Bull. Nov. Comp. Center, Comp. Science, 9(1998), 93-106
© 1998 NCC Publisher

The open architecture of WinALT

M. Ostapkevich

The necessity of the open architecture for fine-grained parallel model simulating
system (WinALT) is discussed. The description of WinALT open architecture
and external module interfaces is given. WinALT consists of the language and
graphical user’s interface subsystems and the kernel. The extensibility of WinALT
is implemented in the kernel by a number of interfaces. The principal ones are
object file format support interface and those of language and graphical subsystem
extensibility. A number of samples is given to clarify the usage of all these interfaces.

1. Introduction

1.1. Fine grain simulating system WinALT

WinALT is a fine grain simulating system. It is intended to simulate complex
dynamic systems, such as digital electronic devices (associative or systolic
structures and 3D pipeline units), physical and biological systems, which are
represented by cellular automata, neural and cellular-neural networks. It is
based on the concept named the Parallel Substitution Algorithm (PSA) [1].
The general description of WinALT and the Jjustification of its main features
was presented in [2]. In this article the detailed description of the WinALT
open architecture is given. The system has language and graphical means to
execute, debug and examine cellular algorithms. Unlike its ancestors the sys-
tem has the ability to be changed by a user, as it has the open architecture.
In the article the brief description of open systems is given. The advantages
of the open system concept for a Parallel Substitution Algorithm based sim-
ulating system are listed. The means of WinALT extensibility, scalability
and interoperability are discussed in details. The description of WinALT
interfaces and program samples, which use these interfaces, is given.

1.2. The concept of the open architecture

N. Wirth in [3] mentioned monolithic design of applications as one of the
main causes of code size growth tendency. The term monolithic implies that
an indivisible and inextensible set of binary modules exists and includes all
the functions of a system, either important or useless for a certain user.
A user cannot include new modules or exclude old ones out from such a
system.

94 M. Ostapkevich

An open system is the exact antithesis of a monolithic one and it over-
comes the faults mentioned above. The basic minimal set of functions is
represented by a reduced set of modules and does not occupy huge space in
a retrieval system. Such a system with the ability to include and exclude
external modules may be tailored by a user.

In [4] the following distinguishing features of an open system were listed:

1. Eztensibility and scalability is the possibility of a new function addition
or an existing function modification while the rest functions remain
unchanged.

2. Portability is the ability to be reimplemented on another platform
without noticeable differences for a user.

3. Interoperability is the ability to communicate with other software sys-
tems.

4. User friendly interface.

It is worthy to be mentioned that the conception of an open design is
not unique and was not first introduced in computer science. The same
idea is widely exploited in many contemporary engineering sciences, such as
architecture or mechanics. Though this approach bears other titles there, the
four features listed above are typical for results of a professionally performed
design.

1.3. Is open architecture desirable for a PSA simulating
system?

Just as the open architecture concept is useful for most of the software, it
also may be applied for the design of a PSA simulating system. The range of
a PSA model complexity is rather wide. While in some cases the structure
can be comprehended at one glance, other models may have a multilevel
hierarchy of decomposition into submodels. Miscellaneous applications have
significantly different sets of typical submodels. A PSA simulating system,
which includes a fixed inextensible set (or library) of submodels has a limited
use even if this set is rather versatile. Thus, the scalability and extensibility
are highly desired features of a PSA simulating system.

The multitude of operating systems and hardware platforms and the ab-
sence of a leading platform imposes the necessity of support for more than
one of them. The average lifetime of a PSA simulating system exceeds six
years. The nowadays pace of hardware development speeds up the emer-
gence of new operating systems and their versions. In six years the set of
most widely used platforms alters significantly. The failure to easily port a
PSA simulating system to newer platforms may cause its untimely disap-
pearance because of disappearance of the single platform that it supports.
The conclusion should be drawn that the portability of a PSA simulating

The open architecture of WinALT 95

system is invaluable for achieving a longer lifetime and the acceptance of
this system in the widest set of applications, which may be simulated with
the help of PSA. _

PSA modeling is often Just a phase in a chain rather than entire process
of data transformations. Input data for simulation may be resulting data of
another system. And vise versa, the results of PSA simulation may be used
somewhere else. A PSA system that is able to participate in such a chain
should possess such feature of an open system as the interoperability.

