
Bull. Nov. Comp.Center, Comp. Science, 21 (2004), 99–111
c© 2004 NCC Publisher

The DCMS library for open architecture
applications∗

M. Ostapkevich

Abstract. This paper presents a Dynamically Configurable Modular System
(DCMS), which is a library for the development of applications with an open archi-
tecture. The DCMS is oriented to a wide set of applications, such as mathematical
simulation, Web technologies, and so on. By now, the library has been used in the
WinALT simulating system, and the knowledge base and the portal development.
The substantiation and description of the DCMS architecture are given. A number
of applications, based on the DCMS are discussed. Such features as simplicity of
maintenance and usage, adaptability for the user’s requirements are gaining more
importance in order that a complex software be successfully developed. The concept
of open software architecture give rise to facilitating the development of software
with these features.

1. Introduction

As capabilities of hardware grow, the users require a better quality of appli-
cation software. Primarily, they expect a more convenient interface, a better
interactivity, a longer lifetime and a support of different kinds of hardware
with a wide range of performance as well as availability of miscellaneous op-
erating systems. To account these requirements and to successfully develop
an application, the following is necessary:

• Easy porting to constantly emerging new platforms and operating sys-
tems;

• Easy insertion of new functions into application so as to keep up with
the growing user’s demands;

• Application porting to distributed computing systems so as to gain a
higher performance and reliability.

When developing such applications the following questions arise:

• How the modules structure should be organized to obtain its flexibility,
extensibility and ease of maintenance;

• How the communications between remote processes should be orga-
nized in a distributed application;

• How to facilitate an application porting to other platforms;
• How to rise an abstraction level up to that required by an application.

∗Supported by the Russian Foundation for Basic Research under Grant 03-07-90302.



100 M. Ostapkevich

The solution to these questions could decrease the complexity of the open
architecture application construction. The goal of the DCMS creation is to
provide a tool for solving these questions.

2. Methods and tools for application program development

The Dynamically Configurable Modular System (further DCMS) appeared
as part of the WinALT simulating system development for fine-grain algo-
rithms and structures [1]. In earlier times, such a simulating system was
only required to perform simulation by a certain scenario described in a
program. Nowadays, the list of requirements is bigger:

• The system must be capable of working with as huge amount of data
as required, because it must simulate huge 3D pipelines, optical struc-
tures, physical models, and so on.

• The system must have advanced visualization, as no qualitative anal-
ysis of a simulating phenomenon can be done without it. The value of
simulation as a whole is very doubtful without such an analysis espe-
cially because of the structural complexity and data size of practically
useful models.

• The data exchange between the system and other applications should
exist. This makes it possible to embed the simulation as a phase of
data processing in longer chains, where the source data for simulation
are borrowed, for example, from an image processing system, and the
results are to be sent back to it.

• Standard requirements such as reliability, high performance, flexibility,
ease of maintenance or portability are gaining grater importance.

As a result of the influence of these new requirements, the new concepts of
software development have appeared.

The concept of distributed and parallel software systems was introduced
for increasing the amount of data under processing, improving the reliability
and performance. The distributed simulating system [2] can simultaneously
be executed at several interconnected hosts. Different hosts can process
different parts of model objects under control of a single simulating program
(data parallelism). Or, these hosts can perform different phases or aspects
of simulation (functional parallelism).

The concept of open software systems [3] was proposed for construc-
tion of portable programs with easy maintenance and capability to work
cooperatively with other programs. Such software systems must have the
following features: extensibility, interoperability, portability and friendliness
of the user’s interface. Extensibility means ease of a new function addition
or function modification without affecting the others. Interoperability is the



The DCMS library for open architecture applications 101

ease of communication and cooperation with other programs. Portability
denotes the ease of reimplementation of a software system on a new plat-
form. Friendliness of the user’s interface is the compliance with the existing
user’s interface standards, convenience for the user. The user-friendly inter-
face is logical and conceptually homogeneous and all of user’s functions are
documented in the user’s manuals.

