax, sometimes
varying its informal semantics; and for this fragment they build complete
formal semantics.

The starting point of our research was the original version of REAL
[12] consisting of a SDL-like executional specification language and a logical
specification language based on temporal logic CTL (6]. A formal syntax,

*Partially supported by INTAS-RFBR under Grant 95-0378.

36 V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

informal semantics and a sketch of formal semantics of REAL were described
in [12].

Logical specification language of REAL cannot be strictly reduced to
CTL, it is an extension of CTL with time intervals and first-order dynamic
logic constructions [8].

Three main approaches are used to model real-time systems: discrete-
time, fictitious-clock, and dense-time. Our approach to real-time is a mul-
tiple clock variant of the fictious-clock approach [15] when a special tick
transition counts time steps.

However, REAL semantics was rather complicated. This is why the idea
arose at first to construct a simplified level of REAL and then to develop
its complete formal semantics.

In [13] a simplified level of REAL called Basic-REAL was introduced and
its formal semantics was presented. As compared with REAL, the Basic-
REAL uses fairness conditions, predefined types as well as abstract data
types, predefined structures and semi-abstract channel structures. We ex-
press structural operational semantics [16] of Basic-REAL specifications by
means of transition systems. Basic-REAL is a verification-oriented version
of REAL. This allows us to use Basic-REAL for verification of distributed
systems.

The Basic-REAL language is intended to the representation of finite
as well as parameterized and infinite systems (the parameterized example
“Passenger and Slot-Machine” see below). Parameterized and infinite sys-
tems cannot be automatically verified by a straightforward application of
the model-checking method. This is why we combine model-checking with
inductive reasoning in our example.

We consider proving distributed systems properties in style of [9]:

e classify properties into classes of problems with respect to the syntac-
tical structure of the corresponding logical specifications,

e formulate and validate problem-oriented proof principles for arbitrary
transition systems,

e apply the problem-oriented proof principles to the transition systems
generated by the operational semantics of the verified executable spec-
ifications.

In practice, the third item requires preliminary simplification of the ver-
ified executable specifications so that the verified specifications are a re-
finement of the simplified specifications. In the framework of presented
approach, the verification procedure of the simplified specifications is semi-
automatic: general proof outlines are designed manually but the application
of problem-oriented proof principles is supported by model-checking.

Formal semantics and verification of Basic—-REAL specifications 37

The rest of the paper consists of five sections and Appendix. The general
concepts of the specification language are stated in Section 1. The main con-
structs of Basic-REAL language are explained with the help of an example
(Passenger and Slot-Machine) in Section 2. Foundations of Basic-REAL
semantics and logical specifications semantics are described in Section 3.
In Section 4 semantics of executional specifications is explained. The ver-
ification example is considered in Section 5. In conclusion the results and
further research directions are discussed. Appendix contains an example of
Basic-REAL executable specification.

1. General concepts of Basic-REAL

Basic-REAL language consists of executional and logical specifications sub-
languages.

The executional specification language is intended for describing the
structure of distributed systems, while the logical specification language
describes their properties.

Basic-REAL has a two-level hierarchy: an executional specification is a
process or a block consisting of processes; a logical specification is a pred-
icate or a formula consisting of predicates. Basic-REAL allows only local
communication via channels. Channels are intended for signals with param-
eter passing. The channels themselves are semi-abstract data structures:
they are not abstract data structures in general, there exist some restric-
tions for their interpretation, but these restrictions permit some standard
data structures such as queue, stack, multiset (bag), and so on. These stan-
dard data structures are predefined in the language. Similarly, Basic-REAL
exploits the abstract data types for variables and parameters of signal, but
there exist some predefined types (e.g., integer) and type constructors (e.g.,
array). Properties of non-predefined data structures can be specified by
means of logical specifications. The elementary properties that may be ex-
pressed by means of the logical specifications, are relations on variables and
signal parameters, control state locators, emptiness and overfull controllers,
presence and readiness checkers for signals in channels. The formulae are
constructed from the elementary properties by means of propositional com-
binations, variable quantification, temporal interval modalities (O and ©),
and behaviour modalities (EACH and SOME).

The behaviours of the executional specifications may be restricted by the
fairness conditions. The fairness conditions mean that we consider not all
behaviour space, but only the behaviours in which the fairness conditions
hold infinitely often.

A specification (both executional and logical one) consists of a head, a
scale, a context, a scheme, and subspecifications.

38 V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

The head of the specification determines its name and kind: the execu-
tional specification is a process (PROC) or a block (BLCK), and the logical
one is a predicate (PRED) or a formula (FORM). The processes and the
predicates are elementary specifications, and the blocks and the formulae
are composite specifications consisting of processes and predicates, respec-
tively.

The scale of the specification is a finite set of homogeneous linear
(in)equalities with positive integer coefficients on uninterpreted time units,
and the special symbol co can be used for infinity.

The context, of the specification is a finite set of type definitions and
object (variable and channel) declarations.

There are some predefined types (at least, integer numbers) and some
type-constructors (at least, arrays).

The scheme of a block consists of fairness conditions and channel routes
connecting its subspecifications (i.e., processes) to each other and to the
external environment. The scheme of a process consists of fairness conditions
and a process diagram. The scheme of a formula is somewhat average of what
in mathematical logic is called formula and formula scheme (see the example
below). And the scheme for a predicate is its name with the substituted
actual parameters.