The presence of a user friendly interface is almost the universal require-
ment for the contemporary software. In many applications this requirement
seems to be redundant, especially when a program has only a small list
of possible requests and responses. PSA is oriented to graphical represen-
tation of both simulating objects and rules. Not only a PSA simulating
system must have a convenient visualization of objects and rules, but also
it should supply a user with the means to visualize single and massive sub-
stitutions and collision occurrences, The experience of previously designed
PSA simulating systems (such as CIM [5]) exploitation made it evident that
debugging and observations of a PSA algorithm without an advanced vi-
sualization and user friendly interface is infernally complicated and time
consuming. Thus all of the four features of open systems are either highly
desirable or obligatory for a PSA simulating system.

1.4. Means of PSA simulating system open architecture
implementation in WinALT

An attention was paid at the stage of WinALT design to meet all of the
four features of open systems. To implement an extensible and scalable
system WinALT was represented by the main binary executable file, which
is constituted by the minimal set of modules required for WinALT execution,
and an unlimited number of external modules.

The main binary executable file consists of a kernel and three main sub-
systems (Figure 1) [2]. These are the language, graphical user interface and
visual design subsystems for PSA based models [1]. The WinALT kernel
[6] is constituted by the object manager module and the external library
support module, which is named ACL manager. As the name suggests the
object manager implements operations with objects. Namely these are load,
unload, create, delete, resize ob Ject; get, set cell value and name., ACL man-
ager contains operations for external module support, such as load /unload.
The WinALT external modules, which use the WinALT functions or some
functions in other WinALT external modules are called ACLs. ACL stands
for “Alt C Libraries”. ACL is actually a dynamically linked library in Win32
[7, 8, 9] or a shared library in UNIX [10].

96 M. Ostapkevich

|Language subsystem I-—-l Kernel |~—' GUI subsystem
i

| External modules—l

Figure 1. General structure of WinALT

Each external module that is intended to be used by WinALT must
be registered. Whenever a user wants to exclude an external module from
WinALT installation, the unregistration is activated. All the external mod-
ule registration information is contained in a number of WinALT configura-
tion objects. Usually these objects are located in the system directory.

All external modules provide WinALT with a standard set of interface
functions. WinALT calls all the implemented operations of a certain mod-
ule via these interface functions. On the other hand, WinALT provides
external modules with an interface that allows the external modules to per-
form object transformations and other WinALT operations. The interface
is implemented in the ACL manager [6].

The external module may be compiled and linked by any assembly or
high level language compiler and linker or integrated developer’s environ-
ment. The source of module interface functions is required. It may be
accompanied by an unlimited number of other functions, source files. The
WinALT library named aclstd.lib must be linked with each external mod-
ule. A sample sequence of compilation and linkage stages for a C source texts
is given in Figure 2.

|2urce fﬂeHcoupnerHibject fil?l—.{ linker HACL binary image fi1e|
aclstd.lib

Figure 2. Generation of an ACL

Whenever a certain internal or external WinALT module has the need to
utilize an operation that is implemented in another external module, ACL
manager checks if the required module was already loaded. If it does not yet
reside in memory, ACL manager loads it. Otherwise it increases the counter
of its users. When the the module is not used any more, its user counter is
decreased. When its value becomes zero, ACL manager unloads it.

WinALT was designed as a modular system. That allows to build sim-
plified WinALT versions, e. g. versions without debug mode, graphical user’s
interface, etc. While such modules as graphical user’s interface implemen-
tation considerably depend on a certain platform, the interpreter modules
might be designed as portable. The WinALT language subsystem [6] uses
only standard ANSI C [11] library and other WinALT interfaces and thus

The open architecture of WinALT 97

can be easily ported to other platforms. ACL manager and object manager
(6] constitute WinALT kernel, their implementation relies not only on ANSI
C library, but also on some system functions, such as dynamically loaded
libraries, memory mapped files and so on. But the porting of kernel also
isn’t a complicated task, as the system functions mentioned above are pre-
sented in virtually all contemporary operating systems. With the help of
conditional compilation the single WinALT kernel source exists for all the
platforms. The most platform dependent pieces of code were gathered in a
single module, which is to be rewritten for each new platform. Currently
WinALT implementation exists on Win32 and Linux platforms.

The interoperability of WinALT is maintained primarily in the object
manager, as the main thing WinALT should share with other applications
is the cellular object, which is the central WinALT data object. The object
manager has the ability to adopt new file format for WinALT ob jects. The
manager’s design is examined in details in Section 4 of this article.