Any of the mentioned concepts does not require obligatory tools, libraries
or languages. Nevertheless, the complexity of development depends on the
adequacy between the tools used and the adopted concepts and methods
of development. As a result of WinALT development process analysis and
planning of its updating, the idea of the DCMS library has appeared. The
goal of the DCMS is to facilitate the design of open software systems.

The DCMS is far from being the first tool for open software systems.
Even before the appearance of the very concept of open software systems,
many languages (Modula-2 [4]), system tools (linkers) had some limited
support of certain aspects of the openness. The most wide spread tools
dedicated specially to the openness are COM+ [5] and CORBA [6]. Among
others, there is a kind of software named “middleware” (JMQ, MSMQ),
coordination languages (Linda, JADE). As samples of a limited support for
certain aspects of openness or the full support of openness with narrowed
application area these could be mentioned:

1. Extensible Markup Language (XML) metalanguage for data descrip-
tion, whose primary goal is to unify the data representation formats;

2. Remote Procedure Call (RPC) protocol and a set of utilities for the
distributed application construction;

3. Common Gateway Interface (CGI) interface for Web/HTTP based on
the distributed application construction;

4. ISAPI, Servlet, Java Server Pages (JSP) enhancements of CGI, ori-
ented towards a better performance.

The COM+ and the OLE are, respectively, a model and tools for appli-
cation assembly if this application is represented by a set of components.
The COM+ can be considered as basis of the OLE. The OLE application
contains an OLE statically linked library and a set of external modules:
standard system components that implement common functions, which are
not specific in application, and the user’s components with application func-
tions.

The CORBA is a metatool, a technology for the open systems construc-
tion. The CORBA consists of the Interface Definition Language (IDL), a
request broker, a network protocol for interactions within a distributed ap-
plication (IIOP) and a set of standard services (naming, lifecycle, event,



102 M. Ostapkevich

object trader, transaction, security, persistency, etc.). A CORBA appli-
cation is formed by the components, interacting with CORBA and with
themselves. Their interface is defined in the IDL. There is a great number
of packages that implement the CORBA technology (IANA, ORBit). All
of them support the same language and protocols. This makes it possible
to communicate between applications based upon different CORBA imple-
mentations.

The DCMS just as COM+ and CORBA is a tool for the open software
development, but it is not aimed at the same objectives and solutions as in
COM+, CORBA. The DCMS is complementary to them. It is intended to
solve the problems, which lie at the periphery and have no convenient solu-
tions. What is more, it is planned to implement interoperability with both
CORBA and OLE by using their services and components and exporting
the DCMS modules as components visible to the COM+ and the CORBA
applications.

The principal feature of the DCMS is the orientation towards a mixture
of compiled and interpreted modules (half-interpreter system). Such a mix-
ture is quite typical of simulating systems, as it gives a greater flexibility at
run time and application adjustability by the user, although it lacks the per-
formance of fully compiled systems. For example, the WinALT interpreter
allows defining models with any number of arrays, procedures, imported ex-
ternal libraries without modification of the WinALT itself. Without inter-
preted language, the WinALT user would lack a convenient way to describe
models, and each new model would require a new system assembly instead
of its reconfiguration.

The principal means of the interface definition in CORBA based on the
IDL is static. The typical CORBA application is a collection of compiled
components statically using interfaces of each other and exchanging data
with the structure and the types defined at compilation. A typical DCMS
application uses a hierarchy of interface definition kinds from fast and static
to slower and flexible. Among all of them, the event-driven kind of an
interface plays the most important role for application modules. This inter-
face gives a maximum flexibility and reconfigurability of intermodular links,
because it allows modifications of the interface at the run time without af-
fecting all of its users that are not interested in such a modification. Also,
a DCMS application deals with data of the type and the structure altering
at the run time.