Remarks: (1) we do not require all objects of all specifications to be
declared in the context of the specification; (2) all states, variables, channels
with their parameters are identified in logical specifications by their extended
names which consist of the process name and its own name separated by
point, e.g., gp.station is a variable station from a process gp.

2. Basic—REAL specifications of distributed
systems

In order to illustrate the general concept of the language Basic-REAL, let
us consider the following example: Passenger is buying a railway ticket in
an automatic booking-office (Slot~Machine).

A description of the example.
The passenger can:

¢ see the remaining sum on the indicator,

e receive the coins returned by the Slot-Machine from the special change
window,

e drop coins into the slot,
* get a ticket with a station name from the special booking window,

* press buttons with station names or commands of ticket request/can-
cellation.

Formal semantics and verification of Basic-REAL specifications 39

The Slot—-Machine can:

e get from the Passenger a station name or a command of ticket can-
celling, or requesting a ticket through the buttons.

e show the remaining sum on the indicator,
e return all dropped coins through the change window, -
o issue a ticket with a station name printed on it,

e receive coins through the slot.

Suppose that the Slot-Machine can execute 30-100 operations per sec-
ond, while the Passenger is slower, he/she can make 1-20 operations (actions
or decisions) per minute.

There are coins with nominals 1, 5, 10, 20 and 50, and there are three
stations: a, b and c.

We will call the Passenger ‘good’ if he/she follows a natural protocol of
buying a ticket to a desired station, otherwise we will call the Passenger
‘bad’.

Informally, the natural protocol of buying a ticket by the ‘good’ Pas-
senger is as follows. The good Passenger presses the button with a station
name and, while looking at the indicator, drops coins (having enough coins
of all nominals). Once the indicator shows 0, the ‘good’ Passenger presses
the request ticket button and then gets the ticket.

An example of ‘bad’ Passenger is as follows: he/she may try to get the
ticket while the indicator is not 0 yet, but when it is 0, he/she keeps dropping
coins.

We will consider two properties:

e “progress property”: the ‘good’ Passenger is sure to get the ticket,

o “safety property”: the ‘bad’ Passenger will never get the ticket.

Formal specification. Let us specify this informally described system
as executional specifications of the Basic-REAL language. It will be pre-
sented by two blocks containing specifications of the protocol for the ‘good’
and the ‘bad’ Passengers.

The first block consists of two processes: the good-passenger and the
Slot—-Machine. The head of the block is good-passenger_and_slot-machi-
ne: BLCK.

The scale of the block deals with the time units, such as a minute
(min), a second (sec), Passenger’s ingenuity (ing) and Slot-Machine opera-
tions (opr), where 1 min = 60 sec; 1 ing < 1 min < 20 ing; 30 opr
< 1 sec < 100 opr.

The context begins with the type definitions. Let us describe them in
Pascal style: value = (1, 5, 10, 20, 50); region = (a, b, c);

-

40 V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

Indicator
Slot

Ch .
Passenger , =2 Glot—Machine
Booking

Figure 1. Block: good-passenger.and_Slot-Machine

The declaration of a channel shows whether it is an INPut channel (i.e.,
going from the environment to one of the block processes), OUTput channel
(from a process to the environment), or INNer channel (from one process to
another); its capacity and structure, its name and the set of possible signals
with their lifetimes, names and types of their parameters.

For example, the inner channel buttons is a so-called elementary buffer
(ie., one-element queue) with the possible signal s_button, the parameter
station of the type region and the following possible signals: cancel (to
return all coins dropped so far) and request (to give the ticket) without
parameters. All these signals have the lifetime “untila one request” (i.e.,
they are removed from the channel after the first reading). Then the inner
channels follow: the unbounded queue booking with the signal ticket with
parameter station of type region, the unbounded queue slot with signal
coin with parameter nominal of type value, the unbounded queue change
with signal coin with parameter nominal of type value, elementary buffer
indicator with signal info with integer parameter left.

Then there is the scheme of the block good-passenger_and_slot-ma-
chine (Figure 1) and the subspecifications: the processes Slot-Machine
and good-passenger.

Two processes “inherit” the scale and the context of the block to which
they belong with the obvious correction: for example, the channel buttons
in the process Slot-Machine becomes input (INP role) in the process
Slot-Machine, and output (OUT role) in the process good-passenger. The
contexts of the processes also contain variable declarations. For example,
the context of the process Slot-Machine defines the following variables:
expenses, natural-valued array indexed by region, for the prices to the
corresponding station; coins, natural-valued array indexed by value, for
counting the coins of corresponding nominal received from the Passenger;
station ranging over region, for storing the name of the station that the
Slot-Machine has accepted; 1left, the sum to be received; and nominal, the
nominal of the last received coin.

The schemes of the processes Slot-Machine and good-passenger are
presented in SDL-like graphical form in Figure 2 and in Figure 3, respec-
tively.

Formal semantics and verification of Basic-REAL specifications 41

start

t

initl
init2 C

!
r getl
showl

show?2

P
getcoins <

' ' returnl l

W

return2
l check] retcoinl
J l retcoin2

| give > L

Figure 2. The Slot-Machine

Here, a name of a state in frame " means that ina transition marked
with this state an execution of non-deterministic program is done, ——>
means sending of a signal, ———< means acceptance of a signal, and
means cleaning a channel.