The last important feature of an open system is the user friendly inter-
face. WinALT has an advanced graphical user’s interface (GUI), which was
described in [12]. The interface allows a user to view and edit ob jects and
sources in a number of modes. In the debug mode a user gets a compre-
hensive set of tools to investigate a behaviour of an algorithm execution, to
localize an error, to examine collision occurrences and so on. In Section 5
the description of the mean of WinALT GUI extensibility is given.

2. Interface for external modules

The set of implemented functions alters for different modules. Thus, a uni-
fied approach is required to retrieve these sets. Any ACL must have an
exportable function named ReqService, which takes four parameters. The
first parameter bears the number of the issued request. The rest of param-
eters are pointers, which have different meaning for different requests. For
some requests these parameters are ignored. Having just a single function,
which dispatch calls to other functions inside a module allows extending
interfaces without a modification in the set of exportable functions. But
on the other hand this approach implies overheads while making a function
call. To improve the performance a few extensively used external functions
are called directly without the ReqService dispatcher function. Retrieving
and storing cell value functions are the best examples of such an exception.
Besides the necessity of implementation of the dispatcher function, differ-
ent types of external modules impose their own specific limitations in the
interface.

In the passage above the interface, which allows calling external functions
from inside WinALT has been discussed. But another way of interaction

98 M. Ostapkevich

between WinALT and external modules exists, when an external module
calls a WinALT function. For example a module may ask WinALT to cre-
ate, modify or delete certain objects. Some exotic modules may want to
ask WinALT to terminate. The modules that depend on WinALT version
need to retrieve the version number and so on. This type of interaction is
implemented by WinALT language subsystem interface. The interface is
reachable via UA_SubmitServiceToACL function. Just as ReqService it ac-
cepts a request number and three pointers. Pointer to this function is always
sent to a module at the initialization stage and it should be kept unless a
module does not have to handle WinALT objects or influence WinALT in
other ways.

3. WIinALT language extensibility

The same part of a model can often be used in more than one model. The
means for its reusability would help to avoid its redundant reimplementation.
It is well-known that coding is much less time consuming than testing and
debugging. Each new implementation brings new errors. Instead of intensive
exploitation of one well tested library a user has to debug a new one.

In WinALT a source code written in a certain high level language may
be called from a simulating program. Such an import may be performed
either for a source text or a compiled library. In both cases this source or
binary file is linked with an interface library aclstd.1ib. The linker creates
an ACL library. Such a library may be loaded by a request in a WinALT
program (Figure 3). The WinALT language gives two statements for library
loading: import and use. Import makes interface functions visible by the
long names with explicit specification of ACL name: library::function,
for example, math: :sqrt. Use statement enables short names, for example,
sqrt for square root function in math.acl.

All the functions that should be visible in WinALT must be declared as
interface functions. If a function is to be exported without modifications in
its source (for example, a function from ANSI C standard library) a gate

BCL .OdUI;H ACL nanager—}—-lfxecuted WinALT progr;I

1 language |subsystem
C compiler
linker

I source WinAlt program_]

Figure 3. Calling an ACL function frorh a WinALT program

The open architecture of WinALT 99

function should be implemented. The gate function is declared just like any
other interface function. All it has to do is to call a real meaningful function.
A gate function may be written manually or generated automatically from
its prototype by stg utility. Prototypes for stg are similar to those in C
with a few exceptions. They have the following syntax:

result_type function_name(typel namei, type2 name2, ...,
typeN nameN);

All the functions that should be visible in WinALT must be declared
as interface ones function_name, namel, name2, and nameN are valid C
identifiers; result_type, typel, type2, and typeN are valid WinALT types
(Table 1); function_name should be a name of an existing function. Formal
parameter name may be omitted. The number of parameters has to coincide
with that for the function named by function_name. ACL xc types are
listed in Table 1. A list of examples of ANSI C and their respective xc
prototypes is presented in Table 2. Comments are not allowed in xc files.
For the sake of simplified implementation each prototype is placed on a
single string. The last string contains '#’ character.