3. The DCMS implementation

The DCMS is the library of interface and implementation modules (as is
understood in Modula-2 [4]). The division of the module into two parts
allows abstracting from its implementation when using it. For example, let



The DCMS library for open architecture applications 103

an interface for the associative search data structure be defined. Different
implementations based on a list, AVL or RB trees or a hash table can be
produced for this interface. If one implementation module is substituted by
another, there is no need to modify the source texts that use the respective
interface. The goal of the DCMS creation is to facilitate the construction
of applications having all the properties of open software systems. The
substantiation and description of the architecture of the DCMS first version
as well as a model of intermodular cooperation, which is entirely based on
events, is given in [7]. The module generates an event in order to execute the
represented operation. The modules that have the implementation of the
required operation and are subscribed to a generated event, are activated
for operation execution. The principal advantage of such a model is the ease
of application modifications due to minimization of visible interfaces.

The application with an open architecture must be scalable and extensi-
ble. To attain such qualities, one should have a modular structure with the
ability to add and to exclude modules at the run time. The usual tasks for
such applications are: module management (registration, unregistration, ex-
port of their interfaces to other modules) and establishment of intermodular
interfaces. The module management in the DCMS is supported by imple-
mentation module manager and external module manager. Intermodular
communications are based on event-driven interface supported by the event
manager and the basic type manager that provides a single format for the
printed object representation in memory.

Construction of the distributed processing requires the inter-host data
exchange protocols that are based on common data formats. The central
role for distributed processing is played by the following DCMS modules: the
event manager, the basic type manager, the object manager, I/O method,
and the data format support modules.

The degree of portability is mostly determined by the proportion of the
platform-dependent and independent modules. The unified system level is
introduced so as to decrease the number of platform-dependent interfaces as
it gives one interface for all the platforms (supported by the DCMS) instead
of a few.

For making data and procedures more concise and readable, the level
of their abstraction should be high enough so that objects and relations
between them could be described in application terms. This task is accom-
plished by the basic type manager and the application type manager.

4. The DCMS basic features

The DCMS features that help to attain the goals stated above are discussed
below.



104 M. Ostapkevich

4.1. The division of modules into interfaces and implementations.
Prof. N. Wirth has proposed such a division in Modula-2 [4]. In Modula-2
program, there is always one implementation for each interface. Later, the
idea of interface separation was developed in the COM and the CORBA
technologies, which are neutral to programming languages [5], [6]. The
COM and the CORBA permit the existence of multiple implementations
for the same interface. A similar separation into interface and implementa-
tion exists in the DCMS. The novelty in such a separation is introduction
of multiple interface definition methods (hierarchy of the interface kinds),
which is briefly described in 4.2 and 5.6.

4.2. Hierarchy of the interface kinds. Unlike Modula-2, COM, or
CORBA, DCMS provides more than one method of the interface definition.
A hierarchy of predefined interface kinds exists. It is also possible to add
new interface kinds. The reason for existence of hierarchy is that it would
be difficult to use just one kind of interfaces for all software system levels
(from system to application). This is because different abstraction levels are
required for different system levels. It is convenient to describe interfaces
just like the used programming language prescribes at the lowest level. At
higher levels, a better flexibility is required and event-driven interfaces are
more appropriate. The highest levels deal with the user interface and should
be user friendly, understandable and customizable by the user who might
want to tune the system to particular needs. The reason for extensibility
by the new interface kinds is interoperability with other software systems.
They may have their own kinds of interface definition. A good way to obtain
interoperability with them is to allow the interface definition just the way
they are used in such systems.

4.3. The finegrain modularity. Usually, a module source text is located
in one or a few files. There can be some documentation and build-in script
files as well. All these kinds of module data (the source text, documentation,
scripts for building, installation, uninstallation, archiving and so on) are
split to small files. Each file corresponds to a certain aspect. The goal of
division into a big number of small files is to improve readability, reusing and
maintenance as well as facilitating automatic processing such as compilation,
testing, documentation generation or statistics gathering. A slightly more
complicated design and coding of a module is fully compensated by the
gained quality of the result. The average file size for the DCMS kernel
is slightly less than 1Kb. The fine-grain modularity does not have visible
performance overheads because it does not increase the number of function
calls.