Final states (they do not mark transitions but present in some JUMPs
of transitions) are framed with . ‘

Arrows denote possible JUMPs from the states. An arrow directed down
to its unique successor may be omitted.

When there are no explicit temporal restrictions on the behaviour of the
Passenger and the Slot-Machine, it is necessary to use the explicit fairness
conditions stating that the Slot-Machine cannot stay forever at a state (with
the exception of waiting for the Passenger’s actions). For the ‘timed’ Slot—
Machine and Passenger, the fairness conditions are unnecessary, since they
are provided by the temporal restrictions on the inner actions of the Slot-
Machine and the Passenger.

For simplicity and readability, let us use the abbreviations “gp” and
“sm” for “good-passenger” and “Slot-Machine”, respectively, in the ex-
tended names in the following examples and in the Section 4 .

42 V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

start
press
[
look <
continue |
| —r getl >
chcoin | get2
drop
5

Figure 3. The Good Passenger

Timeless progress property 1: the ‘good’ Passenger is sure to get
the ticket. It is expressed as follows:

(AT gp.start) & (AT sm.start) & (EMP buttons) — (ticket(gp.station) €
booking).

Here (AT gp.start) & (AT sm.start) means that the initial states of the Pas-
senger and the Slot—-Machine belong to the set of active states, (EMP buttons)
denotes the emptiness of the channel buttons, (ticket(gp.station)Ebooking)
denotes that the signal ticket (with the parameter equal to the value of
variable gp.station) is in the channel booking.

The ~+ symbol is an abbreviation for the construct = EACH good-pas-
senger_and_slot-machine & FROM NOW UNTIL oo which means that if the
formula before this symbol is true then for each (EACH) behaviour of the
block good-passenger_and_slot-machine there exists a time moment (©) be-
tween zero (FROM NOW) and infinity (UNTIL co), such that the formula after
the symbol — is true.

When the time interval of a transition is FROM NOW UNTIL oo, we omit
it.

Timed progress property 1: the ‘good’ Passenger will get the ticket
by the (pre-known) time moment T = Const (MazTicketPrice / MinCoin-
Value) min where min means minutes. It can be obtained from timeless
property 1 by replacing the symbol co by T'.

Safety property 2: the ‘bad’ Passenger will never get the ticket.

(AT bp.start) & (AT sm.start) & (EMP booking) => EACH bad-passen-
ger_and _slot-machine (0 FROM NOW UNTIL co (EMP booking), where EACH
bad-passenger_and _slot-machine means “for each behaviour of the block
bad-passenger_and Slot--Machine”, O FROM NOW UNTIL oo means “for
each time moment between zero and infinity”.

Formal semantics and verification of Basic-REAL specifications 43

3. Foundations of Basic-REAL semantics

In order to define semantics of specifications (both executional and logi-
cal) of Basic-REAL, it is necessary to define the concept of a model with
data structures and the concept of configuration. After that, a set of all
behaviours in the space of configurations (i.e., countable sequences of con-
figurations) will be associated with every executional specification and a
truth set will be associated with every logical specification in the space of
configurations.

A model with data structures is a triple M = (DOM, INT, DTS), where
a non-empty set DOM # 0 is the domain of the model (i.e., the union of
all the data type domains defined in the specification); INT is the inter-
pretation of relation and operation symbols from the specification by the
relations and the operations over DOM; and DTS is a finite set of data
structures for the channels defined in the specification.

The data structure is a set of finite oriented graphs, each of which is
marked with a pair (signal, parameter), where parameter € DOM. Two
relations EMP and FUL, and two partial operations PUT and GET are
defined for the data structure DAT, such that: PUT : (DAT x SIG x
DOM) — DAT, dom(PUT) = (DAT\ FUL) x SIG x DOM, val(PUT) =
DAT \ EMP, and GET : DAT — (DAT x SIG x DOM), dom(GET) =
DAT \ EMP, val(GET) = ((DAT \ FUL) x SIG x DOM).

For a concrete data structure DAT, a graph st € DAT \ FUL, a signal
sg € SIG, and an element el € DOM, a graph PUT (st, sg, el) is constructed
by adding a new vertex and several new edges connecting the new vertex with
the old ones, and marking the new vertex with the pair (sg,el). For a data
structure DAT, a graph st € DAT \ EMP GET(st) is a triple (st', sg, el),
where st' differs from st by the absence of the vertex with all the edges
connecting it with others, so that (sg, el) is the mark of the removed vertex
in st. (The rules of removing are determined by the structure DAT itself.)
For example, if the data structure is a queue, then DAT is a set of all finite
sequences of pairs (signal, parameter). The relation EMP is true on the
empty sequence, the relation FUL is always false.

Let us fix a model with data structures M = (DOM,INT, DTS). For
simplicity, let DTS consist of the only data structure DAT, ie., DTS =
{DAT}.

The configuration space SPCy (or SPC, while M is fixed) is a set of
configurations CNF, i.e., quadruples (T,V,C, S), where

e Tis a value of the multiple clock (see below);

e V is an evaluation of variables, i.e., mapping which connects every
variable with its current value from DOM,;

44 V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

e ('is a current content of channels, i.e., mapping which associates every
channel with a marked oriented graph from DAT;

e Sis a current control state (i.e., mapping DEL which connects each
state with its current delay presented by local clocks) and the set ACT
of current active states.