Table 1. Relations between ACL, ANSI C, and Win32 types

xc type C type Win32 type Description

int int - IN integer

string charx LPSTR ASCII string
boolean int BOOL logical

float float FLDAT floating point value
void — — error type

char char CHAR ASCII character

Table 2. ANSI C and ACL prototypes

ANSI C prototype Xc prototype
void funci(void); void func1();
VOID funci(VOID); void funci();
double sin(double); float sin(float);
char* strcat(chars, chars); string strcat(string, string);

In many cases when only import to WinALT is required the stg utility
would be sufficient. However, it is often necessary to handle Win ALT objects
from an ACL library. In such a case it is possible either to utilize Win ALT
interface directly with the help of macrodefinitions from aclstd.h header file
or to use aclstd.lib functions.

100 M. Ostapkevich

ACL(ILF_MarkBorderl) /* the implementation */
{
LPACL_OBJ objImage,
/* pointer to an object with an image to work with #/
buflImage;
/* keeps new pixel values until synchronization */
LPSTR tmpName;
INT xIdx, yIdx, xSize, ySize;

ACL_ReturnInteger ();
/* notify that return value is integer */

/* check if parameters passed have valid types »/
if ((ACL_PARAM_TYPE(O) !=RT_TYPE_LPSTR) | | (ACL_PARAM_TYPE (1) !=RT_TYPE_INT) | |
(ACL_PARAM_TYPE(2) != RT_TYPE_INT)) return ILF-ERRhINCORHECT_PARAH_TYPE;

objImage = AS_StrToPtr (ACL_PARAM(0));

/% get pointer to the object */

if ((objImage==NULL) || (objImage==(LPVOID)-1))
return ILF_ERR_0BJ_NOT_FOUND;

tmpName=AS_GetUniqueObjName ();
/* generate unique name for buffer object */
ACL_GetObjSize(objImage, xSize, ySize);
/% get size of the source object */
bufImage = ACL_CreateObj(pszTmpObiName, xSize, ySize);
/* create object =/

for(yIdx=1;yIdx<ySize—2;yIdx++)for(xIdx-1;xIdx(xSize-2;xIdx++){

INT value; BOOL bEqual;

bEqual = TRUE;

value = ACL_GetIntCellValue(objImage, xIdx, yIdx);

if ((value != ACL_GetIntCellValue(objImage, xIdx + 1, yIdx)) ||
(value != ACL_GetIntCellValue(objImage, xIdx, yIdx + 1)) ||
(value != ACL~GetInt0911Value(objlmage. xIdx - 1, yIdx)) ||
(value !'= ACL_GetIntCellValue(objImage, xIdx, yIdx-1}))

bEqual = FALSE;

/*set ACL_PARAM(2) value if the point belongs to border,
ACL_PARAM(1) otherwise */
ACL,SetIntCellValue(bqumage, bEqual ? ACL_PARAM(1) : ACL_PARAM(2),
xIdx,yIdx);
}
/% local function that copies all cells from bufImage to objImage »/
SyncChanges (objImage, objNewImage); return ILF_0K;

Figure 4. An ACL function implementation sample

- v

The open architecture of WinALT 101

contoured image

Figure 5. The source, contoured and splined images

A sample of an ACL function, which marks a contour of a, 2D image, is
depicted in Figure 4. A pixel (a cell) is assumed as one of a contour if at
least one of its neighbor cell values alters from that of the pixel. The source,
intermediate and contoured images are shown in Figure 5.

4. Custom object file format support

Nowadays a lot of miscellaneous file formats for different types of information
exist. Some of these specifications, such as GIF, are revised periodically.
Spontaneously or because of convenience different applications have different
standard formats. A WinALT user would not feel comfortable if he is forced
to utilize a fixed set of formats without the ability to add a new one.
WinALT object manager [6] supports multiple file formats. Each file
format is represented be a so called object driver, which is a dynamically
linked library with a specific set of exported functions. WinALT package
contains a number of such drivers. Some' of them support internal object
formats. Others implement some widely spread file formats, such as BMP.

102 © M. Ostapkevich

A user may implement his own object drivers to enable the usage of his
custom file format. - Object driver’s registration may be performed either
by WinALT object driver registration dialogue or by modification and exe-
cution of config.src that is located in WinALT BIN directory. After the
registration WinALT configuration contains the information about the new
object driver (the driver’s path, object prefix, file extension). When object
manager encounters an object containing a prefix or file name extension rel-
evant to this object driver, it loads the driver if it was not loaded before.
When no more objects of a certain type reside in memory, their driver is
unloaded by the object manager. Each object driver has a number of oblig-
atory functions. These are object load and unload, cell value and name read
and write, get object dimensions, amount of memory required to keep an
object with specified dimensions.