The last peculiarity follows from the three above-mentioned. It is the in-
dependence of implementation of the kind of interface used for the interface



The DCMS library for open architecture applications 105

definition. A new kind of interface can be supported in the earlier developed
implementation. This feature improves implementation reusability even if
the kinds of interface are completely changed. But any extension or modi-
fication of supported interface kinds may not violate the so called interface
invariance. This means that the semantics of operations, which are available
through interface, remains the same no matter what interface kind is used.

5. The DCMS architecture

The two main parts of the architecture description are the structure of a
system and interoperation between its parts. The structure is described by
means of modular decomposition while the interoperation is described as
hierarchy of the interface kinds.

5.1. The modular decomposition. The system consists of the kernel
with a fixed set of modules and an unlimited number of external modules.
The kernel is represented by the following levels: the abstract level, the
unified system level, and the service level.

5.2. The abstract level collects implementations for abstract data and
control structures. This level is immediately used by the two others. The
goal of the level is to decrease the redundancy of other kernel parts. The
multiple data used and control structures are extracted into separate mod-
ules of this level. Such a separation improves efficiency and reliability of the
kernel. Among all others, the central role is played by implementation of
the expulsive tree data structure [8], which is used for the associative data
search, hierarchical and sparse data representation. The WinALT uses this
module in its object manager so as to resolve an object reference by the
name and in the substitution manager to keep substitutions found.

5.3. The unified system level. The purpose of this level is to improve the
OS platform independence in order to obtain the DCMS kernel portability.
Most of the modules that depend on the OS interfaces reside at this level.
System property module gives a unified method to obtain and the alter
hardware and system settings without dependence on a particular OS. All
essential platform parameters are represented as values that can be read
and modified. The values are identified by a number. The manager of
module implementations registers the kernel modules, manages their state
and assists in the search for an implementation for a particular interface.
The external library manager provides operations for loading and unloading
of the external libraries.

5.4. The service level is central for the kernel. Its modules implement
the main features and functions of the kernel. The manager of the basic



106 M. Ostapkevich

types provides the interoperability of DCMS applications by the data for-
mat within process space. The manager of formatted I/O implements inter-
operability for the data stored in the files. The event manager supports an
event-driven model of interaction between modules. It provides the means
of definition and usage of interfaces for the external modules (XPL). The
naming manager serves for the global data naming. This module facilitates
the intermodular communications and the user interface construction. The
XPL module manager allows loading and unloading of the DCMS external
modules (external program libraries) and using the functions implemented
within these modules via their interfaces. It is this module that makes it
possible to construct applications as a set of modules, thus making the ap-
plication architecture extensible and scalable.

5.5. External modules. The biggest part of the DCMS functions and
all the application functions reside in the external modules. Currently it
makes the architecture open. In the future it will be distributed as well.
The initialization module serves for application configuration retrieval and
loading of the required XPL modules and data files.

The console interface module contains the user text console input/output
operations for the atomic type values. The Web/CGI interface module im-
plements communication with the user, based on HTML pages sent upon
HTTP and filled-in forms sent back by the user. This module provides visu-
alization of an hierarchical object and contains functions for interoperation
with the Apache Web server. The goal of the GUI module is to give a

Figure 1



The DCMS library for open architecture applications 107

unified means for all supported platforms for the window and the graphical
primitive management, the user function invocation, input/output/edit of
values. A prototype of the WinALT GUI that is based on the DCMS and
the QT (TrollTech), is depicted in Figure 1. Window A contains the full
tree of project structure, B shows it partially opened, C and D contain the
WinALT object on the rectangular and the hexagon grids, E, F, and G show
objects in numeric, Margolus and 3D deck representations.