Let us fix a scale. Let unity, ..., unit, be all time units occurring in
the scale. Then the scale is a system of homogeneous linear inequalities
with the variables unity, ..., unit,. The integer positive solutions of this
system will be called the speeds (of the clocks for the time units unity, ...,
unit,). The observation of the multiple clock T is the vector (tt1, ..., ty) :
of non-negative integers such that t; = t/mi, ..., t, =t/m,, wherem,, ... ,
my, are the speeds of the clocks for unit,, ..., unit, and “/” is the integer
division. If T = (t, t1, ..., t,,) is the observation of the multiple clocks, then
t is called the global time, ¢; is the time of the clock for unity, ..., and t, is
the time of the clock for unit,. For the observations of the multiple clocks
T1 and T2 we will write T1 < T'2 iff the value ¢! of the global clock in T'1
is less than or equal to the value ¢2 of the global clock in T'2.

For example, let the scale be 10 tact <11tick, 10 tick < 11 tact,
60 sec = 1 min. The time units occurring in the scale are tact, tick, sec
- and min. Then ml = (100, 102, 10%, 6+ 10*) and m2 = (105, 101, 20, 1200)
are possible variants of the speeds of the clocks, while m3 = (100, 111, 108,
10*) is not, because the inequation 10 x 111 < 11 x 100 and the equation
60 x 10* = 108 are wrong. The vector (532, 5, 5, 0, 0) as well as the vector
(908, 9, 8, 0, 0) may be an observation of the multiple clock in the model
with speeds m1, while the vector (908, 9, 9, 15, 0) cannot be an observation
because 908/102 # 9.

If a variable is declared in a specification with a type, then DOM must
include this type and the values of this variable must always belong to this
type. Similarly, if a channel is declared in a specification with a structure and
capacity, then the corresponding DAT must be a graphical representation
of this declaration. '

Let us define semantics of logical specifications. For any configuration
CNF and any logical specification SPC, the fact that the configuration
belongs to the truth set of the logical specification SPC is denoted by CNF
= SPC, and its negation is denoted by CNF [SPC. In order to shorten
the description of semantics of logical specifications, let us fix a configuration
CNF=(T, V, C,) where S=(DEL, ACT). The relation CNF = is defined
by induction on the structure of the scheme of logical specification SPC.

Induction basis: SPC is a predicate. If SPC is a relation, then its
scheme (in prefix form) is R(t;,... yt2), where R is a relation symbol, and
t1,...,t3 are terms constructed from operation symbols, variables and pa-
rameters of channels. Then CNF = SPC iff VALecnr(th), ..., VALcnp(ts)

Formal semantics and verification of Basic-REAL specifications 45

are in the relation INT(R) where VALcnr(t1), - VALcnF(t2) are deter-
mined according to the ordinary rules.

If SPC is a locator, then its scheme has the form AT state. Then CNF =
SPC &statee ACT.

If SPC is a controller, then its scheme has the form EMPchan or OVFchan.
Then CNF |= SPC < EMP(C(chan)) or CNF = SPC < FUL(C(chan)).

If SPC is a checker, then its scheme has the form sig € chan or
sig RD chan. Then in the first case: CNF = SPC & 3 val € DOM such
that 3 (sig, val) € C(chan); in the second case: CNF = SPC < 3 graph €
DAT and val € DOM, such that GET(C(chan))=(graph, sig, val). .

Induction step. If the scheme of SPC is a name of a predicate pred,
then CNF = SPC & CNF = pred.

If the scheme of SPC is a propositional combination, then its value is
determined in the natural way. For example, if the scheme of SPC has the
form ~F, where F is the scheme of a formula, then CNF = SPC < CNF [~
SPF, where SPF differs from SPC by the scheme only, which is F.

If the scheme of SPC is Vz.F (3z.F), where F is the scheme of a formula,
then CNF |= SPC & for each (resp., some) configuration CNF' differing
from CNF at most by the evaluation of variable z, the following holds: CNF'
k= SPF, where SPF differs from SPC by the scheme only, which is F.

If the scheme of SPC is M1 SYS M2 DURATION A, where M1 is modal-
ity EACH or SOME, SYS is an executional specification, M2 is modality O
or O, duration is a time interval, and A is a scheme of a formula, then
EACH means “for each fair behaviour”, SOME means “there exists a fair
behaviour”, O means “for all time moments”, & means “there exists a time
moment”. ' _

For example: CNF |= EACH SYS © duration A holds iff for each be-
haviour of the executional specification SYS starting from the configuration
CNF, there exists a time moment T' € duration, such that CNF' |= SPF
holds, where CNF' is a configuration in the behaviour in which T’ is the
observation of the multiple clock, and SPF differs from SPC by the scheme
only, which is F.

4. Semantics of executional specifications

The semantics of executional specifications will be discussed in terms of
events and step rules. Basic-REAL language has five kinds of events:

o WRT, putting a signal with parameters into a channel (WRiTing),

e RDN, getting a signal with parameters from a channel (ReaDiNg),

e CLEAN, cleaning a channel,

¢ EXE, program execution,

46 V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

e INVIS, an INVISible event (a clock tick without changing the channels,
variables, and states).

A step rule has the form CND = CNF1 < event > CNF2, or

CND
CNF1 < event > CNF2

where CND is a condition on the configurations CNF1 and CNF2 and on
the event. An intuitive semantics of the step rule is as follows: if the condi-
tion CND holds, then the executional specification can be transformed by the
event from the configuration CNF1 into the configuration CNF2. A count-
able sequence of configurations is a behaviour of an executable specification
iff for each successive pair CNF1 and CN F2 from the sequence there exist
an event and a condition CND, so that CND |= CNF1 < event > CNF2
is an instance of appropriate step rule.