Currently the following set of object drivers is implemented in WinALT:

1) the default driver;
2) the driver for objects with 1, 2 and 4 byte integer cells;

3) the driver for 1 bit logical cell values (suits for classical cellular object
simulating [13]);

4) a number of object drivers for some subformats of BMP format. '

5. WinALT graphical user’s interface
extensibility

5.1. General description

PSA is applicable for a versatile set of real problems. WinALT as an PSA
based system should cover most of them. But the difference does not entirely
reside only in the set of typical submodels or the most widely accepted file
formats to keep objects for a certain problem. Different tasks require as
well their own way of graphical representation of source, intermediate or
resulting objects.

The best form of visualization comes from tight connection with real
physical process in a model. For example, the results of sound or seismic
signal filtering have one dimension and relatively large set of discrete values.
Thus, the best way to represent such type of data is to show the dependence
of signal level from time. The location on X axis denotes the position or
time, while that on Y axis shows the value of signal. Colour may be used
to place a number of such signals (or objects in PSA terminology) into the
same region on the screen. The visualization of images evidently should have
two dimensions with colour of each point denoting its value. PSA models
for digital device simulation may require 2D or 3D visualization. Depending

The open architecture of WinALT 103

on a cell complexity, a value may be showed as a colour square or a certain
text in a rectangular area.

Other PSA applications may reveal more demands and peculiarities on
how to show a cellular object. Thus, the ability to include and use new
modes of object visualization is an essential feature of an PSA based system
because of its influence on integral fitness for a certain application.

In WinALT, the custom object visualization mode support is imple-
mented in the module named Object Visualization Engine.

5.2. Structure of the object visualization engine

Object visualization engine (OVE) is the part of WinALT GUI subsystem.
It is built above the WinALT object manager. This module also uses exten-
sively Win32 API GUI functions, because its main purpose is visualization.
OVE is activated by other modules of WinALT GUI subsystem and by the
language subsystem.

The principal data structure of the module is the visual object. It in-
cludes object manager logical object as jts part. Other parts of this structure
reflect miscellaneous parameters of visualization and object editing. For ex-
ample, there are such fields as location and size on the screen, “undo” buffer
to cancel recent modifications of an object, the visibility of object name, of
the ruler (the rectangular region at the top and left edges of a visual object,
its only destination is to show the coordinates of X and Y axis and so on.

5.3. Modes of visualization and external mode support
libraries

Each visual object is shown in a certain mode of visualization. One such
mode is supported by an ACL named OVD. OVD stands for Object Visu-
alization Driver. It uses the same interfaces as any other ACL library. The
painted image in a window is the result of cooperative work of the OVE and
one or several OVD libraries. A window can contain one visual object in
viewer or edit mode or a collection of objects in viewer mode. Each object
is located in a rectangular region, which is divided into client and non-client
areas. The former is painted by OVD, while the latter is created by OVE
and includes title, frame and ruler and edit string at the bottom. The title
is used only for multiple objects per window.

OVD may have a number of optional exportable functions, but there is
only one obligatory. It has the symbolic name OVD_Paint and it is respon-
sible for painting the client area of a visual object specified as a parameter
in a window. It is the responsibility of QVD not to go beyond the borders
of the client area. The source text in Figure 6 shows a simplified version
of OVD_Paint, which paints integer cell values for a 2D visual object or a

104

M. Ostapkevich

_declspec{dllexport) VOID OVD_Paint (PVISOBJ pvo, PDRAWINFO hdc)

{

INT xSize, ySize, zSize, xMax, yMax, xCurCoord, yCurCoord;
LPACL_CELL pcell; '

struct Pos pos;

CHAR buf [8];

ACL_GetObjSize(pvo->plo, &xSize, &ySize, %&zSize);

pos.z = pvo->posScroll.z;

xMax = min(xSize, pvo->sizeWin.x / pvo->sizellnit.x + pvo->posScroll.x);
yMax = min(ySize, pvo->sizeWin.y / pvo->sizelUnit.y + pvo->posScroll.y);

for(pos.y = pvo->posScroll.y, yCurCoord = pvo->posWin.y; pos.y < yMax;
pos.y++, yCurCoord += Y_CELL){

for(pos.x = pvo->posScroll.x, xCurCoord = pvo->posWin.x; pos.x < xMax;
pos.x++, xCurCoord += pvo->sizelnit.x)