5.6. Hierarchy of the interface kinds. Different intermodular inter-
actions can be characterized by different important requirements from the
maximal performance to the maximal openness. There is no single kind of
the interface description that can meet all the requirements. Thus a decision
was made to provide multiple kinds of interface description. A set of stan-
dard kinds forms a hierarchy. The next level is based upon its ancestor and
brings about more openness though slightly degrading a bit in performance.

A function prototype written in a programming language is the lowest
level. It is based on the programming language statements for the signa-
tures of interface functions. But many of the languages does not permit
separating of the interface and implementation to such a degree that more
than one implementation could correspond to the same interface within one
application.

The next level in the hierarchy, which is based on the structures of point-
ers to interface functions, overcomes this fault. Such a kind of interface
description is adopted in OLE. The fault of interfaces defined at this level
is the difficulty of their modification. After addition of a new function, the
whole structure of the interface is changed. Thus, it influences all the pro-
cedures that use this interface structure even if they are not intended to use
this newly introduced function. One of the ways to resolve this difficulty is
to declare a new interface with a new structure each time when a function
needs to be added. In fact, this is how it is solved in OLE. There are two
inconvenient consequences of this approach: the number of interfaces cre-
ated to solve the same task grows and the implementation of an interface
has the obligation to support not only the latest version of this interface,
but all its ancestors used at least in one module. As a result, the program
code size grows, and redundant objects are introduced. The alternative to
such a solution is given in the next interface kind level.

The level of a dispatcher function is based on the existence of one function
(dispatcher) that imitates all the operations located in the implementation.
The description of interface at this level consists of operation code decla-
rations and the description of parameter semantics. The same code may
denote different operations in different interfaces. Any module that sup-
ports this kind of the interface definition must have the dispatcher function
with the following prototype:



108 M. Ostapkevich

Unsigned f(unsigned *param_array);

treat the first element of param_array as a code of operation, the second
item – as a value for the result; the number and the meaning of the rest of
items depend on the operation code and must be treated as is prescribed by
their semantics. The benefits of this approach were presented in detail in
[9]. Particularly, the problem of insertion of new functions has a convenient
solution. An implementation using a certain interface does not “see” new
operations if they are not needed. Actually, only the dispatcher function
of the respective implementation is modified. The inconvenience of this
interface kind level is that one has to know not only the operation code, but
also the descriptor of implementation or its entry point to the dispatcher
function. A procedure invocation is usually preceded by a descriptor or
entry point search. This results in decreased readability and bigger size of
the source text.

The level of commands for extensible virtual machine differs from the
previous one by the existence of the only dispatcher function (within the
application scope) and by globally defined operation codes. It can be said
that the dispatcher function executes one command of an extensible virtual
machine at a time.

One application has only one interface of the event-driven level. It con-
sists of a set of events that were either generated at least once or had at
least one handler at a certain moment. The event-driven level of the inter-
face kinds is most important for the DCMS open architecture application
construction. There can be only one reason for deviation from this interface
kind, which is performance optimization in critical fragments of a code or
in a real-time code.

The user interfaces are those that lie at the top of the hierarchy. This
kind of the interface description is oriented to initiation of operations by
the application user. There are several examples of different user interfaces:
graphical user interface; natural language interface; Web interface; and text
console interface.

6. The DCMS application sample

Let us consider a sample that implements the basic Web portal functions:
the input of user’s requests to the database and the generation of report
to a user (Figure 2). The client part is represented by Browser (1) on the
user’s machine, while the server part is a Web Server (2) and a DCMS-based
portal application. The DCMS application consists of the kernel and two
external modules: Web Interface Module Ui1W1.xpl (3) and the Request
Execution Module Ctrl1Req1.xpl (4). Let us assume that Web server and
DCMS application are located at portal.sscc.ru, and the name of application
is searchbook.elf.