For blocks there is a unique step rule, namely, the composition rule.
Informally, a behaviour of a block is a simultaneous behaviour of all its pro-
cesses with interleaving access to channels. Formally, let a block B contain
processes P, ..., P as its subblocks. Then

RULE 0 (Composition)

foralli=1,...,k CNF1 <event/P; > CNF2
CNF1 < event > CNF2

where event/P; for each process P; is the event itself, if the event is either
reading from an input channel or writing a signal with parameters into an
. output channel of the process P; or cleaning an output channel of the process
P;, and it is INVIS otherwise.

The remaining nine step rules deal with processes and an external en-
vironment. To be short, let us fix a process and a pair of configurations
CNF1 = (T1,V1,C1, 81 = (ACT1,DEL1)), CNF2 = (T2,V2,C2,52 =
(ACT?2,DEL?2)).

For any value of the multiple clock T and any interval we shall say that
the value of the multiple clock belongs to the interval, iff it does not exceed
either left or right bounds of the interval.

The first rule for process is a stutter rule. Informally, it concerns the
case when nothing changes in the process, except the value of the multiple
clock and the delay counter of the active state.

The second and third rules deal with deadlock and stabilization. Dead-
lock rule means that in appropriate time intervals (specified by the process
diagram) the process has failed to fulfill reading or writing, i.e., a long star-
vation has lead to the deadlock. Stabilization rule means that the process is

Formal semantics and verification of Basic-REAL specifications 47

in a state which marks no transition on the process diagram, so the process
stabilizes. The first three rules deal with the event INVIS.

The fourth and fifth rules deal with the process reading a signal with a
parameter from an input channel and writing a signal with a parameter into
an output channel, respectively.

The sixth and seventh rules deal with appearing of a new signal with
a parameter in an input channel and with disappearing of a signal with a
parameter from an output channel.

The eighth one is the rule of cleaning a channel. The ninth rule for
process is the rule of program execution. It is represented by the binary
relation IO (Input—Output) on the set of variable values.

Let us consider the following rules: stuttering and reading.

At first we formulate conditions that we will use in the step rules. Note
that all quantifications are made over all process variables.

TIME.CONST T1=T2

TIME.STEP T1<T2

VAR.CONST Vz.Vi(z) = V2(x).

VARSTEP(z) Vy#x.V1(y)= V2(y).

CHAN.CONST Vchan.Cl(chan) = C2(chan).

CHAN.STEP(chan) VY chan' # chan: C 1(chan') = C2(chan’).
CHAN.HEAD(chan, sig, T) GET(C1(chan)) = (C2(chan), sig, V2(z)).
DEL.ZER Vstate.DEL2(state) = 0.

DEL.NOT-OUT Vstate. if state € ACT1, then there is a transition in
the process diagram state body interval jump, so that DEL1(state) does not
exceed the right bound of the interval.

DEL.IN(state, interval) DEL1(state) € interval.

DEL.PROGR Vstate. if state € ACT1,

then DEL2(state) = DEL1(state) + T2 — T1, else DEL2(state) = 0.
ACT.CONST Vstate.state € ACT1 « state € ACT?2.

ACT.UNIQUE 3 unique state.state € ACT1.

ACT.ACT(state) state € ACT1, Vstate' # state.state' ¢ ACT1.
ACT.NEXT(nezt) next€ ACT?2, Vstate' # neat.state’ ¢ ACT2.
RTR(state, sig, z, chan, interval, nect) the process diagram contains the
transition state READsig(z) FROMchan interval JUMPSet, where Set is the set
of states such that next € Set.

Now we can formulate the step rules.

RULE 1 (Stuttering)

TIME.STEP, VAR.CONST, CHAN.CONST, ACT.UNIQUE,
ACT.CONST, DEL.PROGR, DEL.NOT-OUT
CNF1 < INVIS > CNF2

48 V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

RULE 4 (Reading)

TIME.CONST, DEL.ZER, 3 state, interval, next: VAR.STEP(z),
CHAN.HEAD(chan, sig, z), CHAN.STEP(chan), ACT.ACT(state),
ACT.NEXT(nezt), DEL.IN(state, interval), RTR(state, sig, z, chan,
interval, nezt)

CNF1 < RDN(chan, sig,z) > CNF2

5. Verification of progress properties

5.1. The proving method

In the framework of our approach we consider verification as proving proper-
ties (presented by logical specifications) of systems presented by executional
specifications. Let us illustrate proving the timeless progress property 1
for the system good-passenger_and_Slot-Machine with fairness conditions.
We will apply the approach of [9] and then exploit the refinement for proving
the same property for the timed variant of the same system. So the variant
of the system with the fairness conditions is a simplification of the timed
variant of the same system.

When being applied to our example, the refinement technique gives
the following. Because of the time restrictions, the original (timed) sys-
tem good-passenger_and slot-machine cannot stay forever in any state
of the processes good-passenger and slot-machine in which these pro-
cesses do not wait for input signals; each behaviour of the timed system is
a fair behaviour of the system with the fairness conditions. And since the
progress property 1 deals with the modality EACH on all (fair) behaviours,
the progress property 1 for the system with the fairness conditions implies
the same property for the original system.