{
sprintf (buf, "%d", pcell->value);
TextOut (hdc, xCurCoord, yCurCoord, buf, strlen(buf));

Figure 6. OVD_Paint implementation sample

_declspec(dllexport) LPVOID OVD_Request (PVISOBJ pvo, INT req, LPVOID p1,

{

LPVODID p2)
struct Pos pos;

switch(req)

{

caze OVD_REQ_CORRECT_SIZES:
ACL_GetObjSize(pvo->plo, &pos.x, %pos.y, &pos.z);
if (pvo->sizeWin.x < X_CELL) pvo->sizeWin.x = X_CELL;
if (pvo->sizeWin.y < Y_CELL) pvo->sizeWin.y = Y_CELL;
pvo->sizeUnit.x = pvo->sizeWin.x / pos.x;
if (pvo—>sizeUnit.x < X_CELL)pvo->sizeUnit.x = X_CELL;
else pvo->sizeWin.x = pvo->sizelnit.x * pos.x;
if (pvo->sizeWin.y > (pvo->sizeUnit.y * pos.y))

pvo->sizeWin.y = pvo->sizeUnit.y * pos.y;

return (LPVOID)1;

Figure 7. OVD.Request implementation sample

The open architecture of WinALT 105

layer in 2D object. xCurCoord and yCurCoord denote logical coordinates in
window. pos is a structure that contains the position of a cell in object.

OVD_Request is an optional OVD function, which allows to adjust OVE
settings. For example, by default cell scale vary from 1 to 1024 pixels. But
for some modes it senseless to decrease the scale below a certain value. Or
the standard ruler is useless for some modes. Modifications of scale, size,
altering the visibility of vertical or horizontal ruler may be implemented in
OVD_Request. The source test presented in Figure 7 demonstrates a partial
implementation of OVD_Request, which corrects sizes of a visual object. This
sample has fixed minimal sizes for X axis (X_CELL) and Y axis (Y_CELL). It
limits the maximal height, but the width is unlimited, for each increment of
width, it increases X axis cell size,

5.4. Other means of graphical user’s interface extensibility

WinALT GUI subsystem has an API that allows to create and manage child
windows in the main WinALT window. This API is available for external
modules via ACL interface. Thus, a WinALT program with a help of a
certain ACL may perform any Win32 GUI operations. Should anything
that goes beyond limits of rectangular cellular objects or the conception of
visual modes arise, it would be implemented with the help of this API. This
APT is also supported for simplified WinALT versions under Win32.

References

[1] S.M. Achasova, O.L. Bandman, V. P. Markova, and S.V. Piskunov, Parailel
Substitution Algorithm. Theory and Application, World Scientific, Singapore,
1994,

[2] S.V. Piskunov, WinALT - q simulation system for computations with spacial
parallelism, Bull. Nov, Comp. Center, Comp. Science, No. 6, 1997, 71-85.

[3] N. Wirth, A plea for lean software, IEEE Computer, 28, No. 2, 1995, 64-68.

(4] E. Filinov, The selection and development of the open system environment
conceptual model, Open Systems, 6, No. 14, 1995, 32-46.

[5] Yu. Pogudin, ALT - a graphical system for parallel microprogramming, Paral-
lel Algorithm and Structures and Structures, Computer Center, Novosibirsk,
1991, 77-88 (in Russian).

[6] M. Ostapkevich, The WinALT system language tools, Proc. Conf. of Young
Scientists, Institute of Computational Mathematics and Mathematical Geo-
physics, Novosibirsk, 1998, 182-194 (in Russian).

[7] Charles Petzold, Programming Windows 95, Microsoft Press, 1996,

106 M. Ostapkevich

(8] Jeffrey Richter, Advanced Windows, Microsoft Press, 1995.
{9] David J. Kruglinski, Inside Visual C++, Microsoft Press, 1996.
[10] LINUX manual pages, LINUX Redhat 5.0, 1997.

[11] Turbo C++, second edition. User’s guide, Borland Intenational, Scotts Valley,
1991.

[12] D. Beletkov, The graphical construction of computer 3D models of cellular al-
gorithms and structures, Proc. Conf. of Young Scientists, Institute of Compu-
tational Mathematics and Mathematical Geophysics, Novosibirsk, 1998, 3-13
(in Russian).

(18] Stephen Wolfram, Theory and Applications of Cellular Automata, Singapore,
World Scientific, 1986.