The DCMS library for open architecture applications 109

Figure 2

Let the user request information about books from the portal. He would
like to narrow the search by specifying the author’s name and the year of
publication. He downloads the book search request form (1) and fills out
the author and year fields in it. After he presses the submit button, the
browser sends the request to Web server as an URL string:

http://portal.sscc.ru/cgi-bin/searchbook.elf?author=Knuth+year=1973.

The Web server receives the string, launches searchbook.elf and passes the
author and the respective year. The Ui1W1.xpl is the first module triggered
in the application. It converts the request from the Web server format



110 M. Ostapkevich

into the inner DCMS format. The Ui1W1.xpl uses a type manager (5) to
construct a “request” and assigns the authors and the year properties.

The type manager itself uses the basic type manager (6) for an object al-
location and creation of subobjects for the properties: it creates four objects
of the void type (one for the request object and three for the properties kept
in it as fields); it assigns the string value “request” to the second value, the
string value “Knuth” to the third value and the integer value “1973” to the
fourth value; and it inserts these objects into the first one as fields with the
following names: “type”, “author”, “year”. While performing these actions,
the basic type manager uses the associative search data structure module
(7) in order that form the data structure, which associates field names with
their contents be formed. Both the basic type manager and the associative
search data structure module use the dynamic memory manager (8) for the
memory blocks allocation when creating data objects and associative data
structures.

After the “request” object construction Ui1W1.xpl generates “execute
request” event using the event manager (9). This initiates all the handlers
of this event. The main work is done by the request processing module
within the portal kernel P1.xpl (4). The request processor gets a “request”
object as parameter and uses databases to retrieve all the “book” objects
that meet the criteria of the search. Then the request processor constructs
the “abstract report” object that contains all the objects found in the form
of a sorted list. The “abstract report” object is passed to the Ui1W1.xpl
module as a result of the “execute request” processing. The Ui1W1.xpl
generates the HTML page by the abstract report and sends it to the Web
server. The page contains a human readable list of the books found. The
Web server sends this page to the user’s browser (10).

7. Conclusion

Most of the DCMS kernel modules are implemented and used within the
WinALT project. It was demonstrated that the kernel meets all the re-
quirements that were expected. It is planned to finish the design of the
kernel and to implement the whole of the interface description hierarchy
as well as the development of standard system external modules with typi-
cal functionality for a wide set of applications. The DCMS is supposed to
be used for the Web application construction, particularly, for portals and
visualization of distributed computational processes.

References

[1] Ostapkevich M.B., Piskunov S.V. Basic constructions of models in WinALT //
NCC Bulletin. Series: Computer Science. – Novosibirsk: NCC Publisher, 2001. –
Issue 14. – P. 43–58.



The DCMS library for open architecture applications 111

[2] Ostapkevich M.B. The software development for imitational simulation of fine
grain algorithms on clusters // Proc. Young Sci. Conf. – Novosibirsk, 2002. –
P. 206–213 (in Russian).

[3] Filinov E. The selection and design of conceptual model for open system envi-
ronment // Open Systems. – 1995. – Vol. 14, No. 6. – P. 32–46 (in Russian).

[4] Nepply, Platt. Programming Modula-2. – Moscow: Radio i Svjaz, 1989 (in Rus-
sian).

[5] Oberg J. COM+ Technology, Basics and Programming. – Moscow: Williams,
2000 (in Russian)

[6] Tsimbal A. CORBA Technology. – St-Petersburg: Piter, 2001 (in Russian).

[7] Ostapkevich M. Event-driven tools for open system design // NCC Bulletin. –
Novosibirsk: NCC Publisher, 1999. – Special issue. – P. 15–22.

[8] Ostapkevich M. Expulsive tree data structures for fast data search by a key //
NCC Bulletin. Series: Computer Science. – Novosibirsk: NCC Publisher, 1999. –
Issue 10. – P. 73–82.

[9] Ostapkevich M. The open architecture of WinALT // Joint Bull. ICM&MG
and IIS. Series: Computer Science. – Novosibirsk: NCC Publisher, 1998. –
Issue 10. – P. 79–91.



112