As for the approach of [9], it consists of classification of properties on
the kind of formulae they are specified by, development and justification of
proof principles for formulae of special kinds, and application of these proof
principles. It should be noted that the proof principles in general differ from
inference rules, because the inference rules are purely syntactical and they
are used in the framework of an axiomatic theor , while the proof principles
are semantical and they work in the framework of a metatheory usually
including set theory or arithmetics.

Let us fix an arbitrary executional specification SYS.

Now we can formulate the proof principles for the progress properties.
We formulate them for the sets of configurations SETCNF', SETCN F",
possibly, with subscripts. The semantics of SETCNF' s SETCNF" is
as follows: for any configuration CNF' from SETCNF' and for any fair
behaviour of SYS, if this behaviour starts from CNF’, it contains a configu-

formal semantics and verification of Basic-REAL specifications 49°

ration CNF" € SETCNF". So, if SETCNF' and SETCNF" are validity
sets of logical specifications with the schemes A and B, respectively, then
SETCNF' — SETCNF" is equivalent to A — B. When formulating the
principles, the concept of a fair firing is used. By a firing we mean a triple
CNF' <EVN > CNF", where CNF' and CNF" are configurations, and
EVN is an event obtained according to the step rules for the executional
specification SYS. A fair firing is a firing which is the beginning of a fair
behaviour of the system. Each of the principles is rather evident, so we
present them without proofs. We have to remark that our principles are
similar to the proof rules and the Inductive Principle for “Leads-To” from
5, Section 3.6.3], but they are more flexible than those.

1. Subset principle:
SETCNF' C SETCNF" + SETCNF' — SETCNF" or in the logical
form (A -+ B+ A~ B).

2. Union principle:
{SETCNF{—SETCNEF]li € I} + (UictSETCNF})~(U;c;SETCNE})
or in the logical form (Vi € I.A; = B; - 3i € I.A; — B;) for any finite
set 1.

3. One step principle:
SETCNF = {CNF"|3 a fair firing CNF' < EVN > CNF"} - {CNF'}
— SETCNF.

4. Transitivity principle:
SETCNF' — SETCNF", SETCNF" — SETCNF" + SETCNF' —
SETCNF" or, in the logical form, A— B, B~ C + A~ C.

5. Principle of partial mapping to well-founded set:
Let WFS be a well-founded set, i.e., a set with a partial order < and
without infinite descending sequences. Let MIN be the set of minimal
elements of WFS. Let f be a partial function from the set of configurations
SETCNF to the well-founded set WFS. Let f~ C WFS x SETCNF be
the inverse of f. (The inverse f~ is a set of pairs {(C1,C2)|C1 € WFS,C2 ¢
SETCNF such that f(C2) = C1}.)
Yo € WFS\ MIN.f~{v}—f{ulv > u} - f~(WFS)~f~(MIN).

We would like to have a sufficient criterion for the principle of partial
mapping to well-founded set: if the following conditions (INV) and (DEC)

hold, then the function f meets the principle of partial mapping to well-
founded set.

(INV) Vv € WFS\ MIN, V fair firing CNF' < EVN >
CNF",if f(CNF') = v, then f(CNF") < v;

(DEC) V fair behaviour, if f in the initial configuration does not
take a minimal value, then in this behaviour there is a
pair of configurations where f takes different values.

50 V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

5.2. Example “Passenger and Slot—Machine”

Our aim is to apply the principles described above to verification of the
progress property 1 of the timeless system with fairness conditions from the
section 2. Let us remind that for simplicity in the extended names in this
section we use the abbreviation “gp” for “good-passenger” and “sm” for
“Slot-Machine”, respectively.

According to the transitivity principle for proving progress property,
(AT gp.start) & (AT sm.start) & (buttons IS EMPTY) & (indicator IS
EMPTY) & (sm.ezpenses|gp.station] > 0) {ticket WITH gp.station
IN booking) it is sufficient to prove the correctness of each of the “local”
progress properties of P1 + P2 — P3 — P4 — P5, where:

Plis (AT gp.start) & (AT sm.start) & (buttons IS EMPTY) &
(indicator IS EMPTY) & (sm.exspenses [gp.station] > 0);

P2is V(AT gp.s' | ' € SO’ = {look, continue, chcoin, drop}) &

V(AT sm.s" | s" € S1" = {showl, show2, getcoins, add}) &
(sm.station = gp.station) & (sm.left < gp.left) & (buttons IS EMPTY)
& ((AT sm.show?2) V(sm.left < indicator.left < gp.left));

P3is (AT gp.continue) & V(AT sm.s" | 8" € §1" = {showl, show?,
getcoins, add}) & (sm.station = gp.station) & (gp.left < 0) & (sm.left <
0) & (buttons IS EMPTY);

P4is (AT gp.get2) & (AT sm.initl) & (sm.station = gp.station) &
(buttons IS EMPTY) & (ticket WITH sm.station IN booking);

P5is (ticket WITH gp.station IN booking).

|
\
|
\

But the property P4 — P5 is evident because it is a particular case of

the subset principle.

Properties P1 — P2 and P3 — P4 can be proved by a model-checker be-
cause the set of all possible values of variables and parameters is restricted by
the set of their values in an initial configuration, (i.e., a configuration where
P1 (P3, respectively) holds), so that only finite information is changed.
But the step P2 — P3 is inherently parameterized by the price of the ticket
required; therefore, this step is inductive.

Now let us consider the proof of the progress property P2 — P3:

Let A be the precondition of this progress property, and B, its postcon-
dition. As a well-founded set let us take the set of pairs of natural numbers
with the following partial order: (al, bl) < (a2, b2) iff either (a) al < a2
and bl < b2, or (b) al < a2 and bl < b2. Then MIN = {(0, 0)}. Let
SETCNF be the set of configurations such that CNF |= A.

As the partial function f : SETCNF — WFS let us take the function
defined as follows: f(CNF) = (POS(sm.left), POS(gp.left)), if CNF =
A, and undefined otherwise. Here POS is the operation of taking the posi-
tive part of an integer number, i.e., POS(c) = ¢, if ¢ > 0, and 0 otherwise.
Let us prove that f~(WFS)—f~(MIN) applying the sufficient criterion

Formal semantics and verification of Basic-REAL specifications b1

for the principle of partial mapping to well-founded set.

(INV) Let us choose v = (a,b) € WFS\ MIN and a fair firing
CNF' < EVN > CNF", such that f(CNF) = v. Since CNF' |= A,
CNF' | (V(AT gp.s'|s' € S0')) and CNF' |= (V(AT sm.s"|s" € S1")).
Thus, the following events are possible in the configuration C/NF': RD(info,
gp.left, indicator), EXE(IF gp.left < 0 THEN SKIP ELSE ABORT),
EXE(IF gp.left > 0 THEN SKIP ELSE ABORT), EXE(“choosing the value
for gp.nominal”), WRT(coin, gp.nominal, slot), CLN(indicator), WRT (info,
sm.left, indicator), RD(coin, sm.nominal, slot), EXE(“decrementing the
value of sm.left”).

By virtue of CNF' |= A, in the configuration CNF' holds: sm.left <
gp.left and (AT sm.show2) V (sm.left < indicator.left < gp.left).

Therefore, f(CNF") € (a,b), (a,d),(a — ¢,b) so, f(CNF") < (a,b),
where ¢ is the value of sm.nominal in CNF', and d is the value of indica-
tor.left in CNF".

(DEC) Let v € WFS\ MIN. According to the rules of the structural
operational semantics and the property (INV), we have:

{CNF,|f(CNFy) =v} = SETCNF' = {CNF,| f(CNF;) <v and
CNF; = (AT sm.getcoin)}.

Let SETCNF1' = {CNF;| f(CNF;) < v, CNF; | (AT sm.getcoin)
and CNF; |= (slotISFULL)}, and SETCNF?2' = {CNF;|f(CNF3) < v,
CNF; |= (AT sm.getcoin) and CNF; |= (slot IS EMPTY)}, and
SETCNF" = {CNF; | f(CNFy) < v and CNF; |= (AT sm.add)}. Then
SETCNF' = SETCNF1' U SETCNF?, in an obvious way, and
SETCNF1' — SETCNEF", according to the rules of the structural oper-
ational semantics of the executional specifications and the property (INV).
For SETCNF?2' we have:

SETCNF?2' s {CNFs|f(CNFs) < v, and in CNFj holds:
(slot IS EMPTY), (AT sm.getcoin), (AT gp.drop)} — SETCNF1'.

Therefore, SETCNF' — SETCNF".

Analogously to the proof of the progress property (1), we can show
that (by virtue of the fairness conditions (* AT sm.add)) SETCNF"
{CNF;|f(CNF;g) < v} holds.

Therefore, for each fair behaviour CNFy ...CNF; ..., if f(CNF) = v,
then 3¢ > 0, such that f(CNF;) <v = f(CNF).

Therefore, f~(WF'S) — f~(MIN). Moreover, analogously to (1), one
can show that {CNFs|f(CNFs) <v} = {CNF|CNF = B}. To complete
the proof of progress property (2), it is sufficient to apply the transitivity
principle:

{CNF|ICNF | A} = f~(WFS), f-(WFS) — f~(MIN), f~(MIN) —
{CNF|CNF |= B} A B.

Let us note that all “local” — in the proof of progress property (2) can

also be proved by the model-checking technique.

52 V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

6. Conclusion

Thus Basic-REAL is presented as a language for executable specifications of
distributed systems and logical specifications of their properties. The com-
plete structural operational semantics for Basic-REAL is presented too. On
the base of this semantics a proving technique for properties of a special kind
(“progress properties”) is designed. This technique combines proof princi-
ples and refinement, fairness conditions and time constrains. The Basic-
REAL style of specifications and the verification technique are illustrated
by specification and verification of a new example of a distributed system
(good-passenger_and _Slot-Machine) protocol. Specification and verifica-
tion of another example (a variant of the alternating bit protocol from [5])
in a framework of Basic-REAL and described proving technique are given
in [2]. '

The semantics of time in Basic-REAL language is close to the fictious
clock semantics [1]. The semantics of [15] can be described in terms of
Basic-REAL language using a scale including a unique time unit (tick).
It is sufficient to extend a specification of the (distributed) system with a
(specification of a) process consisting of two transitions such that (at least)
one of them has a non-zero lower bound of its time interval, and fairness
conditions ensure that the transition fires infinitely often.

Our research has considerable perspectives. We are going to generalize
the proof technique for proving properties depending on time constraints
and to develop compositional proof principles. An important problem is to
develop a method for translation of SDL specifications annotated by logical
formulae in equivalent Basic-REAL specifications. We intend to develop an
abstract-real language with second-order quantifiers over sets of configura-
tions and to develop proving technique for this abstract language combining
proof principles and model-checking.

References

(1] R. Alur, T.A. Henzinger, Logics and Models of Real Time: A Survey, Lecture
Notes in Computer Science, 600, 1992, 74-106.

[2] E.V Bodin, Approaches to the verification of specifications on language REAL,
Specification and verification problems for concurrent systems, Novosibirsk,
1995 (in Russian).

[3] M. Broy, Towards a formal foundation of the specification and description
language SDL, Formal Aspects of Computing, 3, No. 1, 1991, 21-57.

[4] A.R. Cavalli, F. Horn, Proof of specification properties by using finite state
machines and temporal logic, Proc. of 7-th IFIP Conf. on Protocol Specifica-
tions, Testing, and Verification, 1987, 221-233.

Formal semantics and verification of Basic-REAL specifications 53

[5] K.M. Chandy, J. Misra, Parallel Program Design, Reading a.o., Addison-
Wesley, 1988.

[6] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite state
concurrent systems using temporal logic specifications, ACM Trans. Program-
ming Languages Systems, 8, No. 2, 1986, 244-263.

7 A. Gammelgaard, J.E. Kristensen, A correctness proof of a translation from
SDL to CRL, Proc. of 6-th SDL Forum, North-Holland, 1993, 205-219.

[8] D. Harel, First-order dynamic logic, Lecture Notes in Computer Science, 68,
1979.

[9] A. Heninger, Z. Manna, A. Pnueli, Temporal proof methodologies for real-
time systems, Proc. of Symp. on POPL, 1991, 353-366.

10] S. Leue, Specifying real-time requirements for SDL specifications —~ A temporal
logic-based approach, Proc. of 15-th IFIP Intern. Symp. on Protocol Spec.,
Test., and Verif., Warsaw, 1995, 19-34.

11] D. Mery, A. Mokkedem, CROCOS: An integrated environment for interactive
verification of SDL specifications, Lecture Notes in Computer Science, 663,
1993, 343-356.

(12] VA Nepomniaschy, N.V. Shilov, REAL92: A combined specification language
for real-time concurrent systems and properties, Lecture Notes in Computer
Science, 735, 1993, 377-389.

(13] V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin, A concurrent systems specifica-
tion language based on SDL & CTL, Proc. of Workshop on Concurrency, Spec-
ifications & Programming, Berlin, Humboldt University, Informatik—-Bericht,
No. 36, 1994, 15-26.

(14] F. Orava, Formal semantics of SDL specifications, Proc. of 8-th IFIP Intern.
Symp. on Protocol Spec. Test., and Verif., 1988, 143-157.

[15] J.S. Ostroff, Automated verification of timed transition models, Lecture Notes
in Computer Science, 407, 1990, 247-256.

[16] G.D. Plotkin, A structure approach to operational semantics, Technical report
FN-19, Aarhus University, DAIMI, Denmark, 1981.

54 V.A. Nepomniaschy, N.V. Shilov, E.V. Bodin

Appendix: Basic-REAL specification
of the example

Good_Passenger: PROCESS

1 min = 60 sec;
1 ing <= 1 min <= 20 ing;

TYPE value IS GRAPH 1, 5, 10, 20, 50;
TYPE region IS GRAPH a, b, c, none;

PR VAR station, station2 OF region.
PR VAR left, val OF INT.

INP UNB QUE CHN Decision
FOR s
WITH PAR stat OF regionm.
LIFE 1REQ.
OUT 1-ELM QUE CHN Buttons
FOR s_button
WITH PAR stat OF regionm.
LIFE 1REQ.
FOR cancel
LIFE 1REQ.
FOR ticket_req
LIFE 1REQ.
INP UNB QUE CHN Booking
FOR ticket
WITH PAR stat OF region.
LIFE 1REQ.
OUT UNB QUE CHN Slot
FOR coin
WITH PAR nom OF value.
LIFE 1REQ.
INP UNB QUE CHN Change
FOR coin
WITH PAR nom OF value.
LIFE 1REQ.
INP 1-ELM QUE CHN Table
FOR info
WITH PAR left OF INT.
LIFE INF REQ.

Formal semantics and verification of Basic—-REAL specifications

start
EXE READ s(station) FROM Decision
FROM NOW UPTO 1 ing;
JUMP press.
press
WRITE s_button(station) INTO Buttons
FROM NOW UPTO 1 ing;
JUMP look.
look
READ info(left) FROM Indicator
FROM NOW UPTO 1 ing;
JUMP continue.
continue
IF left <= 0 THEN JUMP getl
ELSE JUMP chcoin
getl
WRITE ticket_req INTO Buttons
FROM NOW UPTO 1 ing;
JUMP get2.
get2
READ ticket(station2) FROM Booking
FROM NOW UPTO 1 ing;
JUMP satisfaction.

chcoin
EXE IF left >= 50 THEN nominal = 50
ELSE IF left >= 20 THEN nominal = 20
ELSE IF left >= 10 THEN nominal = 10
ELSE IF left >= 5 THEN nominal = §
ELSE nominal = 1
FI FI FI FI
FROM NOW UPTO 1 ing;
JUMP drop.
drop

WRITE coin(nominal) INTO Slot
FROM NOW UPTO 1 ing;
JUMP look.

55

